rc pier-f(box & girder).xls

Upload: robynson-banik

Post on 03-Apr-2018

258 views

Category:

Documents


7 download

TRANSCRIPT

  • 7/28/2019 RC pier-f(Box & Girder).xls

    1/36

    SUR RIVER BRIDGE RC PIER STABILITY-1 of 36

    NOTE:- DO NOT CHANGE VALUES IN BLA CK

    1) DESIGN DATA AND SPECIFICATION

    1.1.MATERIAL PROPERTIES:

    Concrete :- Grade C-30 concrete ( section 9.3)

    fc'= = 24 MPa fc' cylinder )

    fc=0.4*fc' = 9.6 MPa

    Ec=4800sqrt(fc') 23,515 MPa

    Reinforcement steel:

    Grade 420 steel: For rebars diam. 20mm and above

    fy = 420 MPa

    fs = 165 MPa

    Es = 200,000 MPa

    Grade 300 steel: For rebars less than diam. 20

    fy = 300 MPafs = 140 MPa

    Es = 200,000 MPa

    Modular ratio Ec / Es = 8.51 Use n = 9

    Live Loading: (1) Design Truck : AASHTO HS20 - 44 live load+ 25% increment

    (2) Design Tandem

    Bearing Capacity(s)= 5.0 kg/cm

    Allowable Bearing Capacity (1.25*s)= 6.25 kg/cm2

    1.2. REFERENCES: -ERA BRIDGE DESIGN MANUAL 2002

    -AASHTO STANDARD SPECIFICATION FOR HIGHWAY BRIDGES,199

    1.3.DESIGN METHOD: LRFD

    2) LOADING

    2.1. Dead Loads

    2.1.1. From Superstructure

    CLN

    exterior girder interior girder

    LEFT GIRDER SUPSTR.

    RIGHT BOXGIRDER

    SUPSTR.20 mtr. span 40 mtr. span

    Exterior Interior Exterior Interior

    X-sectional

    (kN/m) 31.85 30.98 37.22 34.94

    Diaphrams-

    middle(No.) 2 2 0 0

    REINFORCED CONCRETE COULMN PIER DESIGN FOR FOUR GIRDER

    SUPERSTRUCTURE

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    2/36

    SUR RIVER BRIDGE RC PIER STABILITY-2 of 36

    (kN) 3.26 6.52 0.00 0.00

    ends(kN) 1.63 3.26 2.35 4.70

    SupportReaction(kN) 331.35 327.33 756.06 712.24

    2.1.2. Selfweight

    0.2

    L F

    0.4

    W

    A

    G

    W

    H

    C E

    D

    B J

    A B C D E F

    1.00 7.00 0.80 0.80 11.62 1.10

    G H J L W0.9 0.60 3.50 7.40 1.00

    Pier Cap w1(kN/m)=(A*L*F+2*0.20*0.40*F)*24/L= 17.07

    Bracing w2(kN/m)=C*H*24= 11.52

    Pier Column P(kN)=P/4*W2*E*24= 219.01

    Summary of Dead Loads

    331.35 327.33 327.33 331.35 (Left Supstr.)

    756.06 712.24 712.24 756.06 (Right Supstr.)

    c a a a c

    17.07

    Enter

    values for

    dimensions

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    3/36

    SUR RIVER BRIDGE RC PIER STABILITY-3 of 36

    where

    aLt.= 2.2 m c= 0.400

    aRt.= 2.21 m c= 0.385

    11.52

    2.2 Live Loads

    a) Design Truck Load : HS 20-44 + 25% increment

    P/4 P P P P14ft

    (4.267m)

    P = wheel load = 1.25(71.20KN)= 89 KN

    LONGITUDINAL ARRANGEMENT TRANSVERSE ARRANGEMENT

    b) Design Tandem

    P P P P

    1.20m 1.80m

    P = wheel load = 1/2*11 55 KN

    LONGITUDINAL ARRANGEMENT TRANSVERSE ARRANGEMENT

    2.2.1 Dynamic Load Allowance

    Section 3.13, the vehicular dynamic load allowance IM

    IM = 33% Therefore IM 33%

    The live loads shall be factored by 1+IM/100 = 1.33

    A) Longitudinal Arrangement

    case 1: Maximum Axial Load on pier

    P/4 P P

    4.267

    x x= 0.5

    Rp2 Rp1

    14 - 30ft

    (4.267- 9.144m)

    6ft

    (1.80m)

    Longitudinal Moment due to

    Unbalanced Superstructure

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    4/36

    SUR RIVER BRIDGE RC PIER STABILITY-4 of 36

    Rp1= 1.895 P

    Rp2= 0.204 P

    Axial Load: Rp=Rp1+Rp2= 2.099 P

    Moment about CLN of pier: MCL= 0.423 P

    case 2: Maximum Bending Moment

    P P P/4

    4.267

    Rp1

    Rp1= 2.092 P

    Axial Load: Rp=Rp1= 2.092 P

    Moment about CLN of pier: MCL= 0.523 P

    2.2.2 Transverse Load Distribution For T- Girder

    In designing sidewalks, slabs and supporting members, a wheel load located on the sidewalk shall be 1 fo

    Distribution Factor for Shear (Sec. 13.4: Table 13-7 & 13-8)

    Exterior Girder:

    Case-1: One Design lane loaded

    The lever rule is applied assuming that the slab is simply supported over the longitudinal beams (Table 13

    P P TRWW= 8.92 m

    1.8 SW= 0.8 m

    a= 2.20 m

    d1= 0.055 m

    RE RI d2= 0.455 md1 a - d1 d2 c= 1.16 m

    no.of girders= 4

    The distribution coefficient to the exterior girder for shear bw= 0.47 m

    REX1 (shear) = 1/a*P*(a+ 1.232 P

    Case-2: Two or more design lanes loaded

    The distribution of live load per lane for shear in exterior girder is determined according to the formulas giv

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    5/36

    SUR RIVER BRIDGE RC PIER STABILITY-5 of 36

    REX2 (shear) = (0.60+de/3 0.908 per lane de=c-bw/2= 0.925 m

    This factor is for one lane load which is equivalent to two lines of wheels, and thus multiplied by 2

    REX2 (shear) = (0.60+de/3 1.817 P

    There fore, REX (shear) in exterior girder is maximum of the above two values, REX1 or REX2

    REX (shear) = 1.817 P

    Interior Girder:

    Case-1: One Design lane loaded

    The distribution of live load per lane for shear in interior girder is determined according to the formulas giv

    RINT 1 (shear) = 0.36 + 0.649 where 1100

  • 7/28/2019 RC pier-f(Box & Girder).xls

    6/36

    SUR RIVER BRIDGE RC PIER STABILITY-6 of 36

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 2.577 P = 229.35 kN

    RB=RP*RB= 2.717 P = 241.84 kN

    Case-II: Two or more design lanes are loaded

    RA= 1.817 P RB= 1.538 P RC= 1.538 P RD=

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    RA=RP*RA= 3.813 P = 339.33 kN

    RB=RP*RB= 3.227 P = 287.21 kN

    RC=RP*RC= 3.227 P = 287.21 kN

    RD=RP*RD= 3.813 P = 339.33 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA

    =RP*R

    A=

    3.800 P = 338.24 kNRB=RP*RB= 3.217 P = 286.29 kN

    RC=RP*RC= 3.217 P = 286.29 kN

    RD=RP*RD= 3.800 P = 338.24 kN

    2.2.3 Transverse Load Distribution (Box Girder)

    In designing sidewalks, slabs and supporting members, a wheel load located on the sidewalk shall be 1 fo

    Distribution Factor for Shear (Sec. 13.4: Table 13-7 & 13-8)

    Exterior Girder:

    Case-1: One Design lane loaded

    The lever rule is applied assuming that the slab is simply supported over the longitudinal beams (Table 13

    P P

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    7/36

    SUR RIVER BRIDGE RC PIER STABILITY-7 of 36

    1.8 a'= 1.8 m

    a= 2.21 m

    d1= 0.345 m

    RE RI d2= 0.755 m

    d1 a' - d1 d2

    The distribution coefficient to the exterior girder for shear

    REX1 (shear) = 1/a*m*P*( 1.797 P m= 1.2

    Case-2: Two or more design lanes loaded

    The distribution of live load per lane for shear in exterior girder is determined according to the formulas giv

    REX2 (shear) = (0.64+de/3 0.683 per lane de=c-bw/2= 1.02 m

    This factor is for one lane load which is equivalent to two lines of wheels, and thus multiplied by 2

    REX2 (shear) = (0.64+de/3 1.366 P

    There fore, REX (shear) in exterior girder is maximum of the above two values, REX1 or REX2

    REX (shear) = 1.797 P

    Interior Girder:

    Case-1: One Design lane loaded

    The distribution of live load per lane for shear in interior girder is determined according to the formulas giv

    RINT 1 (shear) = (S/2900)0.6 0.636 where 1800

  • 7/28/2019 RC pier-f(Box & Girder).xls

    8/36

    SUR RIVER BRIDGE RC PIER STABILITY-8 of 36

    Interior Girder

    Case-1: One Design lane loaded where 2100

  • 7/28/2019 RC pier-f(Box & Girder).xls

    9/36

    SUR RIVER BRIDGE RC PIER STABILITY-9 of 36

    RA= 1.797 P RB= 1.124 P RC= 1.124 P RD=

    a) For maximum Axial load case (from longitudinal arrangement case 1)RA=RP*RA= 3.772 P = 335.71 kN

    RB=RP*RB= 2.359 P = 209.95 kN

    RC=RP*RC= 2.359 P = 209.95 kN

    RD=RP*RD= 3.772 P = 335.71 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 3.760 P = 334.63 kN

    RB=RP*RB= 2.351 P = 209.27 kN

    RC=RP*RC= 2.351 P = 209.27 kN

    RD=RP*RD= 3.760 P = 334.63 kN

    b)Design Tandem

    A) Longitudinal Arrangement

    case 1: Maximum Axial Load on pier

    P P

    1.2

    x x= 0.5

    Rp2 Rp1

    Rp1

    = 0.983 P

    Rp2= 1.000 P

    Axial Load: Rp=Rp1+Rp2= 1.983 P

    Moment about CLN of pier: MCL= 0.004 P

    Moment about CLN of pier: MCL= 0.385 kN

    case 2: Maximum Bending Moment

    P P

    1.2

    Rp1

    Rp1= 1.970 P

    Axial Load: Rp=Rp1= 1.970 P

    Moment about CLN of pier: MCL= 0.493 P

    Moment about CLN of pier: MCL= 43.84 kN

    B) Transverse Arrangement (Distribution factors are same as Truck Load)

    Case-I: One Design lane loaded (T-Girder)

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    10/36

    SUR RIVER BRIDGE RC PIER STABILITY-10 of 36

    RA=RP*RA= 134.33 kN

    RB=RP*RB= 140.77 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 133.49 kN

    RB=RP*RB= 140.77 kN

    Case-II: Two or more design lanes are loaded (T-Girder)

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    RA=RP*RA= 198.11 kN

    RB=RP*RB= 167.68 kN

    RC=RP*RC= 167.68 kN

    RD=RP*RD= 198.11 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 196.87 kN

    RB=RP*RB= 166.64 kN

    RC=RP*RD= 166.64 kN

    RD=RP*RD= 196.87 kN

    2.3. Wind Loads

    Wind Load onstructure - WS

    2.3.1. Wind Load on superstructure - W

    a) Transverse Direction W=50lb/ft2

    = 2.44 kN/m2

    Arm (m) AiYi (m )

    Girder web & Curb = 69.63 2.75 191.47

    Railing = 9.3 3.45 32.09

    Posts = 2.805 3.03 8.4981.73 232.04

    FWT= 199.42 kN

    Line of Action (about Pier Cap bottom) = 2.84 m

    b) Longitudinal Direction W=12lb/ft2

    = 0.586 kN/m2

    FWL= 47.89 kN

    = 2.84 m

    2.3.2. Wind Load on Live Load - WL

    a) Transverse Direction: WL=100lb/ft= 1.49 kN/m

    Length of exposed surface= 30.8 mFWLT= 45.892 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.58 m

    b) Longitudinal Direction: WL=40lb/ft = 0.596 kN/m

    Length of exposed surface= 30.8 m

    FWLL= 18.357 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.58 m

    Area (m )

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    11/36

    SUR RIVER BRIDGE RC PIER STABILITY-11 of 36

    2.3.3. Wind Load on substructure

    a) Transverse Direction: W=40lb/ft2= 1.955 kN/m

    2

    per linear meter = 1.955 kN/m

    b) Longitudinal Direction: W=40lb/ft

    Pier cap = 1.955 kN/m

    Bracing = 1.564 kN/m

    Columns = 1.955 kN/m

    2.3.4. Forces of Stream Current,WA v = 5.6 ft/sec2, k=2/3

    P = kv2= 20.907 lb/ft

    2= 1.02 kN/m

    2

    per linear meter = 1.02 kN/m

    2.3.5. Breaking/Longitudinal Force,BR

    Taken 5% of the live load in all lanes

    (lane load w=9.3kN/m plus the concentrated load P=81.72kN for moment)LF= 46.30 kN (6ft above the deck surface)

    (about pier cap bottom) = 4.58 m

    2.3.6 Seismic Force Effects,EQ

    Earthquake zones: EBCS Zone -4

    Site Coefficient: Type I = 1

    Acceleration coefficient(A): = 0.1

    The horizontal seismic force is the product of the site coefficient, the acceleration coefficient an

    605.82 KNFooting = 470.40 KN

    Sum Wp 1076.22 KN

    Horizontal earthquake force FH = site coeff.*A* Wp = 107.62 KN

    This force is transferred to the substructure at joints

    The proportion of this load at the two levels is as in the following:

    At bracing level =40% of FH= 43.05 KN

    At pier cap level =60% of FH= 64.57 KN

    3) STABILITY ANALYSIS

    Assume a combined footing with dimensions(m):Width W = 3.5 Length L = 7 Depth D = 0.8

    3.1. CHECK FOR STRENGTHI =DL+(LL+I)+BR+WA

    Case-I: One Design lane loaded

    i) Dead Load

    Superstructure

    Pier cap,

    Bracing & Columns =

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    12/36

    SUR RIVER BRIDGE RC PIER STABILITY-12 of 36

    Left = 1,317.36 kN

    Right = 2936.58 kN

    4253.94

    Substructure

    605.82 kN

    Footing = 470.4 kN

    1076.22Total = 5330.16 kN

    ii) Live Load (T-Girder)

    Case I: a) RA+RB= 472.71 3/2aavg*RA+1/2aavg*RB= 1028.50 MCL = 75.23

    b) RA+RB= 471.19 " 1025.19 " 93.09

    Case II: a)RA+B+C+D= 1253.08 0.00 2*MCL = 150.46

    b)RA+B+C+D= 1249.05 " 0.00 " 186.18

    ii) Breaking/Longitudinal Force, BR

    FLF= 46.30 kN MLF= 787.09 kNm/m

    iii)Stream current Force,WA

    FTF= 2.87 kN MTF= 4.03 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kN/m

    MDRIV.= MLL+MBR+MWA= 941.58 kN/m

    S.F.= 9.48 > 2.0 OK!B) Stability against BEARING PRESSURE:

    case (a) case (b) case (a) case (b)

    Ptot(kN)= 5802.86 5913.30 6583.23 6579.21

    MT(kN/m)= 1241.32 1380.77 0.00 0.00

    ML(kN/m)= 75.23 93.09 150.46 186.18

    eT=MT/Ptot= 0.214 0.234 0.000 0.000

    eL=ML/Ptot= 0.013 0.016 0.023 0.028

    285.54 296.18 279.23 281.57< sall OK!

    C) Stability against SLIDING:

    FTDRIV=FTWA= 2.87

    FLDRIV=FLBR= 46.30

    FDRIV=(FTDRIV +FLDRIV )= 46.39

    FRESIST=SVtan f=SV*0.7= 3731.11

    S.F.=FREST./FDRIV.= 80.43 > 1.5 OK!

    MLONGT. (kN/m)

    Case II:

    RC)=

    P (kN)

    smax (kN/m2) =(Ptot/A)*

    (1+6*eT/L+6*eL/W)=

    Case I:

    Pier cap,

    Bracing & Columns =

    MTRANS.(kN/m) about CL

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    13/36

    SUR RIVER BRIDGE RC PIER STABILITY-13 of 36

    Case-II: Two or more design lanes are loaded

    3.2. CHECK FOR STRENGTHII =DL+WS+WA

    a) Dead Load DL

    PDL= 5330.16 kN

    MTDL= 0 kN/m

    MLDL= 404.81 kN/m

    c) Wind Load on Structures W

    superstructure

    FTW= 199.42 kN MTW= 3042.79 kN/m

    FLW= 47.89 kN MLW= 730.77 "

    substructure

    FTW= 45.43 kN MTW= 300.27 kN/m

    FLW= 65.53 kN MLW= 524.38 "

    Total

    FTW= 244.85 kN MTW= 3343.06 kN/m

    FLW= 113.42 kN MLW= 1255.15 "

    d) Wind Load on Live Load WL

    FTWL= 45.89 kN MTWL= 780.12 kN/m

    FLWL= 18.36 kN MLWL= 312.05 "

    e)Stream current Force,WA

    FTF= 2.87 kN MTF= 4.03 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kNm/m

    MDRIV.= MLL+MWS+MWA= 1259.18 kNm/m

    S.F.= 7.09 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    Ptot=PDL= 5330.16

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    14/36

    SUR RIVER BRIDGE RC PIER STABILITY-14 of 36

    MT=MTDL+MTWS+MTWA= 3347.08

    ML=MLDL+MLWS+MLWA= 1659.96

    eT=MT/Ptot= 0.628 OK!

    eL=ML/Ptot= 0.311 OK!

    smax= 450.81

    sall OK!C) Stability against SLIDING:

    FTDRIV=FTWS+FTWA= 247.72

    FLDRIV=FLWS= 113.42

    FDRIV=(FTDRIV2+FLDRIV

    2)= 272.45

    FRESIST=SVtan f=SV*0.7= 3731.11

    S.F.=FREST./FDRIV.= 13.69 > 1.5 OK!

    3.3. CHECK FOR STRENGTHIII =DL+(LL+I)+BR+WS+WL+WA

    Case-I: One Design lane loaded

    a) Dead Load DL

    PDL= 5330.16 kN

    MTDL= 0 kN/m

    MLDL= 404.81 kN/m

    b) Live Load LLPLLI MTLL MLLL

    Case I: 472.71 1241.32 75.23

    583.14 1380.77 93.09

    Case II: 1253.08 0.00 150.46

    1249.05 0.00 186.18

    c) Wind Load on Structures WS

    superstructure

    FTW= 45.43 kN MTW= 3042.79 kN/m

    FLW= 47.89 kN MLW= 730.77 "

    substructure

    FTW= 45.43 kN MTW= 300.27 kN/m

    FLW= 65.53 kN MLW= 524.38 "

    TotalFTW= 244.85 kN MTW= 3343.06 kN/m

    FLW= 113.42 kN MLW= 1255.15 "

    d) Wind Load on Live Load, WL

    FTWL= 45.89 kN MTWL= 780.12 kN/m

    FLWL= 18.36 kN MLWL= 312.05 "

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    15/36

    SUR RIVER BRIDGE RC PIER STABILITY-15 of 36

    e)Breaking/Longitudinal Force,BR

    FTF= 45.89 kN MTF= 780.12 kNm/m

    f)Stream current Force,WA

    FTF= 2.87 kN MTF= 4.03 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kNm/m

    MDRIV.= MLL+MWS+MWA= 3005.60 kNm/m

    S.F.= 2.97 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    (b)case I: (b)case II:

    Ptot=PDL+PLLI= 5913.30 6583.23

    MT=MTDL+MTLL+MTBR+MTWL+MTWS+MTWA= 6288.09 4907.32

    ML=MLDL+MLLL+MLBR+MLWL+MLWS+MLWA= 2065.10 1846.14

    eT=MT/Ptot= 1.063 0.745 OK!

    eL=ML/Ptot= 0.349 0.280 OK!

    smax= 605.85 569.56

    > sall OK!

    C) Stability against SLIDING:

    FTDRIV=FTBR+FTWL+FTWS+FTWA= 339.50

    FLDRIV=FLWS+FLWL= 131.78

    FDRIV=(FTDRIV2+FLDRIV

    2)= 364.18

    FRESIST=SVtan f=SV*0.7= 4062.01

    S.F.=FREST./FDRIV.= 11.15 > 1.5 OK!

    Case-II: Two or more design lanes are loaded

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kNm/m

    MDRIV.= MBR+MWA= 3005.60 kNm/m

    S.F.= 2.97 > 2.0 OK!

    C) Stability against SLIDING:

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    16/36

    SUR RIVER BRIDGE RC PIER STABILITY-16 of 36

    FTDRIV=FTBR+FTWL+FTWS+FTWA= 339.50

    FLDRIV=FLWS+FLWL= 131.78

    FDRIV=(FTDRIV2+FLDRIV

    2)= 364.18

    FRESIST=SVtan f=SV*0.7= 4608.26

    S.F.=FREST./FDRIV.= 12.65 > 1.5 OK!

    3.4. CHECK FOR EXTREME EVENTI =DL+(LL+I)+WA+EQ

    Case-I: One Design lane loaded

    a) Dead Load DL

    PDL= 5330.16 kN

    MTDL= 0 kN/m

    MLDL= 404.81 kN/m

    b) Live Load LL

    PLLI MTLL MLLL

    Case I: 472.71 1241.32 75.23

    583.14 1380.77 93.09

    Case II: 1253.08 0.00 150.46

    1249.05 0.00 186.18

    c)Stream current Force,WA

    FTF= 2.87 kN MTF= 4.03 kNm/m

    d)Seismic Force Effects,EQ

    At bracing level = FTF= 43.05 kN MTF= 250.09 kNm/m

    At pier cap level = FTF= 64.57 kN MTF= 750.28 kNm/m

    At bracing level = FLF= 43.05 kN MLF= 250.09 kNm/m

    At pier cap level = FLF= 64.57 kN MLF= 750.28 kNm/m

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kNm/m

    MDRIV.= MLL+MEQ+MWA= 2385.16 kNm/m

    S.F.= 3.74 > 2.0 OK!

    B) Stability against BEARING PRESSURE:

    (b)case I: (b)case II:

    Ptot=PDL+PLLI= 5913.30 6583.23

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    17/36

    SUR RIVER BRIDGE RC PIER STABILITY-17 of 36

    MT=MTDL+MTLL+MTEQ+MTWA= 2385.16 1004.40

    ML=MLDL+MLLL+MLEQ+MLWA= 1498.27 1591.36

    eT=MT/Ptot= 0.403 0.153 OK!

    eL=ML/Ptot= 0.253 0.242 OK!

    smax= 460.67 394.66

    > sall OK!C) Stability against SLIDING:

    FTDRIV=FTEQ+FTWA= 110.49

    FLDRIV=FLEQ+FLWA= 107.62

    FDRIV=(FTDRIV2+FLDRIV

    2)= 154.24

    FRESIST=SVtan f=SV*0.7= 4062.01

    S.F.=FREST./FDRIV.= 26.34 > 1.5 OK!

    Case-II: Two or more design lanes are loaded

    A) Stability against OVERTURNING:

    MREST.= 8922.97 kNm/m

    MDRIV.= MLL+MEQ+MWA= 1004.40 kNm/m

    S.F.= 8.88 > 2.0 OK!

    C) Stability against SLIDING:

    FTDRIV=FTEQ+FTWA= 110.49

    FLDRIV=FLEQ+FLWA= 107.62

    FDRIV=(FTDRIV2+FLDRIV

    2)= 154.24

    FRESIST=SVtan f=SV*0.7= 4608.26

    S.F.=FREST.

    /FDRIV.

    = 29.88>

    1.5 OK!

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    18/36

    SUR RIVER BRIDGE RC PIER STABILITY-18 of 36

    8 EDITION.

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    19/36

    SUR RIVER BRIDGE RC PIER STABILITY-19 of 36

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    20/36

    SUR RIVER BRIDGE RC PIER STABILITY-20 of 36

    m

    m

    2.2

    405 KNm

    76 36

    1.9 1.8

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    21/36

    SUR RIVER BRIDGE RC PIER STABILITY-21 of 36

    ot from the face of the rail.

    -8)

    en in Table 13-8.

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    22/36

    SUR RIVER BRIDGE RC PIER STABILITY-22 of 36

    n in Table 13-7.

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    23/36

    SUR RIVER BRIDGE RC PIER STABILITY-23 of 36

    1.817 P

    ot from the face of the rail.

    -8)

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    24/36

    SUR RIVER BRIDGE RC PIER STABILITY-24 of 36

    en in Table 13-8.

    n in Table 13-7.

    13-4)

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    25/36

    SUR RIVER BRIDGE RC PIER STABILITY-25 of 36

    0

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    26/36

    SUR RIVER BRIDGE RC PIER STABILITY-26 of 36

    1.797 P

    Case-I: One Design lane loaded (Box Girder)

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    27/36

    SUR RIVER BRIDGE RC PIER STABILITY-27 of 36

    RA=RP*RA= 195.99 kN

    RB=RP*RB= 68.92 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 194.77 kN

    RB=RP*RB= 194.77 kN

    Case-II: Two or more design lanes are loaded(Box Girder)

    a) For maximum Axial load case (from longitudinal arrangement case 1)

    RA=RP*RA= 195.99 kN

    RB=RP*RB= 122.57 kN

    RC=RP*RC= 122.57 kN

    RD=RP*RD= 195.99 kN

    b) For maximum Moment case (from longitudinal arrangement case 2)

    RA=RP*RA= 194.77 kN

    RB=RP*RB= 121.81 kN

    RC=RP*RD= 121.81 kN

    RD=RP*RD= 194.77 kN

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    28/36

    SUR RIVER BRIDGE RC PIER STABILITY-28 of 36

    d the permanent loads

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    29/36

    SUR RIVER BRIDGE RC PIER STABILITY-29 of 36

    ii) Live Load (Box-Girder)

    Case I: a) RA+RB= 454.50 1241.32 MCL = 75.23

    b) RA+RB= 583.14 " 1380.77 " 93.09

    Case II: )RA+B+C+D= 1091.30 0.00 2*MCL = 150.46

    b)RA+B+C+D= 1087.80 " 0.00 " 186.18

    MLONGT. (kN/m)

    RB=

    RD)+1/2aavg*(RB-RC)

    P (kN) MTRANS.(kN/m) about CL

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    30/36

    SUR RIVER BRIDGE RC PIER

    SUMMARY OF LOADS

    DL(Lt.Sup.) 331.35 327.33 327.33 331.35 MDL L 404.80625 KNM

    DL(Rt.Sup.) 756.06 712.24 712.24 756.06

    LL(HL-93)F

    LLRtF

    LLCtF

    LLCtF

    LLLtF

    WLt=

    45.89F

    WLl=

    18.36FWt= 199.42 FWl= 47.89

    0.4 a a= 2.2

    26.40

    FEQT 64.57 MLONGT FEQL 64.57

    MTRANS

    2.35 2.35

    6.3095

    11.52

    FEQT 43.05 FEQL 43.05

    FWl= 1.96

    1.56

    1.96

    FWt= 1.96 FWt= 1.96 5.81

    FWAt= 1.02 FWAt= 1.02

    1.4 4.6 1.4

    HS20-44/ case I: a) 335.71 195.99 248.51 140.77 0.00 0.00 1241.32 432.16 75.2

    Design

    Tandem b) 334.63 194.77 248.51 194.77 0.00 0.00 1380.77 429.47 93.0

    case II: a) 339.33 198.11 287.21 167.68 339.33 198.11 0.00 0.00 150.4

    b) 338.24 196.87 286.29 166.64 338.24 196.87 0.00 0.00 186.1

    MLONFRt(kN) FCt (kN) FLt (kN) MTRANS.(kN/m)

    TRANSPORT CONSTRUCTION DESIGN S. Co. BR

  • 7/28/2019 RC pier-f(Box & Girder).xls

    31/36

    CONTENTS

    STABILITY OF THE WHOLE STRUCTURE

    LOADING SUMMARY

    ANALYSIS RESULT

    BEAM & COLUMN SECTION DESIGN RESULT

    FOOTING DESIGN

  • 7/28/2019 RC pier-f(Box & Girder).xls

    32/36

    AWASH-TENDAHO RC PIER FOOTING DESIGN-32 of 36

    FOOTING DESIGN

    Loading Case Summary

    Comb Fz(kN) Mx(kNm) My(kNm) Fz(kN) Mx(kNm) My(kNm)I 2909.597 -31.84 326.71 3462.465 -53.19 326.71

    II 2544.063 -739.51 -706.005 3827.999 -762.18 -706.005

    Allowable Bearing Capacity = 5 kg/cm2

    = 750 kN/m2

    Design Constants

    Concrete :- Grade C-30 concrete ( section 9.3)

    f'c= 24.00 Mpa

    fc=(0.4*f'c) = 9.6 (0.4*f'c) =

    Reinforcement steel:

    Grade 420 steel: For rebars diam. 20mm and above

    fy = 420 MPa

    fs = 165 MPaEs = 200,000 MPa

    Grade 300 steel: For rebars less than diam. 20

    fy = 300 MPa

    fs = 140 MPa

    Es = 200,000 MPa

    FyR x R FyL

    4.6

    z

    f(m)= 1.00 D=x 0.8

    B

    C

    x

    W=

    y 3.5

    A D

    B= 7.0

    Self Weight W (kN)= 470.4

    Location of Resultant R & Eccentricity e

    Comb I II

    x(m)= 2.486 2.528

    Right leg Left Leg

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    33/36

    AWASH-TENDAHO RC PIER FOOTING DESIGN-33 of 36

    ex(m)= 0.186 0.228 B/6

    ey(m)= -0.103 0.222 W/6

    smax= 274.766 439.902 sall

    Design Load = 439.90 kN/m2

    ex= 0.228 m ey= 0.222 m V=Fz1+Fz2+W= 6842.462 kN

    sA=V/A(1-6*ex/B+6*ez/W)= 330.99 kN/m

    sB=V/A(1-6*ex/B-6*ez/W)= 118.42 "

    sC=V/A(1+6*ex/B-6*ez/W)= 227.58 "

    sD=V/A(1+6*ex/B+6*ez/W)= 440.15 "

    Depth Checking

    1. Punching Shear (Art. 8.15.5.6.2)

    v=V/bo*d bo=p(f+d)

    design shear stress v < vcp=0.166f'c'

    f'c= 3000 psi 24.00 Mpa

    vcp= 0.81 N/mm 813.23 kN/m

    Vact=Pcol-Psoil= 2781.97 kN where Pcol= 3827.999 kN

    trial d= 0.74 m

    Vres=vcp*bo*d= 3289.61 Vres Vact OK!

    davil=D-F/2-CLR CR= 0.74 m davil d OK!

    2. Wide Beam Shear

    a. In the Short Direction

    s1=P/A(1 + 6*ey/W)= 359.06 kN/m d

    s2=P/A(1 - 6*ey/W)= 161.10 "

    trial d= 0.74 m

    s3= 330.22 s1 s3 s2

    Vact= 1230.37 kN

    bc -ratio of long side to short side of concentrated load= 2.0

    0.166(1+2/bc)= 0.332 < 0.332 take 0.332

    vcb=0.166(1+2/bc)f'c0.332f'c= 1.63 N/mm 1626.46 kN/m

    Vres=vcb*B*d= 8425.069 kN Vres Vact OK!

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    34/36

    AWASH-TENDAHO RC PIER FOOTING DESIGN-34 of 36

    b. In the Long Direction

    FyR= 2909.597 FyL= 3827.999

    1.2 MxR= -739.51 MxL= -762.18

    q2 q3

    q4 q1

    q1=s1*W=P/A(1 + 6*ex/B)*W= 1088.19 kN/m q3= 793.39 kN/m

    q2=s2*W=P/A(1 - 6*ex/B)*W= 732.40 " q4= 1027.199

    2193.23

    915.47

    1.2 2.19 2.41 1.2 SFD

    -1634.77

    -1994.12

    895.41

    BMD

    -549.28 -1746.74

    -1288.79 -2508.92

    Vmax= 2193.23 kN corresponding triangle leg = 2.41

    Vact= 1064.76 kN trial d = 0.74 m

    Vres=vcb*W*d= 4212.53 kN Vres Vact OK!

    davil d OK!

    3. Flexure

    a. In the Short Direction

    Using F = 20 mm andClear cover = 50 mm

    davil=D-F/2-CLR CR= 0.74 m

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    35/36

    AWASH-TENDAHO RC PIER FOOTING DESIGN-35 of 36

    beff=coln width+2(1/2*d)= 1.74 m

    Loading

    FyR= 2909.597 MyR= -706.005 FyL= 3827.999 MyL= -706.005

    Right Leftey(m)= -0.2426 -0.1844 1.25

    smax=Fy/beff*W(1 + 6*ey/W)= 279.03 429.84

    smin=Fy/beff*W(1 - 6*ey/W)= 676.50 827.31

    qmax=smax*beff= 747.92 kN/m qmax q1= 994.91 qminqmin=smin*beff= 1439.51 " 747.92 1439.51

    My-y= 905.92 kNm

    Reinforcement

    Design moment, Mu = 905.92 KNm/m

    As = Mu / ( fy (d - a/2 ) ) where Mu= 905.92 KNm/m

    a = As*fy / ( 0.85 * fc' b ) = 0.90

    b= 1740 mm

    Assume a 45 mm fy= 420.00 N/mm2

    As = Mu / ( fy 3,340 mm2 fc'= 21.00 N/mm2

    a = As*fy / ( 0. 45 mm D= 800 mm

    diam= 20 mm

    cover = 50 mm

    d= 740 mm

    Required As = 3340 mm2/m

    Spacing = 164 mmUse F 20 mm @ 164 mm for width= beff

    Provide As = 1,919.7 mm2/m

    Use As,min=0.002*1000*d= 1480 mm /m S = 212.27 mm

    Use F 20 mm @ 212 mm for the restcm

    Top :- temperature & shrinkage

    As=1/8 in2/ft=2.65 cm

    2/m

    Using F =12 mm S= 42.64 cm

    Use F 12 mm @ 400 mm

    TRANSPORT CONSTRUCTION DESIGN S. Co. BRIDGE AND STRUCTURES DIVISION

  • 7/28/2019 RC pier-f(Box & Girder).xls

    36/36

    AWASH-TENDAHO RC PIER FOOTING DESIGN-36 of 36

    b. In the Long Direction

    Bottom :-

    Mmax= 2508.92 kNm

    ReinforcementDesign moment, Mu = 2508.92 KNm/m

    As = Mu / ( fy (d - a/2 ) ) where Mu= 2508.92 KNm/m

    a = As*fy / ( 0.85 * fc' b ) = 0.90

    b= 3500 mm

    Assume a 63 mm fy= 300.00 N/mm2

    As = Mu / ( fy 13,079 mm2 fc'= 21.00 N/mm2

    a = As*fy / ( 0. 63 mm D= 800 mm

    diam= 16 mm

    cover = 50 mm

    d= 742 mm

    Required As = 13079 mm2/m

    Spacing = 54 mmUse F 16 mm @ 54 mm

    Provide As = 3,736.7 mm2/m