radiation shielding for space nuclear propulsion › archive › nasa › casi.ntrs.nasa.gov ›...

35
Radiation Shielding for Space Nuclear Propulsion Jarvis A. Caffrey, Ph.D. NASA MSFC – ER24 Oregon State University – Nuclear Science and Eng. NETS 2017 – Orlando – Feb 27 to March 2 Marshall Space Flight Center https://ntrs.nasa.gov/search.jsp?R=20170003398 2020-07-31T02:47:30+00:00Z

Upload: others

Post on 06-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Radiation Shielding for Space Nuclear Propulsion

Jarvis A. Caffrey, Ph.D.NASA MSFC – ER24

Oregon State University – Nuclear Science and Eng.

NETS 2017 – Orlando – Feb 27 to March 2

Marshall Space Flight Center

https://ntrs.nasa.gov/search.jsp?R=20170003398 2020-07-31T02:47:30+00:00Z

Page 2: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Overview

• Shielding for Nuclear Propulsion

• Time Series Dose Calculator

• Optimization Methodology

• Example Optimizations

• Material Comparison

• Conclusions

Page 3: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Shielding for Nuclear Propulsion

Page 4: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Compartmental Design

• Separate geometry into component parts

• Generalize inputs for each compartment

• Match inputs with output from preceding compartment

Page 5: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Radiation Limits

Example effective dose limits for 1-yr missions resulting in 3% REID.

Assume equal dose to all tissue. No prior occupational exposure.

Females Males

Age

(yr)

Avg US Adult

Population

Never-

Smoker

Avg US Adult

Population

Never-

Smokers

30 0.44 Sv 0.60 Sv 0.63 Sv 0.78 Sv

40 0.48 Sv 0.70 Sv 0.70 Sv 0.88 Sv

50 0.54 Sv 0.82 Sv 0.77 Sv 1.00 Sv

60 0.64 Sv 0.98 Sv 0.90 Sv 1.17 Sv

Dose limits for Short-Term or Career Non-Cancer Effects (in mGy-Eq. or mGy)

Organ 30-day limit 1-year limit Career

Lens 1,000 mGy-Eq 2,000 mGy-Eq 4,000 mGy-Eq

Skin 1,500 3,000 6,000

BFO 250 500 N/A

Circ syst 250 500 1000

CNS 500 mGy 1,000 mGy 1,500 mGy

CNS (Z≥10) - 100 mGy 250 mGy

Deterministic

Stochastic

Human Dose Limits

Stepper Motors – 109 Rad

Material Dose Limits

Pumps - ??FPGA – 104 RadASIC – 105 Rad

(Warmer)

(Cooler)

ConvectiveFlow

Nuclear Heating

Pump Inlet

Ullage

Stratified

Heat in Cryo

0E+0

5E-4

1E-3

2E-3

2E-3

3E-3

0 50 100 150 200 250

Vo

lum

etri

c H

eati

ng R

ate

(W/c

m3

)

Depth in liquid hydrogen (cm)

Gamma

Neutron

Page 6: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Time-Series Dose Calculation

• MCNP6 Model:• Import surface source generated from criticality run

• Construct representative model of vehicle:• Structure (bulkheads)

• Tank walls

• Propellant

• Nozzle

Crew compartment excluded:

Dose measured at fixed distance 80 m (after drop tank)

• Variable propellant load corresponding to mission profile

Page 7: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

MCNP calculated dose response functions

MCNP6 dose response for varying propellant loads due to prompt neutron and gamma during engine operation (left) and due to delayed gammas from fission products across six energy groups (right).

5-7.5 MeV

4-5 MeV

3-4 MeV

2-3 MeV

1-2 MeV

0-1 MeV

Page 8: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Empirical fission product gamma terms

Empirical model[1,2] of fission product buildup during operation (left) and decay after shutdown (right).

0-1

1-2

2-3

3-4

4-5

5-7.5

0-1

1-2

2-3

3-4

4-5

5-7.5

Γ𝑗 𝑡𝑜, 𝑡𝑠 = 𝑃𝑜

𝑖=1

𝑁𝑗𝛼𝑖𝑗

𝜆𝑖𝑗𝑒−𝜆𝑖𝑗𝑡𝑠[1 − 𝑒−𝜆𝑖𝑗𝑡𝑜]

1. George, D.C., et al., “Delayed photon sources for shielding applications,” Trans. Am. Nucl. Soc., 35, 463 (1980).

2. LaBauve, R.J., England, T.R., George, D.C., Maynard, C.W., “Fission product analytic impulse source functions,” Nucl. Technol., 56, 322-339 (1982).

Page 9: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Mission profileCombine source and response functions, controlled by mission parameters: 𝐷 𝐸, 𝑡 = 𝑆 𝐸, 𝑡 𝑅(𝐸, 𝑡)

Page 10: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Evolutionary Algorithms

• AKA: Genetic algorithms

• Parameters of a design are encoded as a vector

• Population of designs are tested

• Best performing designs are more likely to pass traits to next generation

• Occasional random mutation of traits is permitted

• Both Fitness and Diversity are important!

Produce initial population

Evaluate fitness of each individual

Preferentially select high-fitness indiduals

Crossover: Combine high-fitness traits

Mutation: Allow chance of deviation in new population

Replacement: eliminate old population and replace with new generation

Check convergence

End

Page 11: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Multiobjective Optimization

• Non-dominated solutions comprise the ‘Pareto set’• Hypothetical curve of non-dominated solutions is true ‘Pareto front’

𝑏

𝑎

𝑐

𝑓( ҧ𝑥)

𝑔( ҧ𝑥)

𝑓( ҧ𝑥)

𝑔( ҧ𝑥)

𝑃𝐹𝑘𝑛𝑜𝑤𝑛

𝑃𝐹𝑡𝑟𝑢𝑒

Page 12: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

The ‘genome’ of a shield

• Parameters of shield candidate are stored in a vector

• Sorted to preserve some correlation for individual layers

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

Layer 1 Layer 2 Layer 3 Layer 4

ThicknessMaterial

Radius

Page 13: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Visualized…

Generate Shield

Calculate Dose & Mass

Repeat for Nindividuals

Aggregate and Score Performance

Mass

Do

se

Page 14: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Fitness Scoring

• Measure distance between each point and its nearest line

𝑑 = min𝑑𝑎𝑃 = 𝑛𝑜𝑟𝑚(𝑎, 𝑃)𝑑𝑏𝑃 = 𝑛𝑜𝑟𝑚(𝑏, 𝑃)

𝑎 = (𝑥𝑎 , 𝑦𝑎)

𝑏 = (𝑥𝑏 , 𝑦𝑏)

𝑃 = (𝑥𝑃, 𝑦𝑃)

𝑖𝑓 𝑎 − 𝑏 ∙ 𝑃 − 𝑏 × 𝑏 − 𝑎 ∙ 𝑃 − 𝑎 < 0

The point is past the orthogonal bounds of the segment…

𝑏

𝑃

𝑎

Otherwise…

𝑑 =1

dab

𝑥𝑎 𝑦𝑎 1𝑥𝑏 𝑦𝑏 1𝑥𝑃 𝑦𝑃 1

Or in English: distance is the absolute value ofthe determinant of the matrix shown above, divided

by the distance between points a and b.

Page 15: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Diversity Scoring

• Measure distance between each point and its nearest neighbor point

𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖)

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = min𝑘=1→𝑁

𝑛𝑜𝑟𝑚(𝑃𝑘 , 𝑃𝑖)

𝑃1

𝑃2

𝑃3

𝑃𝑁

𝑃𝑁−1

Page 16: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Selection

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

3.1 3 52 2.5 2 60.4 5.8 3 32.2 5.5 2 31.9

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

4.2 3 91.2 3.3 2 41.3 3.4 2 45.8 2.6 3 94.1

• Preferentially select for reproduction based upon performance scoring

2.8 3 56.3 1.7 3 98.1 5.3 3 74.3 3.4 2 30.9

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

Fitness (F)

Diversity (D)

Score (S)

Repr. Prob (P)

WF WD

1 2

0.5 1 2.5 0.22

2 0.5 3 0.26

1 0.5 2 0.17

2 1 4 0.35

𝑆𝑖 = 𝑊𝐹 𝐹𝑖 +𝑊𝐷 𝐷𝑖

𝑃𝑖 =𝑆𝑖σ𝑆

Page 17: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Reproduction – Split and recombination

• Split the two ‘genomes’ at a random location and recombine

2.8 3 56.3 1.7

2.5 3 83.9 3.5 3 58.1 2 3 84.2 2.2 1 38.5

3 98.1 5.3 3 74.3 3.4 2 30.9

2.8 3 56.3 1.7 3 58.1 2 3 84.2 2.2 1 38.5

• Add to the next generation of candidate designs:

• Allow chance for mutation: 2.8 3 56.3 1.6 3 58.1 2 3 92.6 2.2 2 38.5-6

%

SWA

P

+10

%

Page 18: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

The Algorithm (as implemented)

• Includes a secondary ‘archive’ population of high-performers

• Allows greater mutation rates and diversity without losing ground

Produce initial population (random)

Replaceable Population Archival Population

Parse and record result

Repeat for n=gen_size

Score fitness

Perform transport calculation

Translate fitness to selection probability

Perform roulette selection for Parent 1

Repeat for n=gen_size

Perform roulette selection for Parent 2

Randomly select crossover point and recombine

Apply mutation (if randomly selected)

Add to new generation set

Select new archive set

Repeat for m=n_generations

Page 19: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Progression of the Multiobjective Evolutionary Algorithm (MOEA)• Begins with random selection that fills the design space

• Converges toward the Pareto front within ~40 generations

• Thereafter, gradually pushes PFknown toward PFtrue (mutation is important here)Generation 1 Generation 10 Generation 20

Generation 30 Generation 50Generation 40

Page 20: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Interpreting The Results• All of parameter space is collapsed into each point displayed in

objective space

• Requires some creative methods of visualization…

Page 21: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Example Case: 40 kW limit to Core Stage Tank1) Generate Source:

Cutaway radius (cm)

Black (M3) = Boron CarbideGrey (M2) = Tungsten

Th

ick

ne

ss (

cm)

REACTORPropellant

2) Embed in Problem Geometry:

3) Execute Optimization Code:

4) Apply Constraint for Evaluation

Page 22: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Example Case: 0.2 Sv Entering Crew Compartment

Generate SourceREACTOR

Implement Source in Unshielded Time-Series Calculation

ß Propellant Drain

Score Tally for Dose-rate at Discrete Time Intervals

Step 1) Evaluate time-series profile of a reference case, e.g. no-shield

Page 23: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Example Case: 0.2 Sv (continued)

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

0200400600800100012001400

Cu

mu

lati

ve D

ose

(Sv

)

Remaining Time in Burn (s)

Cumulative Dose (Sv)

Total

Photon

Neutron

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

0200400600800100012001400

Do

se R

ate

(Sv

/s)

Remaining TIme in Burn (s)

Dose Rate (Sv/s)

Total

Photon

Neutron

Step 2) Determine terminal dose rate and cumulative dose:

𝐷𝑡𝑜𝑡 = 7.0 𝑆𝑣ሶ𝐷𝐸𝑂𝐵 = 4.2𝐸 − 2𝑆𝑣

𝑠

Page 24: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Example Case: 0.2 Sv (continued)

Step 3) Determine Scaled terminal dose ( ሶ𝐷′𝐸𝑂𝐵) required to satisfy the imposed dose constraint (𝐷′𝑡𝑜𝑡)

ሶ𝐷′𝐸𝑂𝐵 = ሶ𝐷𝐸𝑂𝐵𝐷′𝑡𝑜𝑡𝐷𝑡𝑜𝑡

ሶ𝐷′𝐸𝑂𝐵 = 4.2𝐸 − 2 ൗ𝑆𝑣𝑠0.2 𝑆𝑣

7.0 𝑆𝑣= 𝟏. 𝟐𝑬 − 𝟑 ൗ𝑺𝒗

𝒔

Page 25: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Example Case: 0.2 Sv (continued)

Step 4) Perform shield optimization using terminal dose rates only

Step 5) Select Appropriate Shield using Scaled Terminal Dose Rate ( ሶ𝐷′𝐸𝑂𝐵)

Cutaway radius (cm)

Black (M3) = Boron CarbideGrey (M2) = Tungsten

Thic

knes

s (c

m)

Page 26: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Material mass comparison

Mass (kg)Ratio

Δ Mass (kg)LiH+B4C+W B4C + W

Heating from single engine

30 kW 395 456 1.15 61

50 kW 185 205 1.11 20

70 kW 87 101 1.16 14

LiH Permitted (B4C forced in first layer) B4C and W only M1 = LiHM2 = WM3 = B4C

70 kW

50 kW

30 kW

Page 27: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Conclusions

• Created a set of methods and tools to aid design and analysis of shielding for space nuclear propulsion

• Time-series dose calculator • Necessary tool for calculating integral dose

• Highlights the importance of shielding for final burn

• Optimization code• Permits flexible design optimization, including ‘hot-swappable’ materials

• Unconstrained multiobjective approach is ideal for facilitating design trades

• Can be re-implemented in entirely new ways, e.g. add traits, change geometry

Page 28: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Future Work

• Additional complexity for design space• Slower convergence (more ‘noise’)

• More possibilities for efficiency improvement

• Extension to greater than two objectives• Refactor some portions of code for higher-order solutions

• Visualization and interpretation become much harder

• Implement improved ‘exploitation’ methods• Further narrows design space toward PFtrue using other methods

• Hastings Metropolis, Simulated Annealing, etc.

Page 29: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Acknowledgments

• Special thanks to :• Omar Mireles as my Pathways Mentor at MSFC

• SCCTE Team from Center for Space Nuclear Research for providing relevant engine models for source term production:• Michael Eades• Paolo Veneri• Vishal Patel• Wes Deason

Opinions and recommendations expressed are my own and do not necessarily represent the opinions of NASA.

Page 30: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

BACKUP

Page 31: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Contours

• MCNP6 FMESH Tallies:• Neutron flux

• Fast – Epithermal - Thermal

• Dose• Silicon (electronics)

• Tissue (dosimetry)

• GNUPlot:

Ugly scripts Pretty plots

Page 32: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Engine Offset without Correction

ORIGINAL UNCORRECTED OFFSET

Page 33: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Engine Offset with Correction

ORIGINAL CORRECTED OFFSET

Page 34: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Time-series Dose (w/ Cosmic dose) Linear Scales

Y-axis: Linear

X-axis: Standard

Y-axis: Linear

X-axis: Condensed

(Coast phase x10000)

Page 35: Radiation Shielding for Space Nuclear Propulsion › archive › nasa › casi.ntrs.nasa.gov › ... · 2017-04-27 · Marshall Space Flight Center Empirical fission product gamma

Marshall Space Flight Center

Time-series Dose (w/ Cosmic dose) Log Scales

Y-axis: Log

X-axis: Standard

Y-axis: Log

X-axis: Condensed

(Coast phase x10000)