raman of plant tissues - eth z · f. schulte et al. anal. chem., 81 (2009) 8426‐8433 combination...

27
Raman of plant tissues Analytical Strategies | J. Kneipp | Nov2016 Janina Kneipp 1

Upload: others

Post on 30-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Raman of plant tissues

Analytical Strategies | J. Kneipp | Nov‐2016

Janina Kneipp

1

Page 2: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Raman scattering and resonant Raman scattering

Stokes anti‐StokesLaser+ MoleculeLaser‐ Molecule

hStokeshLaser

hanti‐Stokes

S0

S1

v1v0hMolecule

hStokes

hLaser

S0

S1

v1v0hMolecule

resonant Raman scattering

2Analytical Strategies | J. Kneipp | Nov‐2016

Page 3: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Cross‐sections considered

1600 1200 800

Stokes Shift [cm ]-1

806

915

1174

1584

1620

730

Raman

Fluorescence

500 600

nonresonant resonant

FL 10‐17 ‐ 10‐16 cm 2

IR absorption abs 10‐21 ‐ 10‐18cm 2

Fluorescence

Raman scatteringRS 10‐30 ‐ 10‐26 cm 2

3Analytical Strategies | J. Kneipp | Nov‐2016

Page 4: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Raman shift with respect to ex = 488 nm

Raman shift (cm‐1)

4Analytical Strategies | J. Kneipp | Nov‐2016

Richard L. McCreery “Raman Spectroscopy for Chemical Analysis” Copyright © 2000 John Wiley & Sons, Inc.

Page 5: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Lifetimes and time resolved detection

1k

nsel ~

It is possible to separate Raman from fluorescence photons using a „gate“!

5Analytical Strategies | J. Kneipp | Nov‐2016

Page 6: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

What is a good excitation wavelength?

fluorescence

pre‐resonant RS

resonant RS

normal RS

6Analytical Strategies | J. Kneipp | Nov‐2016

Richard L. McCreery “Raman Spectroscopy for Chemical Analysis” Copyright © 2000 John Wiley & Sons, Inc.

Page 7: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Sample: tissue, cell etc.400 600 800 1000 1200 1400 1600 1800

Raman shift /cm-1

Correlating spectral with spatial information:Microspectroscopic Mapping and Imaging 

(1) Microspectroscopic mapping (2) Spectral analysisSingle spectral parameters•intensities, ratios, band correlations•vibrational frequency & shiftsMultivariate information•Spectrum = vector, pattern•Principal components, cluster analysis,artificial neural networks

(3) Molecular Image: Combination of spectral parameters and spatial coordinates

H&E unstained Raman image (e.g. K‐means cluster) 7Analytical Strategies | J. Kneipp | Nov‐2016

Page 8: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Lignin and cellulose distribution

Analytical Strategies | J. Kneipp | Nov‐2016

Agarwal, U. P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta, 224(5), 1141‐1153. 8

Page 9: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Lignin and cellulose spectra

Agarwal, U. P. (2006) Planta, 224(5), 1141‐1153.

Sarkar, P.. (2009) Journal of Experimental Botany, 60, 3615‐3635.

9Analytical Strategies | J. Kneipp | Nov‐2016

Page 10: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Lignin stainingRaman

Richter, S., Mussig, J., & Gierlinger, N. (2011). Functional plant cell wall design revealed by the Raman imaging approach. Planta, 233(4), 763‐772. 

10Analytical Strategies | J. Kneipp | Nov‐2016

Page 11: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Polarization dependence of Raman scattering

180° 90°

Benzol

||

Depolarisationsgrad

I

I

stark polarisierte Banden

11Analytical Strategies | J. Kneipp | Nov‐2016

Page 12: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Information on cellulose orientation

Gierlinger, N., Luss, S., Konig, C., Konnerth, J., Eder, M., & Fratzl, P. (2010). Cellulose microfibril orientation of Piceaabies and its variability at the micron‐level determined byRaman imaging. Journal of Experimental Botany, 61(2), 587‐595. 

12

Polarization direction of incident laser increases in angle with respect to the micofibril orientation

Analytical Strategies | J. Kneipp | Nov‐2016

Page 13: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Lignin signals are not sensitive to polarization

Lignin signals

Cellulose S1 layer with high microfibril angle

Gierlinger, N., Luss, S., Konig, C., Konnerth, J., Eder, M., & Fratzl, P. (2010). Cellulose microfibril orientation ofPicea abies and its variability at the micron‐level determined by Raman imaging. Journal of Experimental Botany, 61(2), 587‐595. 

13Analytical Strategies | J. Kneipp | Nov‐2016

Page 14: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Ongoing work: Raman spectroscopic imaging of cucumber root section

Chemical map of lignin distribution

Hyperspectral map, obtained using information from all molecules

I. Zeise, Zs. Heiner et al., in preparation

icps

Characteristic Raman spectra

excitation laser wavelength: 532 nm14

Analytical Strategies | J. Kneipp | Nov‐2016

JK1

Page 15: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

icps

I. Zeise, Zs. Heiner et al., in preparation

Chemical map of lignin distribution

Hyperspectral map, obtained using information from all molecules

excitation laser wavelength: 532 nm

Characteristic Raman spectra

Ongoing work: Raman spectroscopic imaging of cucumber stem section

15Analytical Strategies | J. Kneipp | Nov‐2016

Page 16: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Raman spectra of individual untreated pollen grains from horse chestnut, large-leaved linden, and sallow, excited with 785 nm (106 W/cm2, acquisition time 1 s).

Published in: Franziska Schulte; Jens Mäder; Lothar W. Kroh; Ulrich Panne; Janina Kneipp; Anal. Chem. 2009, 81, 8426-8433.DOI: 10.1021/ac901389pCopyright © 2009 American Chemical Society

Analytical Strategies | J. Kneipp | Nov‐2016 16

RR of intact pollen grains

Page 17: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 17

Structure of (a) α-carotene, (b) β-carotene, (c) lutein, (d) zeaxanthine, (e) cryptoxanthine (all trans isomers).

Similar molecules, similar spectra?

Page 18: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 18J.C. Merlin

Similar molecules, similar spectra?

Page 19: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 19J.C. Merlin

Page 20: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 20J.C. Merlin

Page 21: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 21J.C. Merlin

Page 22: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

In situ spectra of the carotenoid molecules contained in pollen grains from horse chestnut, large-leaved linden, and sallow. Thespectra are differences of Raman spectra measured at the beginning and end of an irradiation period with 633 nm laser light (excitation intensity 106 W/cm2).

Published in: Franziska Schulte; Jens Mäder; Lothar W. Kroh; Ulrich Panne; Janina Kneipp; Anal. Chem. 2009, 81, 8426-8433.DOI: 10.1021/ac901389pCopyright © 2009 American Chemical Society

Analytical Strategies | J. Kneipp | Nov‐2016 22

In situ difference spectra

Page 23: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

23F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433

Combination of resonance Raman with HPTLC

Page 24: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Raman spectra of carotenoids extracted from horse chestnut, mahaleb cherry, large-leaved linden, and sallow pollen with a retention factor of 0.91 (excitation wavelength 488 nm, accumulation time 1 s, ∼102 W/cm2).

Published in: Franziska Schulte; Jens Mäder; Lothar W. Kroh; Ulrich Panne; Janina Kneipp; Anal. Chem. 2009, 81, 8426-8433.DOI: 10.1021/ac901389pCopyright © 2009 American Chemical Society

Same retention factor, different RR spectrum

Page 25: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 25

Pyrocystis lunula

www.oceandatacenter.ucsc.edu

Page 26: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 26

EuglenaApplied Spectroscopy 2001

Page 27: Raman of plant tissues - ETH Z · F. Schulte et al. Anal. Chem., 81 (2009) 8426‐8433 Combination of resonance Raman with HPTLC Raman spectra of carotenoids extracted from horse

Analytical Strategies | J. Kneipp | Nov‐2016 27

Chlamydomonas