radio detection of high-energy cosmic rays and …3 18 august 2017 radio detection of high energy...

25
KIT The Research University in the Helmholtz Association Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany www.kit.edu Frank G. Schröder Radio Detection of High-Energy Cosmic Rays and Neutrinos

Upload: doantuyen

Post on 04-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

KIT – The Research University in the Helmholtz Association

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

www.kit.edu

Frank G. Schröder

Radio Detection of High-Energy Cosmic Rays and Neutrinos

Page 2: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

2 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

gn

What is the origin of the highest energy

particles in the Milky Way and in the Universe?

p, He, …, Fe

~1015 eV

~1014 eV

~1020 eV

Page 3: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

3 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

SKA-low

KASCADE-Grande: New component at 1017 eV

Radio (today) GRAND

Light and heavy

knees consistent

with scaling by Z

Most energetic

Galactic CR

around 1017 eV?

Light ankle due to

extragalactic CR

inflow at 1017 eV?

Need more precise

measurements…

+ Tibet Asg, ARGO, LHASSO

Page 4: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

4 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781

Radio detection of air showers:

Sensitive to electromagnetic

shower component

Low systematic uncertainties

High duty cycle

Air shower

Page 5: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

5 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Emission mechanisms

Askaryan effect:

dominant in ice, 10 – 20 % in air

Geomagnetic effect:

dominant in air

Page 6: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

6 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Forward beamed, asymmetric radio emission

CoREAS simulations By T. Huege et al., ARENA2012

shower

inclination:

q = 45°

43 – 74 MHz

Page 7: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

7 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio emission beamed in forward cone

Auger Coll.

ICRC 2017

Page 8: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

8 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio pulse

CoREAS simulation, full bandwidth LOPES measurement, 43-74 MHz

T. Huege Schröder et al., NIM A 615 (2010) 277

Page 9: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

9 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Radio Experiments

Page 10: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

10 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Location of selected experiments and geomagnetic field

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781

Page 11: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

11 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

1 km

CODALEMA3

(57)

Compilation by A. Zilles

Designs of modern radio arrays for air showers

See also talks on:

• TREND

• ARIANNA

• GRAND

(63)

Page 12: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

12 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Detectors: antennas

Many working solutions with only slight differences in

typical frequency band 30-80 MHz (higher band will lower detection threshold)

accuracy (systematic uncertainties, e.g., due to ground conditions)

SALLA at

Tunka-Rex LPDA at Auger

Dipole at TREND, China

Butterfly at

CODALEMA

Page 13: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

13 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Accurate time calibration (1 ns) enables digital radio interferometry

Direction precision better than 0.5° (by comparing LOPES to KASCADE)

Sophisticated techniques for detection close to noise

LOPES Coll., Astroparticle Physics 50-52 (2013) 76 + Nature 435 (2005) 313

cross-

correlation

total power

Page 14: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

14 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Energy: 0.4 EeV

Zenith: 48°

Reconstruction of energy and Xmax tuned against CoREAS

Energy and Xmax reconstruction with Tunka-Rex

corr

ecte

d

Page 15: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

15 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Direct experimental proof; confirmed also by AERA at Auger

JCAP 01

(2016) 052

Correlation of Radio and Cherenkov-light measurements

energy precision:

15%

Xmax precision:

40 g/cm²

(20 g/cm² for LOFAR)

Page 16: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

16 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Tunka-Rex + LOPES Colls.,

PLB 763 (2016) 179

Comparing energy

scales of KASCADE

and Tunka-133 via

their radio arrays

Calibration by same

external reference

Energy scales of both

experiments agree

within 10%

Page 17: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

17 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Pierre Auger Observatory in Argentina

3000 km²

Page 18: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

18 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Hybrid detection for highest accuracy

Page 19: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

19 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

750 m

LPDA

Auger Engineering Radio Array (AERA)

153 autonomous stations on 17 km²

Page 20: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

20 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Enables sparse antenna arrays for highest energies at reasonable costs

Huge footprint for inclined showers

vertical

50°

75°

E = 1018 eV

CoREAS simulationAuger measurement

E = 3.6.1018 eV, q = 75.7°

Pierre Auger Collaboration, PoS (ICRC2015) 615

Page 21: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

21 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Idea to upgrade each Auger detector by antenna

Study mass-sensitivity for inclined showers

by radio Xmax and by radio-muon-ratio

Pathfinder for GRAND cosmic-ray physics

Sparse radio arrays for inclined showers

Page 22: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

22 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

antenna stations

particle detectors

(proposed by us)

The Square Kilometer Array: ultra high precision

Air showers: 1015 - 1018 eV cosmic rays

Moon showers: > 1020 eV neutrinos + CR60,000 antennas on ½ km²

Page 23: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

23 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

ARA Collaboration ARIANNA Collaboration

Neutrino-induced showers in ice

Page 24: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

24 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

GRAND: schedule and sensitivity

Prototype at TREND site in Xinjiang

Inclined showers for CR + neutrinos

Final extension (2030s): 200,000 km²

M. B

usta

me

nte

Ke Fang, et al., ICRC 2017

Page 25: Radio Detection of High-Energy Cosmic Rays and …3 18 August 2017 Radio Detection of High Energy Cosmic Particles KIAA-WAP II, Beijing, China frank.schroeder@kit.edu Institut für

25 18 August 2017 Radio Detection of High Energy Cosmic ParticlesKIAA-WAP II, Beijing, China

[email protected] für Kernphysik

Conclusion

Significant progress in radio technique for cosmic rays during last years

high accuracy at almost 100% duty cycle

emission understood to at least 10 - 20 % accuracy

ideal for inclined showers and / or in combination with muon detectors

Competitive accuracy for air shower parameters

direction < 0.5°

energy < 20% (precision + scale)

Xmax < 20 g/cm² (with high antenna density)

Radio becomes the standard technique of the future:

additional accuracy for cosmic rays

search for ultra-high-energy neutrinos

more in: F.G. Schröder,

Prog. Part. Nucl. Phys.

93 (2017) 1-68

arXiv: 1607.08781