rapid temperature jump by infrared diode laser irradiation for patch-clamp studies jing yao, beiying...

24
Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May 2009 3611–3619 Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 5 de octubre 2009

Upload: gaspar-bueno

Post on 28-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies

Jing Yao, Beiying Liu, and Feng Qin*

Biophysical Journal Volume 96 May 2009 3611–3619

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, New York 14214

5 de octubre 2009

Page 2: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Activación de termo-TRPs indicando el intervalo de temperatura. TRPA1 y TRPM8 se activan con frio mientras que los otros se activan por calor.

Voets et al 2005 Nature Chem. Biol. 1:85-92 (Review)

Page 3: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.c

Page 4: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

http://en.wikipedia.org/wiki/Laser_safety

Page 5: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

25 watt

Page 6: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Píldora de transporte de calor.Calor, q (joule) y temperatura T (kelvin) están relacionados por la capacidad calórica Cp.

La capacidad calórica específica de una sustancia es la cantidad de calor necesaria para elevar la temperatura de un kilogramo de la sustancia en 1 kelvin. Se mide en joule kg-1 K-1

TCpq El calor se transporta de caliente a frio. El flujo de calor Jq ( J m-2 s-1) es proporcional al gradiente de la temperatura. El factor de proporcionalidad es la conductividad térmica que se mide en J m-2 s-1/K m-1 que es watt m-1 K-1

TqJLa diferencia entre los flujos de entrada y salida de un sitio es igual al aumento de la cantidad de calor por unidad de volumen que contiene el sitio. (watt m-3)

Tdtdq 2 qJ

Al aumento de calor se observa como un alza de la temperatura.

TdtdT

Cp 2

Donde es la densidad (kg m-3)

Page 7: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Píldora de absorción radiación electromagnética. Ley de Beer-Lambert

Atenuación de la intensidad de la radiación, I, (watt m-2) en función de la distancia.

dxxIxdI )()(

El factor es el coeficiente de absorción ( m-1) es la fracción de la energía que se absorbe por unidad de longitud.

La intensidad de la radiación en función de la distancia se obtiene por integración .

dxxIxdI )()(

dxxIxdI )()(

xIxI )0()(

ln

En colorimetría se mide la Absorbancia que el logaritmo decimal de la razón entre la incidente ( I0) y la que sale (I) de un tubo de largo b que contiene una solución de concentración c. En este caso de soluciones se usa = 2.3ac, el producto del coeficiente de absorción molar, a, ( m-1 M-1) por la concentración (M).

abcII

3.2ln 0 abcII

A 0log

xeIxI )0()( xe

IxII

1)0(

)()0(

xeIxII 1)0()()0(Energía absorbida en un paso de x unidades de longitud

Page 8: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

We assumed a collimated laser beam so the power could be approximated with a cylindrical geometry centered along the z axis, where R is the fiber radius (50 m) and P is the total output power (watt).

The model ignores the loss of power of laser beam due to water absorption (<3%) and temperature dependence of specific heat capacity of water.

cp is the specific heat capacity of water joule kelvin-1 kg-1 is the thermal conductivity, 0.58 joule s-1 m2/kelvin m-1

T is the temperature, kelvin. is the optical absorption coefficient, m-1

u is the spatial distribution of laser power, watt m-2

¿Están bien las unidades?

Calentamiento por la irradiación laser.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 9: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

= 30 cm-1 @ 1460 nm. = 0.46 cm-1 @ 980 nm.

http://upload.wikimedia.org/wikipedia/en/7/72/Water_absorption_spectrum.png

Page 10: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

2x50 m

1 m

3 watt / 7854 m2

3.8197 10-4 watt m-2

410301 eII o

m 1 cm 30 -1 x

-3-64 m watt 101.14 108.3003.0 IIo

Potencia absorbida = 1.14 10-6 watt m-3

cp =4.184 J K-1 cm-3 = 4.184 10-12 J K-1 m-3

dT/dt = 2.7 105 K s-1 = 270 K ms-1

3 watt / 7854 m2

3.8083 10-4 watt m-2

xeIxII 1)0()()0(

...!3!2!1

132

xxxex 310311 oII

Page 11: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

P = 8 watt =980 nmR = 100 m, u = 2.5 10-4 watt m-2 = 0.046 10-4 m-1

cp = 4.2 10-12 JK-1m-3

10 ºC/ms

P = 3 watt =1460 nmR = 100 m , u = 9.6 10-5 watt m-2 = 3 10-4 m-1

cp = 4.2 10-12 JK-1m-3

280 ºC/ms

Simulation of laser-induced temperature changes.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 12: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

P = 8 watt =980 nm = 0.46 cm-1

10 ºC/msP = 3 watt =1460 nm = 30 cm-1

280 ºC/ms

Simulation of laser-induced temperature changes.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 13: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

P = 8 watt =980 nm = 0.46 cm-1 P = 3 watt =1460 nm = 30 cm-1

Simulation of laser-induced temperature changes.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 14: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Difusion

Electrodifusion

Hille, B. Ionic channels of excitable membranes 2ª ed. Sinauer 1992, pp 269-273.

1-/, s RTUbf e

hkT

k

RTUf

fek /RTUb

bek /

RTvzFUb ek /5.0 RTvzFU

f ek /5.0

RTURTvzFb eek //5.0 RTURTvzF

f eek //5.0

...!3!2!1

132

xxxex

RTUb e

RTvzF

k /5.01

RTU

f eRT

vzFk /5.0

1

RTUbf e

RTvzF

kk /

2-/22

Am RTUeRT

vcFzI

ToTRU

IoI 11

lnCteRTU

I ln

Ecuación Eyring–Polanyi

Page 15: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Usando la pipeta de patch clamp como termómetro

00

11ln

TTREa

II

Ea = 3.84 ± 0.09 kcal/mol (n = 20)

21ºC60ºC 1000/TCalienta el baño a 60 grados Celsius y mide la intensidad de la corriente a medida que el baño se va enfriando en forma pasiva, manteniendo la pipeta a 30 mV.

00

11ln

TTII

EaR

1

00

ln1

II

EaR

TT

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 16: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

1

00

ln1

II

EaR

TT

=980 nm =1460 nm

I/I0 curva negra. T curva roja calculada de la ecuación usando Ea =3.84

Usando la pipeta de patch clamp como termómetro

Enciende el laser y registra el curso temporal de la intensidad de la corriente a medida que la pipeta se calienta, manteniendo la pipeta a 30 mV.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 17: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Usando la pipeta de patch clamp como termómetro

Variación de la temperatura en función de la distancia al centro del rayo láser de 1469 nm. La temperatura es 5% menor a un distancia de 10 nm, que es más que el radio de una célula.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 18: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

= 0.8 ºC @ 59º C . Filtro @2 kHz

Adquisición del protocolo de pulsos de laser usando el loop de feedback

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Control rápido de temperatura constante

Page 19: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Control rápido de temperatura constante

= 0.8 ºC @ 59º C . Filtro @2 kHz

Adquisición del protocolo de pulsos de laser usando el loop de feedback

Aplicación del protocolo de pulsos de laser en otra pipeta y sin usar feedback

Aplicación del protocolo en 11 pipetas

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 20: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Corriente registradas durante saltos de temperatura. Canal TRPV1 expresado en células HEK. Outside out macro patch @ -100 mV. Soluciones simétricas de 100 mM Na Gluconato + 10 mM NaCl, pH Buffer.

Se ajusta a una sola exponencial

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 21: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Corriente registradas durante saltos de temperatura. Canal TRPV2 expresado en células HEK. Outside out macro patch @ -60 mV. Soluciones simétricas de 100 mM Na Gluconato + 10 mM NaCl + pH Buffer.

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 22: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Corriente registradas durante saltos de temperatura. Canal TRPV1 expresado en células HEK293. Whole cell patch clamp @ -60 mV. Solucion extracelular 150 mM NCl, intarcelular 140 mM CsCl.

No se ajusta a una sola exponencial

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 23: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May

Fluctuaciones de la corriente de canales únicos. Canales mTRPV2 expresados en oocitos de Xenopus Laevis. Outside out patch clamp. -60 mV, filtro 2 kHz.

35ºC, 14 pA

40ºC, 16 pA

44ºC, 18 pA

Jing Yao, Beiying Liu, and Feng Qin. Biophysical Journal 96: 3611–3619, 2009.

Page 24: Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies Jing Yao, Beiying Liu, and Feng Qin* Biophysical Journal Volume 96 May