radioactivity*and* nuclear*reactions* small*vs*large

4
10/28/14 1 Radioactivity and Nuclear Reactions Ch 9.19.2, 9.4 Nucleus and the Strong Force Protons and neutrons are packed tightly together Two positives normally repel each other, so why dont the protons in the nucleus repel? Strong force = one of four basic forces that causes protons and neutrons to be attracted to each other 100 times stronger than electric force Shortrange force, so it weakens with distance Small vs Large Nuclei Protons and neutrons are held together less tightly in large nuclei. Why? Small nuclei have few protons, so the repulsive force on a proton due to other protons is small In a large nuclei, the attractive strong force is exerted only by the nearest neighbors. All the protons exert repulsive forces making the repulsive force large. Radioactivity In many nuclei, the strong force keeps the nucleus together (STABLE) When it cant, the nucleus can decay and give off matter and energy in a process of radioactivity Larger nuclei tend to be unstable – all nuclei containing more than 83 protons are radioactive All elements with more than 92 protons are synthetic and decay soon after they are created (UNSTABLE) Stable and Unstable Nuclei Smaller elements neutron to proton ratio is 1:1 to be stable isotopes Heavier elements neutron to proton ratio is 3:2 to be stable isotopes Nuclei of any isotopes that differ much from these ratios are unstable, whether heavy or light Nuclear Radiation When an unstable nucleus decays, particles and energy are emitted from the decaying nucleus Alpha Particles – (2 p and 2 n lost) massive, comparatively speaking; loses energy quickly; cant pass through paper; changes the element (transmutation); mass changes; can damage the body Beta Particles – (n turns into p and emits e) e emitted from n; transmutation changes the element; mass doesnt change; much faster and penetrating; damage body Gamma Rays – electromagnetic waves that carry energy; most penetrating form; cause less damage to biological molecules

Upload: others

Post on 09-May-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radioactivity*and* Nuclear*Reactions* Small*vs*Large

10/28/14  

1  

Radioactivity  and  Nuclear  Reactions  

Ch  9.1-­‐9.2,  9.4  

Nucleus  and  the  Strong  Force  !   Protons  and  neutrons  are  packed  tightly  together  

!   Two  positives  normally  repel  each  other,  so  why  don’t  the  protons  in  the  nucleus  repel?  

!   Strong  force  =  one  of  four  basic  forces  that  causes  protons  and  neutrons  to  be  attracted  to  each  other  

!   100  times  stronger  than  electric  force  

!   Short-­‐range  force,  so  it  weakens  with  distance  

Small  vs  Large  Nuclei  !   Protons  and  neutrons  are  held  together  less  tightly  in  

large  nuclei.    Why?  

!   Small  nuclei  have  few  protons,  so  the  repulsive  force  on  a  proton  due  to  other  protons  is  small  

!   In  a  large  nuclei,  the  attractive  strong  force  is  exerted  only  by  the  nearest  neighbors.    All  the  protons  exert  repulsive  forces  making  the  repulsive  force  large.  

Radioactivity  !   In  many  nuclei,  the  strong  force  keeps  the  nucleus  

together  (STABLE)  

!   When  it  can’t,  the  nucleus  can  decay  and  give  off  matter  and  energy  in  a  process  of  radioactivity  

!   Larger  nuclei  tend  to  be  unstable  –  all  nuclei  containing  more  than  83  protons  are  radioactive  

!   All  elements  with  more  than  92  protons  are  synthetic  and  decay  soon  after  they  are  created  (UNSTABLE)  

Stable  and  Unstable  Nuclei  

!   Smaller  elements  neutron  to  proton  ratio  is  1:1  to  be  stable  isotopes  

!   Heavier  elements  neutron  to  proton  ratio  is  3:2  to  be  stable  isotopes  

!   Nuclei  of  any  isotopes  that  differ  much  from  these  ratios  are  unstable,  whether  heavy  or  light  

Nuclear  Radiation    !   When  an  unstable  nucleus  decays,  particles  and  

energy  are  emitted  from  the  decaying  nucleus  !   Alpha  Particles  –  (2  p  and  2  n  lost)  massive,  

comparatively  speaking;  loses  energy  quickly;  can’t  pass  through  paper;  changes  the  element  (transmutation);  mass  changes;  can  damage  the  body  

!   Beta  Particles  –  (n  turns  into  p  and  emits  e)  e  emitted  from  n;  transmutation  changes  the  element;  mass  doesn’t  change;  much  faster  and  penetrating;  damage  body  

!   Gamma  Rays  –  electromagnetic  waves  that  carry  energy;  most  penetrating  form;  cause  less  damage  to  biological  molecules  

Page 2: Radioactivity*and* Nuclear*Reactions* Small*vs*Large

10/28/14  

2  

At  a  glance…   Radioactive  Half-­‐Life  !   Some  radioisotopes  decay  in  less  than  a  second,  

while  others  take  millions  of  years  

!   Half-­‐life:    the  amount  of  time  it  takes  for  half  the  nuclei  in  a  sample  of  the  isotope  to  decay  

 

Radioactive  Half-­‐Life  cont  Ch  21.3:    Absolute-­‐Age  

Dating  of  Rocks  !   Relative-­‐age  dating  vs.  Absolute-­‐Age  Dating  

!   Relative-­‐age  dating:    compares  past  geologic  events  based  on  the  observed  order  of  strata  in  rock  record  

!   Absolute-­‐age  dating:    determines  actual  age  of  a  rock,  fossil,  or  other  object  

Radioactive  Decay  !   Radioisotopes  are  found  in  igneous  and  metamorphic  

rocks,  some  fossils,  and  organic  remains  

!   Emission  of  radioactive  particles  and  the  resulting  change  into  other  elements  over  time  is  called  radioactive  decay  

!   This  decay  stays  constant  regardless  of  the  environment,  pressure,  temperature,  or  any  other  physical  changes  

!   So,  these  atomic  particles  become  accurate  indicators  of  the  absolute  age  of  an  object  

!  I  love  you  Mrs.  Sjuts!  ☺  

Page 3: Radioactivity*and* Nuclear*Reactions* Small*vs*Large

10/28/14  

3  

Radioactive  Dating  !   Fossils  and  rocks  can  be  dating  using  radioactive  

isotopes  

!   Amounts  of  the  radioisotope  and  its  daughter  nucleus  are  measured  in  a  sample  

!   Then,  the  number  of  half-­‐lives  that  need  to  pass  to  give  the  measured  amounts  of  the  isotope  are  calculated  

!   The  number  of  half-­‐lives  is  the  amount  of  time  that  has  passed  since  the  isotope  began  to  decay  AND  usually  is  the  same  as  the  age  of  the  object.  

Carbon  Dating  !   The  radioactive  isotope  C-­‐14  is  often  used  to  find  the  

ages  of  once  living  objects  

!   It  is  naturally  found  in  most  all  living  things  

!   An  atom  of  C-­‐14  eventually  will  decay  into  N-­‐14  with  a  half-­‐life  of  5,730  years  

!   By  measuring  the  amount  of  C-­‐14  in  a  sample  and  comparing  it  to  the  amount  of  C-­‐12,  scientists  can  determine  the  approx  age  of  plants  and  animals  that  lived  within  the  last  50,000  years  

Uranium  Dating  !   Some  rocks  contain  uranium,  which  has  two  

radioactive  isotopes  with  long  half-­‐lives,  both  decaying  into  isotopes  of  lead  

!   By  comparing  the  uranium  isotope  and  the  daughter  nuclei  the  number  of  half-­‐lives  since  the  rock  was  formed  can  be  calculated  

!   U-­‐235  "  0.7  billion  years  

!   U-­‐238  "  4.5  billion  years  

 

Ch  9.4  Nuclear  Reactions  

!   Nuclear  Fission  –  the  process  of  splitting  a  nucleus  into  two  nuclei  with  smaller  masses  

!   Chain  reaction  –  ongoing  series  of  fission  reactions  

!   Critical  mass  –  the  amount  of  fissionable  material  required  so  that  each  fission  reaction  produce  approximately  one  more  fission  reaction  

!   Nuclear  Fusion  –  two  nuclei  with  low  masses  are  combined  to  form  one  nucleus  of  larger  mass  

 

Nuclear  Fission  !   Large  elements  need  a  TON  of  energy  in  order  to  hold  their  

nucleus  together.  

!   When  the  large  nucleus  is  split  into  smaller  nuclei,  those  smaller  nuclei  don’t  require  as  much  energy  to  stay  together…  

!   So,  that  leftover  energy  is  released!  

!   Atomic  bomb  –  used  in  Hiroshima  and  Nagasaki  

Fission  -­‐  Chain  Reaction      Nuclear  Fission:  Pros  and  Cons    

Nuclear  Meltdown    

Cooper  Nuclear  Station  near  Brownville,  NE  

Fort  Calhoun  Nuclear  Generating  System  between  Ft.  Calhoun  and  Blair  

Page 4: Radioactivity*and* Nuclear*Reactions* Small*vs*Large

10/28/14  

4  

Nuclear  Fusion  !   Need  very  high  temperatures  in  order  to  overcome  

the  repulsive  forces.  Sun's  Fusion    

!   Scientists  cannot  control  fusion  reactions  for  the  purpose  of  power.  

!   We  can,  however,  use  it  to  make  nuclear  weapons.    Large  ones.  Hydorgen  Bomb  -­‐  Fusion    

Nuclear  Decay  vs.  Nuclear  Reactions  

!   Decay  happens  spontaneously  

!   Reactions  are  controlled  and  self-­‐sustaining  and  release  much  more  energy  

Nuclear  Reaction:    Plutonium    

!   Pu-­‐239  Used  to  make  nuclear  weapons  like  the  one  dropped  on  Nagasaki  in  1945