ram

64
Static Random Access Memory 삼성전자 (주) 변현근

Upload: aziz-pro

Post on 02-Dec-2014

239 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Ram

Static Random Access Memory

삼성전자 (주)

변 현 근

Page 2: Ram

1. Introduction of SRAM

2. SRAM Cell and Basic Core Operation

3. SRAM Chip Architecture

4. High Speed SRAM Circuit Technique

CONTENTS

Page 3: Ram

1-1. Basic Architecture and AC/DC Characteristics

1. Introduction of Static Random Access Memory

I/O Circuit

Clk Gen. Pre-Charge Circuit

Row

Dec

oder

WriteDriver

ClkGen.

An+1 An+2 . . . . An+m

MEMORY ARRAY 2 Rows 2 Columns

n

m

Column Decoder

A1A2A3.. ...

An

I/O1..

I/Oi

/WE

/OE

/CS

VddVss

1-1-1. Functional Block Diagram of Standard SRAM

Page 4: Ram

Address

/CS

/OE

Data Out Data ValidHigh-Z

tCO

tOH

tRC

tAA

tOLZ

t LZ

tOHZ

t HZ

tOE

1-1-2. Typical Read Cycle Timing

Parameter Symbol

Read Cycle Time

Address Access Time

Chip Select to Output

Output Enable to Valid Output

Output Enable to Low-Z Output

Chip Enable to Low-Z Output

Output Disable to High-Z Output

Chip Disable to High-Z Output

Output Hold from Address Change

tRC

tAA

tCO

tOE

tOLZ

tLZ

tOHZ

tHZ

tOH

UnitMin Max

KM68V1002-12

12

-

-

-

0

3

0

0

3

-

12

12

6

-

-

6

6

-

ns

ns

ns

ns

ns

ns

ns

ns

ns

Min Max

15

-

-

-

0

3

0

0

3

-

15

15

7

-

-

7

7

-

Min Max

20

-

-

-

0

3

0

0

3

-

20

20

8

-

-

8

8

-

KM68V1002-15 KM68V1002-20

Example of 1Mb SRAM

(From SAMSUNG SRAM Databook 1996)

Page 5: Ram

1-1-3. Typical Write Cycle Timing

Address

/CS

/WE

Data InHigh-Z

tCW

tDH

tWC

tAW

t WP

t WR

tOWHigh-Z

tWHZ

tAS

tDW

/OE

Data Out

Data Valid

Example of 1Mb SRAM

Parameter Symbol

Read Cycle Time

Chip Select to End of Write

Address Setup Time

Address Valid to End of Write

Write Pulse Width

Write Recovery Time

Write to Output High-Z

Data to Write Time Overlap

Data Hold from Write Time

End Write to Output Low-Z

tWC

tCW

tAS

tAW

tWP

tWR

tWHZ

tDW

tDH

tOW

UnitMin Max

KM68V1002-12

12

8

0

8

12

0

0

6

0

3

-

-

-

-

-

-

6

-

-

-

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Min Max

15

10

0

10

15

0

0

7

0

3

-

-

-

-

-

-

7

-

-

-

Min Max

20

12

0

12

20

0

0

8

0

3

-

-

-

-

-

-

9

-

-

-

KM68V1002-15 KM68V1002-20

(From SAMSUNG SRAM Databook 1996)

Page 6: Ram

1-1-4. DC and Operating Characteristics

Parameter Symbol Test Conditions Min Max Unit

Input Leakage Current

Output Leakage Current

Operating Current

Standby Current

Output Low Voltage

Output High Voltage

VIN=Vss to Vcc

/CS=VIH or /OE=VIH or /WE=VIL

VOUT=VSS to Vcc

Min. Cycle, 100% Duty

/CS=VIL, VIN=VIH or VIL,

IOUT=0mA

Min. Cycle, /CS=VIH

f=0MHz, /CS -0.2V,

VIN -0.2V or VIN

IOL=8mA

IOH = - 4mA

ILI

ILO

ICC

ISB

ISB1

VOL

VOH

-2

-2

-

-

-

-

-

-

-

-

2.4

2

2

200

20

10

0.1

0.4

-

uA

uA

mA

mA

mA

V

V

≥ Vcc ≤ 0.2V

≥ Vcc Normal

L-ver.

(TA= 0 to 70 C, Vcc=3.3V 0.3V)±0

Example of 1Mb SRAM DC Power

(From SAMSUNG SRAM Databook 1996)

Page 7: Ram

1-2. SRAM Features

1-2-1. Low Power SRAM

= Low Power Supply Voltage : 5V -> 3V -> 1.8V -> sub 1.0V

-> Low Power Dissipation for Handheld Application

= Low Standby Power Dissipation : 100uA -> 10uA -> 1uA

-> support for Data Retention Application

= Small Size Package : sTSOP, CSP(uBGA, FPBGA), MCP

-> reduce the package area for Handheld Application

Page 8: Ram

set-upData Retention Mode

Recovery

/CS Vdd-0.2V

Vdd

3.0V

2.2V

VDR

/CSGND

Data Retention Mode

Transition Timing to Battery

Battery Back-Up System

Main PowerSupply Voltage

Battery Back-UpVoltage

C L

to SRAM Power Supply Voltage

Page 9: Ram

1-2-2. FAST SRAM

= Power Supply Voltage : 5V, 3.3V

-> JEDEC standard power supply voltage

= Low Operating Power Dissipation

-> Application for large amount of SRAM usage

= FAST Speed requirements : 8ns-20ns

Page 10: Ram

1-2-3. Synchronous SRAM

= Low Power Supply Voltage : 3.3V -> 2.5V -> 1.8V

-> Small geometry Transistor technology to improve speed

= Various Sync. SRAM Features : LW(Late Write), DLW(Deep Late Write),

DDR(Double Data Rate)

-> Late Write operation to enhance the bus efficiency

= High Bandwidth Interface : LVTTL -> LVCMOS -> HSTL

= FAST Speed Requirements : 150MHz-over 500MHz(1Gbps)

= High Performance Package Solution : TQFP, BGA, FCBGA

Page 11: Ram

Various Sync. SRAM Features

Standard Write (Register-Register/Pipe Line)

RA1

Q1

tCYC

ADDRESS

DQx

CLK

WA2 A3

D2

Read Write

Q3

RA1

Q1

tCYC

ADDRESS

DQx

CLK

WA2 A3

D2

Read Write

Q3

Standard Write (Register-Latch/Flow Through)

Page 12: Ram

RA1

Q1

tCYC

tCD

ADDRESS

DQx

CLK

WA2

D2 Q3

RA3 WA4

Read Write Read

Late Write (Register-Register/Pipe Line)

Late Write (Register-Latch/Flow Through)

RA1

Q1

tCYC

tCD

ADDRESS

DQx

CLK

WA2

D2 Q3

RA3 WA4

Read Write Read

D4

Write

Page 13: Ram

Deep Late Write (Register-Register/Pipe Line)

A1

Q1

tCYC

tCD=5ns

ADDRESS

DQx

CLK

A2

D2

A3 A4

Q3 D4

ReadWrite Write

Read

1X CLK2X Data Rate

DQ (Burst)

ADDR. RD1

D21 D22 D23 D24 Q31 Q32

WR2 RD3

Q11 Q12 Q13 Q14 Q33 Q34

Read ReadWrite

Double Data Rate (Register-Register/Pipe Line)

Page 14: Ram

High Bandwidth Interface

Min. 1.2VSwing

Min. 1.4VSwing

TTL LVTTL HSTL(VREF=0.75~1.0V)

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Min. 1.0VSwing

LVCMOS

0.8V

2.2V

0.8V

2.0V

0.7V

1.7V

Voltage

0.65~0.9V

0.85~1.1V

1.5V Interface

2.5V Interface

Min. 0.2V Swing

5V Interface

3.3V Interface

Page 15: Ram

1-3. SRAM cell Technology

= Low cost, High Density Commodity SRAM for Small Microprocessor controlled system

. Change from NMOS Cell to Mix-MOS Cell

= Low Standby power for Battery Back-Up and Battery Operated System

. Change from Mix-MOS Cell to TFT(Thin Film Transistor) or Full CMOS Cell

= FAST speed for Cache SRAM

. Change from NMOS Cell to Mix-MOS or Full CMOS Cell

Page 16: Ram

PMOS Enhancement Load Cell

1-3-1. History of SRAM memory cells

- Substituting Bipolar SRAM Cell . High device yield and low cost. Low standby power dissipation as compared with the bipolar SRAM cell

- Use diffusion process to make MOS transistor in mid of 1960s. Limitation of the low power supply voltage due to increase Vtp

X YXY

-Vdd

DataLine

DataLine

. 64 bit Array

. SiO2 120nm

. Vdd = -18V

. 150 - 200ns

( From Joseph H. Friedrich [1], Fairchild 1968 )

Page 17: Ram

- Substituting PMOS Load SRAM Cell . Meet sub 100ns speed

- Use high doping substrate or substrate bias in end of 1960s. High stand-by power dissipation. Limitation of small cell size

X

Vdd

BitLineBit

Line

X

. 144 bit Array

. Vdd = 12V

. 40ns write cycle

( From Yasuo Tarui. et al., [2] NEC 1969)

NMOS Enhancement Load Cell

Page 18: Ram

- Substituting NMOS Enhancement Load SRAM Cell . Fully static with no dynamic or bootstrapped node. Low voltage operation (5V supply voltage) due to the low threshold voltage

- Use ion implantation process. High stand-by power dissipation. Limitation of small cell size

X

BitLineBit

Line

X

. 1K bit Array

. SiO2 120nm

. Vdd = 5V

. 150ns

( From R.M.Jecmen. et al., [3] Intel 1974)

NMOS Depletion Load Cell

Page 19: Ram

- Substituting NMOS Load SRAM Cell . Cost effective chip size. Low stand-by dissipation

- Negative Temperature Coefficient Resistance: Isb = I0 exp (-Ea/KT). Compensate the temperature dependence of the junction leakage current

and the subthreshold current- Have been used 16Kb SARM to 1Mb SRAM since end of 1970s

. Limitation of low stand-by power dissipation for high density SRAM

. Limitation of low power supply voltage (less 2.5V) operation- High density limitation [4]

. SLOW : 4Mb (with 1uA stand-by current)

. FAST : 4Gb (minimum 4mA stand-by current)

X

BitLineBit

Line

X

High-Resistivity Poly Load Cell (Mix-MOS)

Arsenic Implanted region

Length

PolysilicionResistor

CVD SIO2

SIO2

Page 20: Ram

- Compatible cell size as compared with poly load cell- Low stand-by power dissipation with retaining data retention voltage- Improved SER (Soft Error Rate)- Using high density SRAM (4Mb SRAM) since end of 1980s

. Complicated process. Limitation of low power supply voltage (less 3.0V) operation

X

BitLine

BitLine

X

P-WELL

N+ N+

Gate

TFTChannel

TFT Gate

Bottom Gate TFT

P-WELL

N+ N+

Gate

TFTChannel

TFT Gate

Top Gate TFT

P+ P+ P+ P+

TFT (Thin Film Transistor) Load Cell

Page 21: Ram

- Ultra low stand-by power dissipation with good data retention characteristics- Good stability for wide noise margin

. Less 2.0V low power supply voltage operation- Good SER (Soft Error Rate) Characteristics- Future SRAM Technology for Low Vdd/Ultra High speed product- Limitation of small cell size

. Mainly used internal cache of MPU

X

BitLineBit

Line

X

Full CMOS Cell

Page 22: Ram

1-3-2. Comparison of layout of load devices in SRAM memory cells

NMOS and Mix-MOS SRAM cell

Depletion mode Load Single polysilicon Cell Double polysilicon Cell

- Cell size reduction. scaling from 3um CMOS to 2um CMOS. adding the second level of polysilicon for the stacked load resistor [5]

Page 23: Ram

Full CMOS SRAM cell

Single aluminum interconnect Double aluminum interconnect

- Cell size reduction. adding the second level of metal for the local interconnection [6]

Page 24: Ram

1-4. SRAM Technology for Peripheral Circuits

= MOS SRAMs are the fastest MOS memories.

= Bipolar SRAMs are the fastest of all memories.

1-4-1. Bipolar

- Application for ultra high speed SRAM . Cache and Main Memory in high performance mainframe computers. ECL interface

- High cost and High power dissipation

- Lower cost than Bipolar

- Limitation of high density and high performance due to complicated circuit design . need dynamic circuit and bootstrapped circuit technique

- Limitation of low power dissipation and high speed

1-4-2. NMOS

Page 25: Ram

1-4-3. CMOS

1-4-4. BiCMOS

- High speed . application for small volume/high performance

- Complicated process [7][8]

. use triple diffused BiCMOS process

- Limitation of low power supply voltage [9]

. improve the MOS Transistor (Lower Vth)

. use BiNMOS or NBiCMOS

. Base boost technique

- Low cost and low power dissipation- Easy to make high density SRAM

- Limitation of high speed

. improve the MOS Transistor

. use Dynamic Gate Logic

Page 26: Ram

Propagation Delay with Process Technology

0

100

200

300

400

500

600

700

800

0 1 2 3

CMOS

AMOS

BiCMOS

CMOS

3D-BiCMOS

BiCMOS

tPD (ps/stage)

Laod capacitance CL(pF)

Vdd=3.3V

Temp=25℃

150

200

250

300

350

400

450

500

1.5 2 2.5 3 3.5 4 4.5 5 5.5

CMOS

AMOS

BiCMOS

tPD (ps/stage)

CMOS

3D-BiCMOS

BiCMOS

Power Supply Voltage Vdd(V)

CL=1pFTemp=25℃

(From H.G. Byun et al. [10], Samsung 1995)

Page 27: Ram

0

1

2

3

4

5

1.5 2.5 3.5 4.5 5.5

CMOS

BiCMOS

BiNMOS

NBiCMOS

tPD (ps/stage)

Power Supply Voltage Vdd(V)

CL=1pFTemp=25℃

2

CMOS BiCMOS BiNMOS NBiCMOS

Propagation Delay with Inverter Logic (From H.G. Byun et al. [10], Samsung 1995)

Page 28: Ram

2-1. SRAM Cell Operation

2-1-1 Chip Power-Down Mode (Stand-By)

2. SRAM Cell and Basic Core Operation

X

BitLineBit

Line

X

L

Off

Off

X

BitLineBit

Line

X R R

H L

ON

Vdd

Isb

H

- One inverter is always ON for the Poly Laod or NMOS Load cellswhen in the standby mode.. Current(Isb) is drawn from Vdd

- In the Full-CMOS cell, one transistor in each of the coupled inverters is OFF.. Only junction leakage current is drawn from Vdd

Page 29: Ram

2-1-2. Data Retention

X

BitLine

BitLine

X R R

Isp

Ion

Isd

Ij

Vdd

Vnh VnlVbl

- Data Retention Voltage (Vdr). Min. power supply voltage to retain high node data in the standby mode.

- a prerequisite of Data RetentionIon [= (Vdd - Vnh) / R] > Isp + Isd + Ij

Where Ion = Charge CurrentIsp = Sbthreshold current of Pass Transistor @ VDS=Vnh-Vbl, Vgs=0VIsd = Sbthreshold current of Pull-down Transistor @ VDS=Vnh, Vgs=VnlIj = Junction leakage for high node @ Vnh

Page 30: Ram

1 105 1010

No

of C

ells

Charge Current / Leakage Current

1 105 1010

No

of C

ells

Charge Current / Leakage Current

High Resistive Poly Load Cell

BitLineBit

Line

BitLineBit

Line

? ?

ON

10-13A

10-15A

OffOff

Off

Off

10-15A

10-8A

10-13A

ON

10-13A

? ?

ON

Off

Off

Off

TFT (Thin Film Transistor) Load Cell

Marginal Large Margin

(From T.Y.OOTAMI. et al. [11], Toshiba 1990)

Data Retention Margin

Page 31: Ram

2-2. Read/Write Operation

Word Line

R

BL

R

FULL CMOS CELLPOLY LOAD CELL

/BL BL /BL

DATA BUS

/DATA BUS

ColumnSelect

ColumnSelect

To Sense Amplifier and Data Input Buffer

Page 32: Ram

Read/Write Margin Analysis

/BL

BL

/BLWL

TripPoint

RM (Read Margin)

WM (Write Margin)

WL

L L

A A

B B Iread

D D

E

Iwrite

Page 33: Ram

WL

R

A A

B B Iread

D D

E

Iwrite

R

TP

D : A

A : B

D : E

Read Operating Region

Write Operating Region

2-2-1. Poly Load Cell Read/Write Operation

TP: MEMORY CELL TRIP VOLTAGE

BIT

LIN

E V

OL

TA

GE

Page 34: Ram

WL

A A

B B Iread

D D

E

Iwrite

C C

TP

D : A

C : A : B

(D // C+A) : E

Read Operating Region

Write Operating Region

2-2-2. Full CMOS Cell Read/Write Operation

BIT

LIN

E V

OL

TA

GE

TP: MEMORY CELL TRIP VOLTAGE

Page 35: Ram

2-3. SRAM Cell Stability

2-3-1 Static-Noise Margin (SNM)

What is the Static-Noise margin (SNM)?

+ -

+ -

Vn

Vn

Vn : Static Noise Source

SNM : Maximum Value of Vn

WL

/BLBL

Page 36: Ram

Static-Noise margin (SNM) for Poly Load Cell

Assumption

- Q1, Q2, Q3 : Saturation Region

- Q4 : Linear Region

MOS Models

- Id = 1/2 (Vgs - Vth) 2 Saturation Region

- Id = Vds (Vgs - Vth - 1/2 Vds) Linear Region

where = W/L . eff Cox

β

β

β μ

Analytic Expressions

- Kirchhoff Current Equation

Id1 = Id3 , Id2 = Id4

- Kirchhoff Voltage Equation

Vgs3 = Vn + Vds4

Vgs1 = Vdd - Vn - Vgs4

Vgs2 = Vdd - Vds4

R

Q3

R

Q4

Vn+ -

? ?+ -

Vn

dβID3 ID4

ID1 ID2

aβ aβQ1 Q2

Vdd

Results

SNM (Vn(MAX)) = γ√ - 1 γ√ + 1

Vth + γ+ 1 - √2 3/2 + + 1 γ γ

γ γ√ + 1 ( )(Vdd - Vth)

where (Cell Ratio) = / γ aβdβ

(From E. Seevink. et al. [12], 1987)

Page 37: Ram

Saturated Enhancement Load Inverter

R

Vout

ID3

ID1

Vdd

Vin

Vout

Vin

Vdd

Voh

Vol

Vth Vdd

1 Subthreshold Region :sharply Drop to Vdd - Vth (with Body Effect)

2 Driver Saturated

3 Driver Nonsaturated

Page 38: Ram

SNM with Supply voltage

0

100

200

300

400

500

600

0 1 2 3 4 5 6

Theory Equation

Simulation (Simple Model)

Simulation (Extended Model)

stat

ic n

oise

mar

gin

SN

M [

mV

]

Supply Voltage [V]

(Source : IEEE Journal of Solid -State Circuits 1987)

Ratio = 3.5γ

DC Transfer Characteristics

SNM of Poly Load Cell

SNM with Cell ratio

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Theory Equation

Simulation (Simple Model)

Simulation (Extended Model)

Vdd = 5Vst

atic

noi

se m

argi

n S

NM

[m

V]

Ratio

(Source : IEEE Journal of Solid -State Circuits 1987)

(From E. Seevink. et al. [12], 1987)

(From E. Seevink. et al. [12], 1987)

- Good correlation between theory equation and simple model- Slope difference for the extended model simulation

--> caused by omitted short channel effect from the simple model

Page 39: Ram

Static-Noise margin (SNM) for Full CMOS Cell

Assumption

- Q2, Q3 : Saturation Region

- Q4, Q5 : Linear Region

MOS Models

- Id = 1/2 (Vgs - Vth) 2 Saturation Region

- Id = Vds (Vgs - Vth - 1/2 Vds) Linear Region

where = W/L . eff Cox

β

β

β μ

Analytic Expressions

- Kirchhoff Current Equation

Id3 = Id5 , Id2 = Id4

- Kirchhoff Voltage Equation

Vgs3 = Vn + Vds4

Vgs5 = Vdd - Vn - Vds4

Vds5 = Vdd - Vn - Vgs4

Vgs2 = Vdd - Vds4

Q3 Q4

Vn+ -

? ?+ -

Vn

dβID3 ID4

ID5

ID2

aβ aβQ1 Q2

Vdd

Results SNM (Vn(MAX))

= Vth -(k + 1)

1 [

γ+ 1Vdd -

γ2 + 1Vth

1 + γ

γ+ 1k ( )

√- ]

Vdd - 2Vth

+1 + kγ

q (1 + 2k + k2 )γ

q

where (Cell Ratio) = / γ aβdβ q = / aβpβ

k = γ

γ+ 1 √γ+ 1 - Vs2 / Vr2( γ+ 1 - 1) k = Vs -

γγ+ 1

Vth

Vs = Vdd - Vth

(From E. Seevink. et al. [12], 1987)

Page 40: Ram

Vout

ID3

ID1

Vdd

Vin

Vout

Vin

Vdd

Voh

Vol

Vth Vdd

1 NMOS SaturatedPMOS Nonsaturated

2 NMOS NonsaturatedPMOS Saturated

Saturated Enhancement Load Inverter

Page 41: Ram

SNM of Full CMOS Cell

DC Transfer Characteristics

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Theory Equation

Simulation (Simple Model)

Simulation (Extended Model)

stat

ic n

oise

mar

gin

SN

M [

mV

]

Supply Voltage [V]

Ratio = 2γ

Ratio = 1γ

(Source : IEEE Journal of Solid -State Circuits 1987)

300

400

500

600

700

800

900

0 1 2 3 4 5 6

Theory Equation

Simulation (Simple Model)

Simulation (Extended Model)

Ratio

stat

ic n

oise

mar

gin

SN

M [

mV

]

Vdd = 5V

Vdd = 3V

(Source : IEEE Journal of Solid -State Circuits 1987)

- Good correlation between theory equation and simulation--> Short channel effect is compensated by the PMOS transistor.

- Optimum SNM can be obtained through proper choice of ratio (r and q) for Vdd.

SNM with Supply voltage(From E. Seevink. et al. [12], 1987)

SNM with Cell ratio (From E. Seevink. et al. [12], 1987)

Page 42: Ram

Static-Noise Source (Vn)

- DC Disturbance. Layout Pattern Offset . Process mismatches

: Non-uniformity of ion-implantation or Gate oxide thickness etc.

- Dynamic Disturbance. Alpha( ) Particles. Crosstalk. Voltage supply ripple. Thermal noise

α

Memory cell Asymetry

L L

A+ A-

B- B+

x y

SNM

Half Cell transfer curvesVy

Vx

Page 43: Ram

2-3-2. Dynamic-Noise Margin (DNM)

Assumptions

- Q2, Q3 : Weaker Device. High Threshold Voltage. Longer channel Length. Narrow channel width

- BL and /BL are precharged to Vdd

(From Barbara Chappel. et al. [13], 1985)

WL

/BLBL

L L

? ?Q1 Q2

Q3 Q4

Page 44: Ram

- 1 . 5

- 1

- 0 . 5

0

0 . 5

1

1 . 5

0 1 2 3 4 5

Cha

nge

in V

olta

ge

Initial Stored High Voltage

Region 1

No change instored high

Region 4 Region 3 Region 2

Some discharging ofstored high

Some refresh ofstored high

Cell swtchesstate

(1) Region 1- The device on the high node of the cell (Q3) did not conduct during the read.

(2) Region 2- Current through Q3 caused some discharging of the stored high during the read- the voltage on the low node ??having increased enough to turn Q3 momentarily

while the large precharged bitline capacitance was being discharged.(3) Region 3

- The current through Q3 more than compensated the discharge current through Q1.(4) Region 4

- The cell switches to the opposite state because the devices have been mismatched.

Page 45: Ram

2-4. SRAM Cell Speed and Power

dt = [ Ctot / Iread ] dV

Where dt is read speed for core(bit line and data bus line) operation.

Ctot is capacitance load fixed by SRAM density.

Iread is cell current fixed by pass gate size (A)

dV is voltage swing fixed by ratio (D : A)

WL 1

L L

A A

B B

D D

WL 2

L L

A A

B B

E E

CBL CBL

CDB CDB

Iread

LH

Page 46: Ram

2-5. Memory Cell Alpha Particle Sensitivity

- Decreasing Q alpha [14]

. Polyimid coating (blocks alphas)

. Adopting a p-well structure is useful in reducing the collection efficiency

. The area ratio of n+ storage region(A and B) to the other n+ region(Vdd and Ground., etc)has to be small to reduce the collection efficiency

. The two individual storage nodes(A and B) are placed closely.

- Decreasing Charging Time of the High Storage Node [15]

. use DWL(Divided Word Line) architecture to increase average interval time ( ti )

. use TFT(Thin Film Transistor) Load or Full CMOS cell to decrease Charging time ( tch )

- Balance the Load characteristics to improve the stability

- Increasing cell capacitance and cell stability (Cell size issue)

delta V = Qalpha / Ccell

To improve SER immunity

BL /BL

WL

Load

Vdd Vdd

IL(on)

Qalpha

Ccell

A B

Ground Ground

Page 47: Ram

3. SRAM Chip Architecture

3-1. High Density SRAM Array

3-1-1. Problems

Example of 64K SRAM Architecture

Where Iread = 100uA/ColumnPoly1(for Word Line) Resistance 5 Ohm/ㅁ

Line Width 1umcapacitance 2fF/gate

Bit Line Capacitance (CBL) 3.9 fF/cell

Power Dissipation for Read operation: 256 Column @ 100uA/Column

= 25.6mA

Word Line Speed: Resistance (R) 256 x10um/1um x 5 Ohm/ㅁ

= 12.8 Kohm: Capacitance (C) 2 x 256 Gates @ 2fF

= 1.024 pFRC Delay = 13.1ns

Bit Line Speed: Capacitance (C) 256 cells x 3.9fF/cell

= 1 pF: Bit Line Slew Rate (dV/dt=Iread/CBL) = 100mV/ns2ns for 200mV swing

256 x 256Memory

Array

memory cell10um x 10umBit Line Precharge

Row

Decoder

Column Decoder

Sense Amplifier

I/OCircuitry

Address

Page 48: Ram

3-1-2. Divided Word Line & Bit Line Architecture

Example of 64K SRAM Architecture

Where Iread = 100uA/ColumnPoly1(for Word Line) Resistance 5 Ohm/ㅁ

Line Width 1umcapacitance 2fF/gate

Bit Line Capacitance (CBL) 3.9 fF/cell

Power Dissipation for Read operation: 64 Column @ 100uA/Column

= 6.4mA

Word Line Speed: Resistance (R) 64 x10um/1um x 5 Ohm/ㅁ

= 3.2 Kohm: Capacitance (C) 2 x 64 Gates @ 2fF

= 0.256 pFRC Delay = 0.8ns

Bit Line Speed: Capacitance (C) 128 cells x 3.9fF/cell

= 0.5 pF: Bit Line Slew Rate (dV/dt=Iread/CBL) = 200mV/ns1ns for 200mV swing

I/OCircuitry

Column Decoder

64 x

128

BL PreR

ow D

ecod

er

64 x

128

Row

Dec

oder

64 x

128

64 x

128

BL Pre BL Pre BL Pre

Sense Amplifier

Column Decoder

64 x

128

Row

Dec

oder

64 x

256

Row

Dec

oder

64 x

128

64 x

128

BL PreBL Pre BL Pre BL Pre

Address

Page 49: Ram

3-2. Chip Architecture for High Density SRAM

3-2-1. Divided word line (DWL) structure[16]

Simplified schematic concept of DWL Performance enhancement on 64K RAM

Page 50: Ram

3-2-2 Shared word-line and hierarchical word-line structure[17]

Shared word-line structure for a 72K SRAM

Page 51: Ram

3-2-3 Divided bit-line structure[18]

Block diagrams of shorten the bit-lines

Page 52: Ram

3-2-4. Variable Impedance Bitline Loads[19]

CELL

SAT

SAT

/BLBL

DB

/DB

/SAS

Word Line

P2(WE)

P2(/WE)

Ai

/WE

Bit Line

Word Line

Page 53: Ram

4. High Speed SRAM Circuit Technique

4-1. Address transition detection (ATD) for improved speed[20]

ATD - Address transition Detection

SPi

SPj

DelayAiD

AjDDelay

SAT

Ai

Aj

Ai

AiD

SPi

Aj

AjD

SPj

SAT

Page 54: Ram

ATD - How it is used

CELL

SAT

SAT

SAT

/BLBL

DB

/DB

SAS

/SAS

Bit Line Shorter

Data Line Shorter

Sense Amp. Shorter

WORDLINE

SAT

BIT LINE

DATA BUS

SENSE AMP

Page 55: Ram

4-2. Fast sense amplifier

Data Sensing Scheme

V0+Vi-Vi+

Vref Constant Current (Biased Saturation)

Current Mirror(High Gain)

CURRENT MIRRIORSINGLE ENDED

V0+Vi- Vi+

VrefConstant Current (Biased Saturation)

Biased Linear(Resistive)

V0-Vref

CLASICAL FULL DIFFERENTIAL

(W/L)n1

(W/L)p1

(W/L)n2

(W/L)p2

- Determine the sense amplifier scheme[21]

. Current mirror amplifier with high CMRR(Common -mode rejection ratio)

. Current multiplier with high driving capability - Determine the number of stage

Current Mirrior: (W/L)n2

(W/L)n1

(W/L)p2

(W/L)p1= = 1

Current Multiplier: (W/L)n2

(W/L)n1

(W/L)p2

(W/L)p1= = N > 1

Page 56: Ram

Speed vs. Gain - How many stages?

CASE 1: 1 Stage - A = 16

2.4V

150mV

8ns

SLEW RATE = 150mV/ns

INPUT

OUTPUT SLEW RATE = 150mV/ns

Page 57: Ram

CASE 2: 4 Stage - A = 2

2.4V

150mV

4ns

SLEW RATE = 150mV/ns

SLEW RATE = 1.2V/ns

SLEW RATE = 150mV/ns

OUTPUT

INPUT

SLEW RATE = 600mV/ns

SLEW RATE = 300mV/ns

1ns

1ns

1ns

1ns

Page 58: Ram

4-3. Dynamic circuitry[22]

IN

Precharge

N

Out

Dynamic State

Dynamic State

IN

weak keeper

Qf

Qf Precharge

C

Out

QrQs

Qs

QfN

- Separate pull-up and pull-down operation during transition time.

- Lower the loading on output driver.

- Decrease the switching logic threshold.

Page 59: Ram

Basic Dynamic gate

IN

1

2

Out

Qs: Slow Keeper TransistorQf: Fast Transistor for Enable PathQr: Reset Transistor for Self-Resetting

Reset Timing Chain

IN OUT

1

2

Qs Qr

Qf

Qf

Qs QrQf

Qs Qr

Qf

IN OUT

(From T. Chappell et al. [23], 1991)

Page 60: Ram

4-4. Fast datapath

Address Decoder

o

- Reduce the address decoder delay using PMOS load decoders and Divided wordline Architecture

- Short bit-line & Data Bus using 90 rotated architecture

PMOS load decoder CMOS load decoder trade-off in current and cycle time

(From Sasaki, K. et al. [24], 1988)

Page 61: Ram

Short bit-lines Architecture

traditional orientation of word-lins andbit-lines

layout at 90 to traditional orientation intended to shorten the bit-lines

o

(From Kohno, Y et al. [25], 1988) (From Sasaki, K. et al. [24], 1988)

Page 62: Ram

4-5. Interface Circuit Technique

- Reduce the impedance variation with temperature and voltage

Impedance Controlled Output Driver Scheme

ZQCOUNTER

ZQ COMPARATOR

ZQ DRIVER

DOUTBUFFER

DLAT

DLATB

VDDQ

DQ

DOUx

DODx

UP/DOWN

ZQ DETECTORNMOS

ARRAY

VDDQ

ZQPAD

VZQ

EXT. RZQ

REFUP MOS

ARRAY

Off Chip Driver

(*From Cell Array)

NMOSARRAY

VDDQ

R1

R1

(From Pilo, H. et al. [26], 1996)

Page 63: Ram

References

[1] J.H. Friedrich , “A coincident-select MOS storage Array” , IEEE Journal of Solid-State Circuits, Sep 1968, PP280-285

[2] Y. Tarui. et al., “A 40ns 144bit n-channel MOS LSI Memory” , IEEE Journal of Solid-State Circuits, Oct 1969, PP271-279

[3] R.M. Jecmen. et al., “HMOS II Static RAMs overtake bipolar competition” , Electronics, Vol. 52, Sep 1979, PP124-128

[4] H. Kato. et al., “Consideration of poly-si loaded cell Capacity Limits for Low Power and High-Speed SRAMs” ,IEEE Journal of Solid-State Circuits, Apr 1992, PP683-685

[5] T. Ohzone, et al., “ Ion-Implanted Ti Poly Crystalline-Silicon High Value Resistor for High density Poly Load Static RAM Application” , IEEE Trans. Electron Devices, ED-32, 1985, PP1749

[6] T. Watanabe, et al., “A Bettery Backup 64K CMOS SRAM with Double-Level Aluminum Technology” , IEEE Journal of

Solid-State Circuits, Oct 1983

[7] K. Miyata, “BiCMOS Technology overview” , 1987 IEDM Short Course on BiCMOS Technology, Oct 1987

[8] Young. I. et al., “A High Performance 256K TTL SRAM Using 0.8um Triple Diffused BiCMOS with 3V Circuit Techniques”Symposium on VLSI Circuits, Digest of Technical Papers, May 1991, PP17-18

[9] H. Momose. et al., “A Supply Voltage Design for half Micron BiCMOS gates”, Symposium on VLSI Technology , Digest of Technical Papers, May 1989, PP55-56

[10] H.G. Byun. et al., “고속 SRAM 개발 동향”, 전자공학회지 제22권 제2호, 95년 2월, PP90-97[11] T.Y. Ootani. et al., “A 4Mb CMOS SRAM with a PMOS Thin-Film Transistor Load cell”, IEEE Journal of Solid-State Circuits,

Oct 1990, PP1082-1091[12] Evert Seevinck. et al., “Static Noise Margin Analysis of MOS SRAM cells”, IEEE Journal of Solid-State Circuits,

Oct 1987, PP748-754[11] B. Chappel. et al., 밪tability and SER Analysis of Static RAM cells ?, IEEE Journal of Solid-State Circuits, Feb 1985, PP383-399

[13] B. Chappel. et al., “Stability and SER Analysis of Static RAM cells”, IEEE Journal of Solid-State Circuits, Feb 1985, PP383-399

Page 64: Ram

[14] K. Anami. et al., “A 35ns 16K NMOS Static RAM”, IEEE Journal of Solid-State Circuits, Oct 1982, PP815-820

[15] M. Yoshimoto. et al., “A Divided Word-Line Structure in the Static RAM and its Application to a 64K Full CMOS RAM”,IEEE Journal of Solid-State Circuits, Oct 1983, PP479-484

[16] M. Yoshimoto. et al., “A Divided Word-Line Structure in the Static RAM and its Application to a 64K Full CMOS RAM”,IEEE Journal of Solid-State Circuits, Oct 1983, PP479-484

[17] M. Segawa, et al, “A 18ns 8KW x9b NMOS SRAM”, ISSCC Proceedings, Feb. 1986, PP202

[18] S.T. Flannagan. et al., “ Two 13ns 64K CMOS SRAMs with very low Active Power and Improved Asynchronous Circuit Technique”, IEEE Journal of Solid-State Circuits, Oct 1986, PP692-702

[19] Yamamoto, S. et al., “A 256K CMOS SRAM with Variable Impedance Data-Line Loads”, IEEE Journal of Solid States Circuits,Vol. SC-20, No.5, Oct. 1985, PP924

[20] L. C. Sood, et al., “A 35ns 2Kx8 HMOS Static RAM”, IEEE Journal of Solid-State Circuits, Oct 1983, PP498[21] K. Ochii, et al., “A 17ns 64K CMOS SRAM with a Schmitt Trigger Sense amplifier” , ISSCC Proceedings, Feb. 1985, PP64[22] Proceedings of VLSI Circuit Workshop , 1996 Symposium on VLSI Circuits[23] T. Chappell et al., “A 2ns Cycle, 4ns Access 512Kb CMOS ECL SRAM”, ISSCC Digest of Technical Papers, Feb 1991, PP50-51 [24] Sasaki, K. et al., “A 15ns 1-Mbit CMOS SRAM”, IEEE Journal of Solid State Circuits, Vol. 23, No.5, Oct 1998, PP1067[25] Kohno, Y. et al., “A 14ns 1Mb CMOS SRAM with Variable Bit Organization, IEEE Journal of Solid State Circuits, Vol. 23, No.5,

Oct. 1988, PP1060[26] Pilo, H. et al., “A 300MHz, 3.3V 1Mb SRAM Fabricated in a 0.5um CMOS Process”, ISSCC Digest of Technical Papers,

Feb. 1996, PP148-149