radio echo-sounding of spitsbergen glaciers: problems … · pressure-melting point and...

6
JournaL of GLacioLogy , Vol. 30, No. 104,19 84. RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS IN THE INTERPRETATION OF LAYER AND BOTTOM RETURNS By J. A. DOWDESWELL, D. J. DREWRY , (Scott Polar Research Institute , University of Cambridge, Cambridge CB2 I ER, England ) O. LIEST<pL and O. ORHEIM (Norsk Polarinstitutt , P.O. Box 158, 1330 O slo Lufthavn , Norway) ABSTRACT . Airborne radio echo-sounding ofSpitsberge n glaciers during 1980 used 60 ylHz SPRI Mk IV equipment. On several glaciers res ults showed unambiguous bottom re turn s at depths 2- 3 times those reponed in pr ev ious Soviet ec ho- soundin g at 440 and 620 MHz . Comparison of 60 MHz record s and independent gra vit y-s urveyed ice thickness for two gla- ciers agreed to within 10 0/ 0 , whereas Soviet ice thicknesses were o nl y 30- 60 0 0 of gravity depths. Soviet bed ec hoes often co in c ided cl osely with an inte rnal refl ecting horizon recorded by the SPR I Mk IV system, and it is sho wn that Soviet U.H.F. equipment fa il ed to penetr a te to the true glacier bed on a number of ice masses (e. g. Finsterwald e rbreen , Kongs vegen , Negribr een). Thi s was proba bl y due to in creased absorption and scattering at higher radio frequencies, related to th e inhomoge neo us nature ofSpilS- bergen glaciers, which are oft en at or near the press ur e-melting point. Both 60 MHz and U.H.F. equipme nt seldom recorded bed echoes in ice -cap acc umulation areas (e,g. Isachsenfonna), where firn soaking during sum- mer and 10 m temperatures of zero degrees have been observed. An i solat ed internal re fl ec ting ho ri zon was reco rd ed on many gla ciers. It is unlikely to be a mor aine layer, but ma y be rela ted to ire with a water cont ent of 1- 2 0 0 observed at a similar depth ( 11 5 m) in a drill core from Fridtjovbree n. RESU ME. So ndag's par ccho radio sur les glaciers du Spilsbergen: probllmes pour ['in terpretation des riJIexions sur des nil/faux infe rmediaires el sur le fon d. D es 50 11- dages par echo radio aeriens sur les glaciers du Spitsberg en 1980 ont utilises un equipment 60 MHz SPR I Mk I V. Sur de no mbr eux glaciers les res ult a ts ont montre sans ambig ui"t e d es echos sur le fond it d es profondeurs de 2 a 3 fa is cell es trouv"es par de pr ecedents so ndages sovie tiques sur 440 et 620 MHz. La comp a ri so n d es res ult ats des sondages it 60 M Hz et de co ntro le indepe nd a nts de I'epaisse ur de la glace par gravimetrie s ur deux glaciers ont concorde a 10 °0 prcs tandi s que les prof ondeurs de gla ce sQvi c[ique etaient se ulement de 30 it 60 0 0 des profondeurs donnees par la gra vimetri e. Les ee hos du " lit roc heux" selon les sovietiqu es co· in cidaie nt so uvent exactement avee un hori zon interne de reAex io l1 egalement e nreg istre par I' appare il SPRI Mk IV, et on montr e que I'equipement U.H.F. sovietique n'a pa s re uss i a pene trer jusqu'au verita bl e lit rucheux du glac ier grand nombre d'appa reils glaciaires (par exemple Finsterwalde rbr ee n, Kongsvcge n, Ne- g ribreen ). Ceci etait proba blement du a un e plus forte absorption et it une plu s grand e dispersion aux ha utes fr equ encies radio, all rega rd a la na lUre IN TR ODUCTI ON Temperature measurements on several Spitsber gen glaciers indicate that they are of "sub-polar" ther - mal regime, with accumulation-zone ice at or near the pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar" and "tem perate" glacier ice is both less homogeneous and more lossy to electromagnetic energy than colder Antarctic ann Greenland ice At these higher temperatures both scattering and ab- so rption of radio waves increase relative to colder ice, making radio echo-sounding of glacier thickness problematic (Smith and Evans, 1972; Goodman, 1975; Watts and England, 1976). A primary aim of radio echo-sounding has always been to record an unamhiguous bed echo (Smith and Evans, 1972). However, analYSis of airborne echo- sounding data collected in Spitsbergen during 19 80 sho wed bottom returns from certain glaciers at depths 2-3 times those reported in prev i ous eCho - sounding studies (Macheret, 1980; Macheret and Zhuravlev, This paper reports the results of airborne radio echu- sounding in Spitsbergen at a frequency of 60 MHz, and suggests that certain echoes assumed by previous wor- kers to be from the ice-bed interface are in fact re- 16 inhomogene des gla ciers du Spitsberg qui sont souvent proche ou ju ste all point de fu sion co rr es pond ant it la pr ess ion. L' appa reil it 60 MH z comme le U .H.F . o nt rarement enr egistre des echos sur le lit dans les zones d'accumulation de ca lo tte glaciaire (ca mme l'lsachse nf onna) DU d es neves fondants pendant I'ere et des temperatures it 10 m de ooe ont ete obser ves. Un hori zon de reflex ion interne i so le a ete enregistre sur bc au co up de glaciers. 11 es t peu pro bable qu' il s'agisse d ' un niveau morainiqu e mais il peut y avair de la gla ce con tenant I a 0 cl 'eau co mme observe it lin e profondeur de ce t ordre ( 115 m) dans un forage au Fridtjovbreen . Z USAMMENFASS UNG. Radar- T iej,nm,ssu71g iiber GI,lsch, rn Spi1z ber gens: Pro b- I, m, der De ul ulIg VOII Schichl- und Bod,"echos . Radar-Tief enmess ungen uber Glet schern Spitzbergens im Jahre 1980 benut zten t in e 60 Mll z -SPR IV-Ausrustun g . Bei einigen Gletsc hern traten in den Ergebni ssen ein- deutige Bodenec hos a us Ti efen auf , di e 2- bis 3-mal so gross war en a ls di e bei fruheren russischen Mess ungen mit 440 und 620 YIHz. Der Verg lei ch zwi schen 60 MHz-Aufz eichnllnge n und unabhan gige n Schwe rkr a ftbestim- munge n der Eisdi cke ergab bei zwei Gletschern ein e Obereinstimmung von 10 0 0 , wa hre nd die russ isc hen Ei sdicken nur a uf 30--£0 0 0 mir den Schwer- kraftwerte n liberein s timml c n. Die russ isc hen Bod enechos passtcn o ft sehr gut zu einem inneren ReOexionsho ri zo nt , der vom SPRI -M k IV-System aufgez ei chn et wurd e, und es lass t sich zeigen, da ss di e ru ss ische U.H.F.- Ausr us tung bei e iner Reih e von Ei sma ssen (z.B. Finsterwa lderbr een, Kon- gsvegen, Negribreen) ni cht bi s zum wirklichen Gl etsc he rb ett durch- dr angen. Der Grund hierftir war ve rmutlich die erh ohte Absorpti on und Streuung bie hoher en Radiofrequenz en , hervorgerufen durch die in- homogene Na tur der Gletsc hcr Spitzberg en s, die sich oh auf dem oder nahe am Drucksc hmelzpunkt befinden . Sowo hl die 60 YIH z- wie di e U .I-I.F.- Au srli stung ze ic hneten nur selt en Bodenec hos im Akkumulationsgebiet der Ei skappen (z. B. lsachse nfonna ) auf , wo wa hrend d es So mm ers eine Durchtra nkung des Firns und NlllI-Grad-Temperaturen in 10 m Tiefe beobachtet wurden. Ein iso li e rter , innerer Reflexi onshorizont wurde bei vielen Gletsche rn fe stgestell t. Es durft e sich dabei kaum urn eine Mor- anensc hi c ht handeln , doc h k6nnte e in e V erbindung zu Ei s mil e in e m ''''as· se rgeh a lt von 1- 2% voriiegen, das in ii hnli chen Tiefen (115 m) in einem Bohrkern des Fridtjovbree n beo bachtet wurd e. turns from an internal reflecting horizon. Reasons for the failure of Soviet 44U and 620 MHz systems to penetrate to the true bed of a number of Spitsbergen ylaciers are discussed, along with possible explana- tions of observed internal reflecting layers . RA DIO ECHO - SOUNDiNG EQUIPMENT ANO METHODS Radio ec ho- sounding of Spitsbergen glaciers nur- i ng Apri 1 and May 1980 used a Scott Polar Research institllte (SPRI) Mk IV sOIJnder mounted in a Rell 206 helicopter (Drewry and others, 1980) . The sounder operated at a centre frequency of 60 MHz with a pulse length of 350 ns, and had a system performance of 140 dB (excllJding antenna gain) . This was sOMewhat below its previous specifications in Antarctica due tu the use of 20 dB attenuation , which reduced prob- lems of receiver saturation at the low altitudes flown. A list of system parameters for the SPRI Mk iV equipment is given in Table I, which al so includes information on the 440 and 620 MHz systems used for Soviet radio echo - sounding in Spitsbergen (Kotlyakov and others, 1982). Navigation was by visual sightings on known points . Along -tr ack fixing on larger valley glaciers was abuut 1 km in error at worst, and across-

Upload: others

Post on 08-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

JournaL of GLacioLogy , Vol. 30, No. 104,1984.

RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS IN THE INTERPRETATION OF LAYER AND BOTTOM RETURNS

By J. A. DOWDESWELL, D. J. DREWRY,

(Scott Polar Research Institute, University of Cambridge, Cambridge CB2 I ER, England)

O. LIEST<pL and O. ORHEIM

(Norsk Polarinstitutt, P.O. Box 158, 1330 Oslo Lufthavn, Norway)

ABSTRACT . Airborne radio echo-sounding ofSpitsbergen glaciers during 1980 used 60 ylHz SPRI Mk IV equipment. On severa l glaciers results showed unambiguous bott om returns a t depths 2- 3 times those reponed in previous Soviet echo-sounding at 440 and 620 MHz. Comparison of 60 MHz records and independent gravity-surveyed ice thi ckness for two gla­ciers agreed to within 10 0 /

0 , whereas Soviet ice thickn esses were o nl y 30- 600

0 of gravity depths. Soviet bed echoes often coincided closely with an internal refl ecting horizon recorded by the SPR I Mk IV system, and it is shown th a t Soviet U.H.F. equipment fa il ed to penetra te to the true glacier bed on a number of ice masses (e. g. Finsterwald erbreen , Kongsvegen , Negribreen ). This was proba bl y due to increased absorption and sca ttering at higher radio frequencies, related to th e inhomoge neo us nature ofSpilS­bergen glaciers, which are oft en a t or nea r the pressure-melting point. Both 60 MHz and U.H.F. equipment seldom recorded bed echoes in ice-cap accumulation areas (e,g. Isachsenfonna ), where firn so aking during sum­mer and 10 m temperatures of zero degrees ha ve been o bserved . An isolated internal refl ec ting horizon was recorded on many gla ciers. It is unlikely to be a mora ine laye r, but may be rela ted to ire with a wa ter content of 1- 20

0

observed a t a similar depth ( 11 5 m) in a drill core from Fridtjovbree n.

RESU ME. Sondag's par ccho radio sur les glaciers du Spilsbergen: probllmes pour ['in terpretation des riJIexions sur des nil/faux infermediaires el sur le fond. Des 5011-

dages pa r echo radio aeri ens sur les glaciers du Spitsberg en 1980 ont utilises un equipment 60 MHz SPR I Mk I V. Sur de nombre ux glaciers les resulta ts ont montre sa ns ambigui"te des echos sur le fond it d es profondeurs de 2 a 3 fa is celles trouv"es par de precedents so ndages sovie tiques sur 440 et 620 MHz. La comparison des resulta ts des sondages it 60 M Hz et de controle independ a nts de I'epaisseur de la glace pa r gravimetrie sur d eux glaciers ont concorde a 10°0 prcs tandis que les profond eurs de glace sQvic[ique etaient se ulement de 30 it 600

0 des profondeurs donnees par la gra vimetri e. Les eehos du "lit rocheux" selon les sovietiques co·incidai ent souvent exactement avee un hori zon interne de re Aexio l1 ega lement enregistre par I'a ppareil SPRI Mk IV, et on montre que I'equipement U.H .F. sovietique n'a pas reussi a penetrer jusqu 'au ve rita ble lit rucheux du g lac ier grand nombre d'appa reils glaciaires (pa r exemple Finsterwalderbreen , Kongsvcgen, Ne­gribreen ). Ceci etait proba blement du a un e plus fort e a bsorption et it une plus grand e dispersion aux hautes frequencies radio , all rega rd a la na lUre

IN TR ODUCTI ON

Temperature measurements on several Spitsbergen glaciers indicate that they are of "sub-polar" ther­mal regime, with accumulation-zone ice at or near the pressure-melting point and ablation-area ice somewhat col der (e . g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar" and "temperate" glacier ice is both less homogeneous and more lossy to electromagnetic energy than colder Antarctic ann Greenland ice ~asses . At these higher temperatures both scattering and ab­so rption of radio waves increase relative to colder ice, making radio echo-sounding of glacier thickness problematic (Smith and Evans, 1972; Goodman, 1975; Watts and England, 1976).

A primary aim of radio echo-sounding has always been to record an unamhiguous bed echo (Smith and Evans, 1972). However, analYSis of airborne echo­sounding data collected in Spitsbergen during 1980 showed bottom returns from certain glaciers at depths 2-3 times those reported in prev i ous eCho- sounding studies (Macheret, 1980; Macheret and Zhuravlev, 1~H2) . This paper reports the results of airborne radio echu­sound ing in Spitsbergen at a frequency of 60 MHz, and suggests that certain echoes assumed by previous wor­kers to be from the ice-bed interface are in fact re-

16

inhomogene des glaciers du Spitsberg qui sont souvent proche ou juste all point de fusion correspond ant it la pression. L'appareil it 60 MHz comme le U.H.F. ont rarement enregistre des echos sur le lit dans les zones d'accumulation de ca lo tte glaciaire (camme l'l sachsenfonna ) DU des neves fondants pendant I'ere et des temperatures it 10 m de ooe ont e te observes. Un horizon de reflex io n interne isole a ete enregistre sur bcau co up de glaciers. 11 est peu probable qu' il s'agisse d ' un niveau morainique mais il peut y avair de la glace con tenant I a 2° 0 cl 'eau comme observe it line profondeur de cet ordre (115 m) dans un forage au Fridtjovbreen .

Z USAMMENFA SS UNG. Radar- Tiej,nm,ssu71g iiber GI,lsch,rn Spi1zbergens: Pro b­I,m, der DeululIg VO II Schichl- und Bod,"echos. Radar-Tiefenmess ungen uber Gletschern Spitzbergens im Jahre 1980 benutz ten t ine 60 Mllz-SPR 1-~1k IV-Ausrustung . Bei einigen Gletschern traten in den Ergebnissen ein­deutige Bodenechos a us Tiefen auf, di e 2- bis 3-mal so gross ware n a ls die bei fruh eren russisc hen Messungen mit 440 und 620 YIHz. Der Vergleich zwischen 60 MHz-Aufzeichnllngen und unabhangigen Schwerkra ftbestim­mungen der Eisdicke ergab bei zwei Gletschern eine Obereinstimmung von 10 0

0 , wa hrend di e russischen Eisdicken nur a uf 30--£000 mir d en Schwer­

kraftwerten libereinstimmlcn. Die russischen Bod enechos passtc n o ft sehr gut zu einem inneren ReOexionshorizont, der vom SPRI -M k IV-System aufgezeichnet wurde, und es lass t sich ze igen, dass die russische U .H.F.­Ausrus tung bei einer Reihe von Eismassen (z.B. Finsterwa lderbree n , Kon­gsvegen, Negribreen) nicht bis zum wirkli chen Gletscherbe tt durch­drangen. Der Grund hierftir war ve rmutlich die erhohte Absorption und Streuung bie hoheren Radiofrequenzen, hervorgerufen durch die in­homogene Na tur der Gletschcr Spitzbergens, die sich oh auf dem od er nahe am Druckschmelzpunkt befinden . Sowo hl die 60 YIH z- wie die U .I-I.F.­Ausrlistung ze ic hneten nur selten Bod enechos im Akkumulationsgebiet der Eiskappen (z. B. lsachsenfonna ) auf, wo wa hrend des Sommers eine Durchtrankung des Firns und NlllI-Grad-Temperaturen in 10 m Tiefe beobachte t wurden. Ein isolierter, innerer Reflexionshorizont wurde bei vielen Gletsc hern festges tell t. Es durfte si ch da bei kaum urn eine Mor­anenschicht handeln , doch k6nnte ein e V e rbindung zu Eis mil e in em ''''as· sergehalt von 1- 2 % voriiegen, das in iihnlichen Tiefen (115 m ) in einem Bohrkern des Fridtjovbree n beo bachtet wurd e.

turns from an internal reflecting horizon. Reasons for the failure of Soviet 44U and 620 MHz systems to penetrate to the true bed of a number of Spitsbergen ylaciers are discussed, along with possible explana­tions of observed internal reflecting layers .

RADIO ECHO- SOUNDiNG EQUIPMENT ANO METHODS

Radio ec ho- sounding of Spitsbergen glaciers nur­i ng Apri 1 and May 1980 used a Scott Pola r Research institllte (SPRI) Mk IV sOIJnder mounted in a Rell 206 helicopter (Drewry and others, 1980) . The sounder operated at a centre frequency of 60 MHz with a pulse length of 350 ns, and had a system performance of 140 dB (excllJding antenna gain) . This was sOMewhat below its previous specifications in Antarctica due tu the use of 20 dB attenuation , which reduced prob­lems of receiver saturation at the low altitudes flown. A list of system parameters for the SPRI Mk iV equipment is given in Table I, which al so includes information on the 440 and 620 MHz systems used for Soviet radio echo-sounding in Spitsbergen (Kotlyakov and others, 1982). Navigation was by visual sightings on known points . Along-track fixing on larger valley glaciers was abuut 1 km in error at worst, and across-

Page 2: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

DowdesweZZ and ot;her's: Radio echo- sounding of Spitsbergen glacier's

TABLE I. PARAMETERS OF SPRI AND SOVIET RADIO ECHO­SOUNDING EQUIPMENT USED IN SVALBARD

System Radio echo-sounding equipment parwneter' SPRI MkIV RV-10,-17 RLS -620

Transmitter power (W) 300 7 820

Ca rri er frequency (MHz) 60 440 620

Pulse length (ns) 350 500 100-1000

Receiver bandwi dth (MHz) 15 6 15

System performance* (dB) 160 130 146

Antenna type single 1/2 two 1/2 16 element wave dipole wave tri pl e

dipoles square grid

1/2 power beamwidth (0 ) 100 100 18

Forward ga i n (dll) 2 2 19 . 5

*System performance excludes antenna gain and a 20dB attenuation used throughout Spitsbergen operations.

track deviations from the glacier centre- line were normally less than 0. 5 km .

During 1980, radio echo-sounding results were re­corded as range or "z" profiles (Fi g.l). No quantita­tive echo- strength measurements were made. Helicopter terrain clearance, ice surface, internal reflector, and bed echoes were digitized, and ice thickness was calculated using a velocity of radio waves in ice of 168 m~ s-l. The ice surface elevations used in con­structing glacier profiles were obtained from existing Norsk Polarinstitutt 1:100 000 scale maps of Svalbard . The Spitsbergen glaciers discussed in this paper are located in Figure 2. More detailed discussion of echo­sounding equipment, navigation, and reduction of data

collected in 1980 may be found in Dowdeswe 11 and others (in press) .

RESULTS OF AIRBORNE RADIO ECHO-SOUNDING

Identifiable bed echoes were recorded for only 50% of the 740 track kilometres flown during 1980 , ill ustrating the general difficulty of sounding ice at or near its melting point . However, in this paper discussion concentrates on those Sp itsbergen glaciers where di screpanci es hav e been observed between our own and Soviet ice thickness measurements. Resu lts from some 31 further glaciP.rs in Spitsbergen will be reported elsewhere (Dowdeswell and others, in press) .

A range or "Z" profile from Negribreen is shown in Figure 1. Ice-surface and hed echoes are visible, together with an internal reflection varying between depths of 80 and 190 m beneath the surface. Bo ttom echoes are distinguished from layer echoes by position (i .e. the deepest reflector), and because they are usually stronger than internal echoes (e . g. Fig . l). Digitized and calibrated profiles from seven Spitsbergen glaciers are shown in Figures 3, 4, and 5. These range in size from valley glaciers such as Finsterwalderbreen (12 km long) to relatively large ice-cap outlet glaciers, for example Negribreen (35 km long). All glaciers except Austre Gr~nfjord­breen exhibit an internal reflecting horizon. Ma ximum recorded ice thicknesses for these seven glaciers are 430 m on Negribreen and 400 m for Kongsvegen.

Data obtained using other geophysical methods of ice thickness measurement are included in Figure 4, and Soviet radio echo-sounding results are presented in Figures 3, 4, and 5.

COMPARISON WITH EXISTING ICE THICKNE SS nATA

Gmvi t y and bore- hole measurement s Gravity su rveys (Husehye and others, [19fi5];

Oelsner, 1966), yielding ice depths averaged over an area equ i valent to ice thickness, a re compared with glacier thicknesses measured from radio echo return s (Fig . 4) . For both Finsterwalderbreen and Kongsvegen , ice depths derived from gravity su rveys and from 60 t1Hz radio eCho-sounding rarely dev iate by more than 25 m or 10% of glacie r thickness . nrewry (1975)

~. - - - ". ~ •• - ~ .- - ~ - - " • - =-

100

200'

'm

300

400

500

20 15 10 5 0

km

Fig.1 . Radio echo-sounding mnge Or' "z" profile of Negribroen from SPRI ~ IV 60 MHz e quipment .

17

Page 3: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

JournaL of GLacioLogy

78'

77 '

20 ,

km

21'

D oP79' 17

77 '

40 ,

21 '

F'ig . 2 . M1.p of Spitsbergen showing the Location of gLacie r'S and ice caps mentioned in the text . Ai r-­bo rne rudio echl>-sounding flight Lines a m indica­ted . 1- Raudfjordbmen, 2- LiUiehtJrJkhmen, 3-Monacl>­bmen, 4-Isachsenfonna, 5- Hol tedahlfonna, 6- Austm BY'r/iggeromen, ?- Midm Lovenbmen, 8- Uve r'sbmen, 9-Kongsvegen, 1 O- Eidemb men, 11 - Bomb men,

. 12- Wahlenbergbmen, 1 3-Mi ttag- Leffle ro men, 14- Lomonosovf onna, 15-Tunabmen, 16- Negr>ib men, 1 ?- Austm Gn/mfjordbmen, 18-Fr>idtjovbmen, 19- F'inste rtValde ro men, 20- Penckh men, 21 - Ve stm To mUbmen, 22-Wemnskioldbmen, 2 3-Hansbmen .

has noted that in certain areas of the Antarctic differences between ice thicknesses derived from gravity and radio echo-sounding could be as much as 15-20%.

Thermal drilling on the ice divide between Austre G r~nfjordbreen and Fridtjovbreen reached the glacier bed at 211 m (Zagorodnov and Zotikov, 1981), whereas echo-sounding with the SPRI Mk IV system in the vicin­ity of the drill hole recorded bed returns at 205 m (Fig.4). A second bore hole did not reach the glacier bed.

The limited, but independent, information avail­able from other geophysical methods of ice thickness ~easurement therefore agrees with the results of 60 MHz echo-sounding to within 10% or hetter on Finsterwalderhreen, Kongsvegen, and Fridtjovbreen (Fi g.4).

Evidence from soviet mdio e cho-sounding Soviet radio echo- sounding in Spitsbergen began

in 1974, and ice thickness data for a relatively large number of glaciers have since been puhlished (Macheret, 1976, 1981; t~acheret and Zhuravlev, 19RO , 19S?;

Hl

= 300 ~ 200 % o 100

~ 0

~ - 100

10

NEGAIBREEN (long profile)

35

DISTANCE (km)

NEGRIBREEN ( cross pro!!le)

sw NE

• ~

~ o 2 4 6 8 10 12 14

DISTANCE (km)

Fig . 3. Reduaed rudio echl>-sounding mcord of Neg r>ibmen, showing SPRI Mk IV 60 MHz sUr'face and bottom eahoes (solid Lines) and an internal mjlecto r' (dashed line) . The msults of soviet eahl>-sounding am also in­cluded . Soviet ice- thickness data wem measumd from continuous Or' intermittent profiles at 1 km inte roals. The point A mpmsents the a rosBing point between long- and aross-profiles of NegPibmen .

Macheret and others, 1980). Bed and I ayer echoes re­corded by Soviet radio echo-sounding systems (Table I) are plotted in Figures 3, 4, and 5. All these glaciers, except Austre Gr~nfjo rdhreen and Fridtjovbreen, show significant discrepancies in ice thickness relative to the data coli ected in 1980 . In every case the Sov iet work underestimates glacier depth (Figs 3, 4, and 5). For example, Penckbreen is a maximum of 140 m thick according to Sov iet data, but up to 241l m deep from our evidence (Fig.5). Further, ice thickness measurements by Macheret (1981) are only 30-60% of those from independent gravity surveys of Finster­walderbreen and Kongsvegen •

Figures 3, 4, and 5 also show the correspondence between Soviet echoes assumed to represent the ice­bed interface and the internal refl ect i ng hori zons recorded by the SPR I 60 MHz system . More than 60% of Soviet bed echoes coincide closely with these intern­al echoes. However, on Fridtjovbreen and the lower part of Negribreen an internal echo is ex pI icitly identified as such by Macheret and Zhuravlev (1982) . It is almost exclusively in areas where a layer echo is recogni zed in Sov i et work that SPR I Mk IV and Sov iet systems record bed echoes at sim ilar depths (Figs 3 and 4) .

Further, several relatively large ice masses sounded by Macheret and co-workers, but not invest i­gated during 1980, may also be subject to the mis­identification of bottom echoes, for two reasons. First, these glaciers appear thin (90-200 m deep) relative to their len gth (15-30 km) . Second, internal echoes are not reported from them. Preliminary results of SPR I Mk IV ~O MHz radio echo-sounding during April and May I'lR3 confirm that the thickness of severa l more Spitsbergen glaciers has been underestimated con­siderably in Sov iet work. These glaciers include Borebreen, Eidemb reen, Lillieh~~khreen, Monacobreen, Raudfjordbreen, Tunabreen, Uvershreen, and Wah len­bergbreen (Fig.2) .

The presence of apparent depressions or rapid changes in bed rock elevation on certain glaciers was also inferred from Soviet radio echo-soundin g records (Macheret, 1981). According to Macheret's data for

Page 4: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

DowdesweU and others: It:zdi o echo-sounding of Spitsbe rgen glaciers

FIN$TERWALOEABAEEN HANSBREEN

~ ~ z g ~

> w

w

" ~ ~ z 0

~

~ ~~~~~~~~~~~~~~~~~~~~~

700

600

500

.00

300

200

100

7e0

600

500

'00

300

200

100

- 100

-200

600

500

'00

300

200

100

- 100

- ZOO

• Gr.ylly lu,v.yed bed

o

• • 8 10 11 12

DISTANCE (km)

KONOSVEOEN

o SOY le' bed echo

• Gr .... lty .urv.yed bed

... ~ 8 10 12 I' 16 18 20 22 2' 26 28

DISTANCE (km)

AUSTRE GA0NFJOROBAEEN AND FRIDTJOV8REEN

10

DISTANCE (km)

Pig . 4. Reduced rudi o e cho- soundi ng reco rds f or three glacie r's where inde pendent dept h surveys have take n pl ace . Gmvity s u rve ys are avai l able f or' Pinste 'Y'­

walder'breen (Huse bye and ot he rs, 19 65) and Ko ngsve gen (Oelsner', 1966) . Boro hol e s have been drilled on the divide be t ween Austro Gn/mfjo rdb roen and Fridtjovb reen (Zago 7'Odnovand Zo tikov, 1981). Austre Gr'l/mfjordbreen i s t o the left of t he ice divi de . sovie t mdio ec ho-sounding results aro al so shown .

Negribreen, bed elevation rises by over 200 m between 14 and 15 km up-glacier (Fig.3). However, the Soviet bed echo between 15 and 25 km from the glacier termi­nus closely follows an internal echo from the SPR I r~k IV system (Fig.3). It is suggested that the real bottom echo nisappears from the Soviet record at approximately 14 km from the glacier terminus, and from there up-gl acier an internal echo at a higher elevation was misinterpreten as the ben. Further, such rap id changes in bed elevation are improhable on glaciological grounns, since the glacier surface pro­files do not reflect this presumed change . Similar prohlems may account for apparently rapid changes in ben el evation i n the Kronebreen-Holtedahlfonna region and on Mittag-Lefflerbreen (Macheret, 19R1) .

Finally, it should be noten that close agreement (~ 15%) exists between Soviet nata and results from the 1980 season for several glaciers. Comparative profiles for Austre Gr~nfjordbreen and Fridtjovbreen are shown in Figure 4 . Further examples are Austre Br~ggerbreen, Midre Lovenbreen, Vestre Torellbreen and Werenskioldbreen .

.50 '00 350 300 250 200 150 100 50 0

- 50 - 100 - 150 - 200

-I

o SO l/ iel bed ec ho

o 0 0 o

9 --0 - 0 --0- -0 .0- _ 0" -

~

DISTANCE (km)

PENCKBREEN

450 --=t....L~'"""-'-~~~~-"--'-~J...L~""""-"-~~.........l~'--'--'-~-<.L.~-'-'t

. e0

350

~ 300

.5 250

~ 200

~ 150

~ 100 W 50

o

o Soviet bed echo

o 0

-~ o

-50 -4-~~~~~~~~~~~~~~,.......-~~~~"'" 8 10 J 1

DISTANCE (km)

Pig . 5. Compari son of SPR I Mk IV and Sovie t mdio echo­sounding data f o r' Hansb reen and Penckb roen .

RAOIO ErHO-SOUNDING OF SPITSRERGEN SUR-POLAR GLACIERS AT 60, 440, ANn n20 MHz

The deepest ice sounden successfully by 620 MHz eqlli pment was 540 m (t~acheret, 1 gR1), whereas the 440 MHz sounder had a maximum penetration of hetween only 150 ann 250 m (tlacheret, 19R1; rlacheret and Zhuravlev, 1982). The contrast in penetration hetween the two Soviet systems is due to the higher system performnnce and antenna gain of the 620 MHz equipment (Table I). The SPRI Mk IV sounder recorden a maximum ice thickness of 530 m on Holtedahlfonna during 1980.

The use of Soviet 440 MHz equipment to sound Svalbard glaciers more than 150-250 m thick could clearly lead to the miSinterpretation of layer echoes as basal, since the true ben would be too deep to be recorden . This may explain the discrepancies between our own ann Soviet sounding of Finsterwalderbreen and Kongsvegen (Fi g.4), which were both sounded at 440 MHz during 1974 (Macheret, 1976).

The reasons for discrepancies between the results of 60 and 620 MHz sounding are less obvious because the two systems penetrate to approximately similar maximum depths. However, although the Soviet equip­ment has a higher system performance ann antenna gnin than the SPRI Mk IV (Tabl e I) a layer echo, rather than the true bed, was generally recorded during 620 MHz sounding of Negribreen, Hansbreen, and Penckbreen (Figs 3 and 5) .

Smith and Evans (1972) showed that absorption and scattering by surface melt water, soaken firn, ice layers and i ce lenses increases with ranio frequency . Their three-lnyer model WilS used to c~lculat.e signal attenuation resulting from such inhomogeneities for il glacier 250 m t.hick at. _2 °r . For example, the presence of a stlrface wilter layer 5 mm thick reslllts in two-way signal attenuation of ahout 1.5 and 15 dB at 60 and 620 t'lHz respectively . Davis and others (1973), using 440 MHz equipment, observed a 10 dB weakening of re­turned signals during nay time soundin g of an east Greenl ann gl acier in the melt season . tlodel results also showed that attenuation by soaked fi rn and ice layers increased with rildio frequency (Smith and Evans, 1972) . Liest~l and others 09RO) have described supra­glacial lakes on several Spitsbergen glaciers during

19

Page 5: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

JournaL of CLacioLogy

summer, and on Lomonosovfonna a soaked firn layer up to 2 m thick has been noted (Kotlyakov and others, 1980). Ice layers and lenses have also been observed during snow strati graphic studies in Svalbard. For example, Ahlmann (1935) reported more than ten dis ­crete ice layers of between a few mil limetres ann 0. 5 m in thickness in several 5 m snow-pits on Isachsenfonna.

The 1980 echo-sounding with SPRI Mk IV 60 MHz radar therefore had two advantages over the Soviet 620 MHz system. It was conducted at a lower radio frequency, and flying took place before the start of the melt season, reducing the effects of absorption and scattering by inhomogeneities within and on the surface of Spitsbergen gl aciers . Soviet sounding genera ll y took place during the melt season .

PROB LEMS IN RADIO ECHO-SOUNIlING OF GLACIER ACCUMU­LATION AREAS

Both SPRI Mk IV and Sov i et echo-sounding equip­ment recorded bed echo retllrns only intermittently. In particular, Hacheret (1981) reported the dis­appearance of 440 and 620 MHz signals in glacier accumulation areas and near ice divides on thicker glaciers. Red echoes were only seldom recorded in similnr areas during sounding at 60 MHz. For example, bottom echoes were noted for less than 20% of a 109 km fight over Isachsenfonna and Holtedahlfonna. Bottom returns also disappear in the nccumulation areas of Negribreen and Kongsvegen (Figs 1, 3 and 4).

r~easurer! 10 m temperatures on a number of Spitsbergen gl aciers suggest that firn and ice in accumulation areas are often close to the pressure­melting point (e . g. Sverdrup, 1935; Baranowski, 1975). The high temperatures, along with liquid water and inhomogeneities associated with melting and refreez­ing, may partly account for the lack of success of both our own and Soviet equipment in sounding the accumulation zones of thicker glaciers.

Smith and Evans (1972) also showed that bottom returns can be obscured by the diffuse return from a multitude of scatterers. The masking of bottom-echo returns may be occurring preferentially in glacier accumulation areas if ice lenses and water inclusions (Watts and England, 1976) are more numerous in firn and ice at its melting point.

Scattering may also result from heavy surface crevassing, a phenomenon well known from Antarctic radio echo-sounding . Many Spitsbergen glaciers, es­pecially those that surge, have large crevassed areas which may sprear! consir!erablp. distances up-glacier.

INTERNAL REFLECTING HORIZONS IN SPITSBERGEN GLACIERS

Internal reflections from depths of 70-180 m were reported by Macheret and Zhuravlev (19~0). Refl ecting horizons were recorded at between 70 and 190 m by SPRI Hk IV equipment, with about 70% of observations falling between 90 and 110 m depth (Figs 1, 3, 4, anr! 5) . These layers are different from multiples of the ice surface echo . Only single isolated layer echoes were observed on any glacier, althollgh it is not known whether a reflection corresponds to a single discon­tinuity in the ice or is integrated over the pulse length or wavelength of the rar!ar (Harrison, 1973). The multiple layer echoes observen in the Antarctic and Greenland ice sheets have not been reported from radio echo-sounding studies of Spitsbergen glaciers. Further, comparison between spring and summer sound­ing by our own and Soviet systems indicates that these isolated layers are relatively constant in location, in contrast to the rapidly changing pattern of intra­glacial reflectors interpreted as expressions of in­ternal hydrological changes by Goodman (1973).

20

Internal refl ectors coul d result from the pres­ence of impurities (such as moraine or ash layers and chemical precipitates), fluctuations in i ce density, bubble content, geometry and crystal axis orient­at i on, the presence of brine, or changes in water content and temperature with depth.

Reflection coefficients cannot be used to esti­mate the possible causes of layer echoes because quant ita tive echo-strength measurements were not made in 1980. However, from visual inspection, bottom-echo returns were usually stronger than layer signals (Fig .1 ). This, along with the lack of an obvious debris source in many areas, indicates that the in­ternal reflector is probably not a moraine layer. Ice cores from Fridtjovbreen (Fig .4) did not reveal any moraine layers, but transparent and impure ice was noted at depths of 50-85 m, 102-106 rn , and 145-149 m (Zagorodnov and Zotikov, 1981). Macheret and Zhu ravlev (1982) also reported preliminary ice­core data suggesting that ice with a water content of 1-2% was present at depths greater than 115 m, which coincided with the height of the internal re­flecting horizon in this area of the glacier . The layer echo might therefore be associated with ice at the pressure-melting point. However, more ice­core drilling, together with data on radio echo sig­nal strengths and reflection coefficient calcula­tions, is needed to provide additional evidence con­cerning the interpretation of these layer echoes.

CONCLUS IONS

The results of radio echo-sounding of certain Spitsbergen glaciers at 60 MHz show that previous in­vestigations using 440 and 620 MHz radar systems (Macheret, 1981; Macheret and Zhuravlev, 1982) have underestimated ice thickness by two to three times. An unambiguous bed echo, with significant lateral continuity, has been identified consistently from 60 MHz records at greater depths . This co nclusion is confi rmed by: (1) the agreement (± 10%) between 60 HHz-derived ice thicknesses and independent gravity surveys on two glaciers, in contrast to Soviet ice depths which are only 30-60% of gravity thicknesses; (2) the strong correlation between echoes inter­preted as bottom returns by Macheret and co-workers and echoes from an internal reflector in our own study; (3) the unusual glacier morphology required by Soviet results (i.e. very thin glaciers relative to length, and sudden bed depressions unrelated to ice surface topography) . Where a layer echo was explicitly recognized as such hy Hacheret and co-workers there is good agreement with our ice thickness estimates . Preliminary analysis of 60 MHz sounding conducted during the spring of 1983 shows that Soviet results underestimate the thickness of several more Spitsbergen glaciers . Such errors imply "that Macheret and Zhuravlev's (1982) calculation of the ice and water resources of Svalbard is inaccurate.

The lack of penetration by Soviet echo- sounding equi pment has probably resul ted from the hi gher fre­quency of their radar systems, given the relatively high temperatures and surface and internal inhomo­geneity of Spitsbergen glaciers . Both absorption and scattering increase with radio frequency, and the use of 440 and 620 MHz equipment, together with the pres­ence of melt water during summer sounding, may explain the lack of penetration relative to investigations using 60 MHz radar. This finding implies that lower­frequency (V . H. F. ) equipment has certain advantages over U.H .F. radars in sounding relatively thick ice at or near its melting point, although resolution re­mains poorer at lower frequencies .

Interpretatfon of the internal layers reported in this study nnd Soviet work remains equ iv ocal . Further ice-core drilling, al ong with detailed ec ho strength measurements, should lead to a better understanding of the internal structure of Spitsbergen glaciers .

Page 6: RADIO ECHO-SOUNDING OF SPITSBERGEN GLACIERS: PROBLEMS … · pressure-melting point and ablation-area ice somewhat col der (e.g. Sverdrup, 1935; Schytt, 1964; Baranowski, 1975). "Sub-polar"

Dowde sweU and other's: Radio echo- sounding of Spitsbe r>gen gLacie r's

ACKNOWL EDGEMENTS

This research is part of a continu i ng cooperative glaciological research programme in Svalbard involving the Scott Polar Research Institute, Camb r idge, and Norsk Polarinstitutt, Oslo . We wish to thank Sto re No rsk Spitsbergen Kullkompani for assistance in Longyearbyen and with f i eld operations . Or C.S . Neal prepared the radar equipment and took part in field work. SPRI funding was provided by United Kingdom Natural Environment Research Council (NERC) Grant GR3/4463 to Or O. J. Drewry . J . A. llowdeswell acknow­ledges support from a NERC Studentship .

REFERENCES Ahlmann, H.W. 1935. The stratification of the snow

and firn on Isachsen's Plateau. Ge ognafi s ka AnnaLer', Arg. 17, Ht. 1-2, p. 29 - 42 .

Baranowski, S. 1975. Glaciologi cal investi gations and glaciomorphological observations made in 1970 on Werenskiold glacier and in its forefield . Acta Univer'Bi tatis Wnatisl avienBis (W roc1 aw), No . 251. (Results of Investigations of the Polish Scienti­fic Spitsbergen Expeditions, 1970-1974, Vol. 1.)

Oavis, J .L., and other's. 1973. Radio echo sounding on a valley glacier in east Greenland, by J.L. Davis, J.S. Halliday, and K.J. t1iller . JOU Pnal of GLaci o­Logy, Vol. 12, No . 64, p. 87-91.

Dowdeswell, J . A. and othe r's . In press . Airborne rildio echo sounding of sub-polar glaciers in Spitsbergen, by J . A. Oowdeswell, D. J . Orewry, O. Liest~l, and O. Orheim . NOr'sk Pola r'inBtitutt Sk r'ifte r'.

Drew ry, D.J. 1975. Comparison of electromagneti c and seismic-gravity ice thickness measurements in East Antarctica . JOU Pnal of GLaciology , Vol. 15, No . 73, p. 137-50.

Orewry , D. J. , and othe r's . 1980 . Airborne radio echo sounding of glaciers i n Svalbard, by D. J . Orewry, O. Liest~l, C. S. Neal, O. Orheim, and B. Wold . Polar' Record , Vol . 20, No. 126, p. 261 -66 .

Goodman, R. H. 1973. Time-dependent intraglacier struc­tures. JOU Pnal of Gl acioLogy , Vol . 12, No. 66, p. 512 - 13 . [Letter .J

Goodman, R. H. 1975 . Radio echo sounding on temperate glaciers. JOU Pna L of GLaciology , Vol. 14, No. 70, p. 57-69 .

Harr i son, C. H. 1973 . Radio echo sounding of horizon ­tal l aye rs in i ce . JOU Pnal of Glaciology , Vol. 12 , No. 66, p. 383-97 .

Husebye, E.S., and othe r's . [1965.J The determination of the thicknes s of Finsterwalderbreen, Spitsbergen, from gravity measurements, by E. S. Husebye, A. S~rnes, and L. S. Hilhelmsen. NO r'sk PoLaPinstitutt . llrook, 1963, p. 129-36.

Kotlyakov, V.M., and othe r's. 1980. Geofiziche sk iye i isotopnyye issledovaniya lednikov Shpitsbergena [Geophysical and isotopic investigations of Spit s­bergen glaciersJ . [ByJ V.M. Kotlya kov, Yu.Ya .Macheret, F.G. Gordiyenko, A. B. Zhuravlev. Vestni k Akademii ~uk SSSR , 1980, p. 132-38.

Kotlyakov, V.M., and othe r's . 1982. Soviet studies of mountain glaciers by airborne radio echo sounding, by V.M. Kotlyakov, Yu . Ya. Macheret, and A. N. Gromyko . Glaci oLogica l Lata . Repo r't GD-13, p. 49-57.

Liest~l, 0. , and ot he r's . 1980. Supra-glacial lakes in Spitsbergen, by O. Liest~l, K. Repp, and B. \~old . NO r'sk Ceognafisk Tidssk Pift , Vol. 34, No. 2 , p . 89-92 .

Macheret, Yu . Ya . 1976 . Nekotoryye rezul'taty radio­lokatsionnogo zondirovaniya lednikov Zapadnogo Shpitsbergena v 1974 g. [ Some results of radio echo­sounding of the glaciers of Spitsbergen in 1974J. M1.tePialy Gl yatsiol ogicheskikh IssLedovaniy . Kh ron­i ka . Obsuzhde niya , Vyp. 26, p. 158-64.

Ma cheret, Vu . Ya . 1981. Forms of glacial rel ief of Spit sbergen glaciers . Annal s of ClacioLogy , Vol . 2, p. 45-5l.

Macheret, Yu .Ya . , and Zhuravlev, A. B. 1980. Radio­lokatsionnoye zondirovaniye lednikov Shpitsbergena s vertoleta. [Radio echo-sounding of Spitsbergen glaciers from helicoptersJ. M1.te Pialy Clyat Biol ogicheski kh I ssLedovani y . Khroni ka . Obsuzhdeni ya , Vyp. 37, p. 109-31.

Macheret, Yu.Ya . , and Zhuravlev, A. B. 1982. Radio echo-sounding of Svalbard glaciers . JOU PnaL of GLaciol ogy , Vol. 28, No . 99, p. 295-314 .

Macheret, Yu . Ya . , and othe r's. 1980. Radiolokats­ionnyye issledovaniya lednikov Shpitsbergena v 1977 g. [Radio echo-sounding investigations of Spitsbergen glaciers in 1977J. [ByJ Yu.Ya . Macheret, A.B . Zhuravlev, A.N . Gromyko . M1. tePialy CLyatBi ol ogiche s kikh I ssLedovaniy . Kh ronika . Ob suzhdeni ya , Vyp. 38, p. 279-86.

Oelsner, C. 1966. Ergebnisse von Gravimetermessungen im Kingsbay-Gebiet (Westspitzbergen). Pe t e mzanns Ceog ruphi sche Mi tteilungen, Jahrg . 110, 2. Quar­talsht., p. 111-16 .

Schytt, V. 1964. Scientific results of the Swedish glaciological expedition to Nordaustlandet, Spitsbergen, 1957 and 1958. Parts I and 11 . Ge o­grufiska Annale r', Vol. 46, No . 3, p. 243-8l.

Smith, B. M. E., and Evans, S. 1972. Radio echo sound­ing : absorption and scattering by water inclusion and ice lenses. JOUPnal of GLaciology , Vol. 11, No . 61, p. 133-46 .

Sverdrup, H. U. 1935. The temperature of the firn on Isachsen's Plateau and general conclusions regard­ing the temperat ure of the glaciers on We st Spitsbergen. Geogruf iska AnnaLe r', Arg . 17, Ht . 1-2, p. 53-88 .

Watts, R.D., and England, A. W. 1976. Radio-echo sOllnd­ing of temperate glaciers : i ce propertie s and sounder design criteria. JOU Pna L of ClacioLogy , Vol . 17, No. 75, p. 39 -48.

Za gorodnov, V. S., and Zoti kov, LA. 1981. Kernovoye bureniye na Shpitsbergene [Ice core drilling on Spi t sbergen J. M1. te PiaLy Cl yat siologicheskikh Issledovaniy . Khronika . Obsuzhdeniya , Vyp . 40, p. 157-63.

MS . received 24 M1.y 1983 and in revised fo rm 1 August 1983

21