radial distribution of the center of gravity of random...

2
Journal of Researc h of the National Bureau of Standards Vol. 60, No.4, April 1958 Research Paper 2847 Radial Distribution of the Center of Gravity of Random Points on a Unit Circle 1 F. Scheid 2 This paper desc rib es some Monte Carlo comput ation s ca rried out on thc Standards Ele ct roni c Au t oma t ic Computer (SEA C) which are related to the probl em of random walk s. In 1905 P earson [1] 3 suggested the problem of a random walk involving n steps of equal length and a rbitrary direction in the plane. In 1906 Klu y ver [2] obtained the solution giving th e probabilit y of bcing no farther than r from the s tarting point aft er n ste ps of unit l ength. Thi s integral has been calc ulated by Gr eenwood and Durand [3] for n= 6(1)24 , and 7' = 0.5 (. 5)n, usin g punched-card ta,bles of the Bes el function s. The e tab les wer e not ext ensive enough to handle th e values n= 3, 4, and 5. For n=2 on e find s by a s impl e argu- ment , P (r,2) = (2 / 7T" ) a,rcsin (r /2). The problem describ ed in the titl e i essentiall.\' the same as PeaTson 's. Its solution for n= 3, 4, and 5 I Preparation of th is pape r was in itiated while the author was a mem ber of the N umerical Ana lysis Tr aining Program held at t1, e National Bureau of Standards and sponsored by the Nat ional Scienco Found ation, 1957. 2 Prese nt address : Boston Uni verS ity, Boston, Mass. a Figures in braekcts indicate the literature references at tbe end of this paper. ha s been obtained to roughly three decimal pla ces by a direct samplin g procedur e, using SEAC. A set of n pseudorandom numb ers is genemted by using th e multiplication method of Tau ssky a nd Todd [4] . A lin eal' transformation converts the se into a sample from the uniform distribution ov er (- 7T" , 7T" ). Th e center of gravit y is founa and classified in one of th e intervals j= O, . .. ,3 1. A new sampl e is then taken. Both frequen cy tabl e and c umulativ e distribution are prin ted . Computa- tion of Klu y ver's integral for these valu es of n is possible but length y. If the integrand is mil,chin e comp ut ed as needed , man y hours of computer time are consumed because of t·h e two independ ent parameters r and n. For limit ed ac cur acy th e ampling approach seems better. Th e dis tribu tions for n=2 and 6 hav e also been obtain ed for a ccuracy checks. U ing a theorem of Kolmogoroff [5], a brief cal culation indi cates Lbat, for n = 2, tbe probabilit y of a maximum error less than or equ al to 0.01 aft er 6,000 sampl es hav e be en taken is appro).'.imately one-half. A glan ce at table 1 hows that in fa, ct the 32R n =2 n=3 n=4 n =5 n =6 Freq CUll Exact Frcq Cum Freq CllIn Freq Cum Cum G- D ------- 1 12 1 .0 1 97 .0 1 99 7 . 001 36 . 005 28 . 004 . 0000 . 0000 2 1 33 . 04 13 . 0398 37 . 007 87 . 018 80 . 016 3 1 26 . 061 8 . 0598 58 . 017 128 . 038 158 .040 4 124 .0820 . 0798 117 . 028 169 . 063 185 .068 5 129 . 1030 . 0999 95 . 043 209 . 094 2 10 . 099 6 II I .1211 .1201 11 3 . 061 192 .1 23 308 . 146 7 123 . 14 11 . 1404 141 . 084 266 .163 381 . 203 8 115 . 1598 . 1609 172 . 112 289 . 207 361 . 257 . 2910 .2932 9 129 .1 808 . 1816 224 .149 238 .242 382 .314 10 142 . 2039 .2023 336 .203 316 . 290 350 . 367 11 123 . 2240 . 2234 466 . 279 335 . 340 361 . 421 12 138 . 2464 . 2447 344 . :1 35 360 . 394 384 . 479 13 126 . 2669 .2663 291 . 383 :l5i . 44 8 358 . 533 14 157 . 2925 .2883 285 . 429 365 . 503 384 .590 15 126 . 31 30 .3 106 269 . 473 365 .558 374 . 647 16 125 . 3333 . 3333 255 . 514 405 . 618 330 . 696 . 7665 .7672 17 150 .3577 . 3565 223 . 551 353 .672 317 . 744 18 158 . 3835 . 3803 189 . 581 25.1 . 71 0 324 . 802 19 135 .4054 . 4047 208 .615 275 . 751 273 . 834 20 148 . 4295 . 4298 1 85 . 64 5 262 . 790 224 .867 21 157 .4.151 .4558 215 . 680 182 .818 179 .894 22 158 .4808 .4826 197 . 712 159 .842 143 .916 23 173 .5090 .5 106 18,3 .7-12 163 . 866 13 1 . 935 24 190 .539!i .5399 201 . 775 168 .892 109 . 952 .9749 .9732 25 191 .5710 . 5708 188 .805 167 . 91 7 93 . 966 26 2 11 .6053 . 6038 183 . 835 131 . 936 70 . 96 7 27 197 .6374 .6.393 163 .862 102 . 952 45 . 983 28 247 .6776 .67 83 176 .890 87 .965 39 .989 29 262 . 7202 . 7221 170 . 018 87 . 978 36 . 994 30 308 . 7703 .7737 162 . 944 76 . 989 24 . 998 31 424 . 8394 .8407 163 .971 45 .996 12 .999 32 987 1.0000 l. 0000 J 78 1.000 27 1.000 3 1.000 1.0000 1. 0000 N umber of sall P1es __, 6144 I 6144 6656 6656 6656 - - 307 1

Upload: trinhdan

Post on 08-Feb-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Journal of Research of the National Bureau of Standards Vol. 60, No.4, April 1958 Research Paper 2847

Radial Distribution of the Center of Gravity of Random Points on a Unit Circle 1

F. Scheid 2

This p aper describes some Monte Carlo computations carried out on t hc Standards Electroni c Au tomat ic Computer (SEAC) which are related to the problem of random walk s.

In 1905 P earson [1] 3 sugges ted the problem of a random walk involving n steps of equal length and arbitrary direction in the plane. In 1906 Kluyver [2] obtained the solution

giving the probability of bcing no farther than r from the starting point after n steps of unit length. This integral has been calculated by Gree nwood and Durand [3] for n = 6(1)24 , and 7'= 0.5 (. 5)n, using punched-card ta,bles of the Bes el functions. The e tables wer e not extensive enough to handle the valu es n = 3,4, and 5. For n = 2 one find s by a simple argu­ment, P (r,2) = (2 / 7T" ) a,rcsin (r /2 ).

The problem described in the title i essentiall.\' t he same as P eaTson 's. Its solution for n = 3,4, and 5

I Preparation of th is paper was in itiated while the author was a mem ber of the Numerical Analysis Training Program held at t1,e Nationa l Bureau of Standards and sponsored by the National Scienco Foundation, 1957.

2 P resent address: Boston Uni verSity, Boston, Mass. a Figures in braekcts indicate the literature references at tbe end of this paper.

has been obtained to roughly three decimal places by a direct sampling procedure, u sing SEAC. A set of n pseudorandom numbers is genemted by using the multiplication method of Taussky and Todd [4] . A lineal' transformation converts these into a sample from the uniform distribution over (- 7T" ,7T"). The center of gravity is founa and classified in one of th e intervals j/32~R< (j+ l ) /32, j = O, . .. ,3 1. A new sample is then taken. Both frequ ency table and cumulative distribution are prin ted. Computa­tion of Kluyver's integral for these valu es of n is possible but lengthy. If the integrand is mil,chin e computed as needed , many hours of computer time are consumed b ecau se of t·he two independent parameters r and n. For limited accuracy the ampling approach seems better. The dis tribu tions

for n = 2 and 6 have also b een obtained for accuracy checks. U ing a theorem of Kolmogoroff [5], a brief calculation indicates Lbat, for n = 2, tbe probability of a maximum error less than or equal to 0.01 after 6,000 samples have been taken is appro).'.imately on e-half. A glan ce at table 1 hows that in fa,ct the

32R n=2 n=3 n =4 n =5 n =6 Freq CUll Exact Frcq Cum Freq CllIn Freq Cum Cum G-D

-------1 121 .0197 .0199 7 . 001 36 . 005 28 . 004 . 0000 . 0000 2 133 . 04 13 . 0398 37 . 007 87 . 018 80 . 016 3 126 . 061 8 . 0598 58 . 017 128 . 038 158 . 040 4 124 . 0820 . 0798 117 . 028 169 . 063 185 .068 5 129 . 1030 . 0999 95 . 043 209 . 094 2 10 . 099 6 II I . 1211 . 1201 11 3 . 061 192 . 123 308 . 146 7 123 . 1411 . 1404 141 . 084 266 . 163 381 . 203 8 115 . 1598 . 1609 172 . 112 289 . 207 361 . 257 . 2910 .2932

9 129 . 1808 . 1816 224 .149 238 .242 382 .314 10 142 . 2039 .2023 336 .203 316 . 290 350 . 367 11 123 . 2240 . 2234 466 . 279 335 . 340 361 . 421 12 138 . 2464 . 2447 344 . :135 360 . 394 384 . 479 13 126 . 2669 .2663 291 . 383 :l5i . 448 358 . 533 14 157 . 2925 .2883 285 . 429 365 . 503 384 .590 15 126 . 3130 .3 106 269 . 473 365 .558 374 . 647 16 125 . 3333 . 3333 255 . 514 405 . 618 330 . 696 . 7665 .7672

17 150 .3577 . 3565 223 . 551 353 .672 317 . 744 18 158 . 3835 . 3803 189 . 581 25.1 . 710 324 . 802 19 135 .4054 . 4047 208 .615 275 . 751 273 . 834 20 148 . 4295 . 4298 185 . 64 5 262 . 790 224 .867 21 157 . 4.151 . 4558 215 . 680 182 .818 179 .894 22 158 . 4808 . 4826 197 . 712 159 .842 143 .916 23 173 .5090 .5 106 18,3 .7-12 163 . 866 131 . 935 24 190 .539!i .5399 201 . 775 168 .892 109 . 952 .9749 .9732

25 191 .5710 . 5708 188 .805 167 . 917 93 . 966 26 2 11 .6053 . 6038 183 . 835 131 . 936 70 . 967 27 197 .6374 .6.393 163 .862 102 . 952 45 . 983 28 247 .6776 .6783 176 .890 87 .965 39 .989 29 262 . 7202 . 7221 170 . 018 87 . 978 36 . 994 30 308 . 7703 .7737 162 . 944 76 . 989 24 . 998 31 424 . 8394 .8407 163 .971 45 .996 12 .999 32 987 1.0000 l. 0000 J 78 1.000 27 1.000 3 1.000 1.0000 1. 0000

N umber of sallP1es __ , 6144 I 6144 6656 6656 6656

- -

307

1

n=3 n=4 32R Frcq Cum FreCI Cum

L __ _________________ 4 2____________________ 10 3 __ __________________ 17 4_____ _______________ 19 5____ ________________ 48 6____________________ 45 7____ ________________ 76 8_____ _ _____________ 92

9 __ __ ________________ 107 10___ ________________ 160 lL __ ________________ 289 12___________________ 203 13___________________ 203 14___________________ 176 15_ ______ ____________ 177 16__ _________________ 185

17 ___________________ 170 18__ ________ _________ 172 19_ ________________ __ 176 20 ___________________ 196 2L __________________ 185 22 ___________________ 196 23 ___ ________________ 196 24- __ ________________ 172

25___________________ 184 26__ _________________ 224 21- __________________ 220 28 ___ ___ ________ _____ 236 29 ___ ___ _____________ 225 30 ___________________ 239 3L __________________ 239 32- __________________ 279

Number of samp1es __ 5120

. 001 9

. 003 29

. 006 50

. 010 59

. 019 71

. 028 88

. 043 69

. 061 109

. 082 133

. 113 126

. 169 151

. 209 191

. 249 221

. 283 231

. 318 232

. 354 287

. 387 248

. 421 237

. 455 235

. 493 235

. 529 215

. 568 191

. 606 229 • 639 210

. 675 205

. 719 183

. 762 188

. 808 183

. 852 167

. 899 152

. 946 120 1. 000 66

5120

. 002

.007

. 017

. 029

. 043

. 060

. 073

. 095

. 121

.145

.175

. 212

. 255

. 300

. 346

. 402

. 450

. 496

. 542

.588

. 630

.667

. 712

.753

• 793 . 829 . 866 . 901 . 934 . 964 .987

1.000

WASHINGTON, September 16,1957.

n=5 Freq Cum

7 . 002 17 . 006 21 . 011 40 . 021 61 . 036 72 . 053 99 . 077

113 .105

106 . . 131 120 . 160 142 . 195 149 . 231 ]77 . 274 167 . 215 227 . 371 217 . 424

242 234 237 207 208 178 179 168

148 156 117 97 77 65 34 14

4096

. 483

. 540

. 598

. 648

. 699

. 742

. 786

. 827

. 863

. 901

. 930

. 954

. 972

. 988

. 997 1.000

maximum error is 0.004 for this distribution. Since the Inverse square root law IS operative, to obtain four decimal-place accuracy would require perhaps two-thousand times as many samples, or a year of SEAC time .

Parallel results are given 111 table 2 for samples drawn from a triangular distribution over (- 71",71") . The pseudorandom numbers are modified by a direct method [6] to produce the required sample .

The question how best to compute a distribution function IS not, of course, answered 111 this paper . It is suggested, however, that even ll1 cases where the solution can be written explicitly, circumstances may make computation by direct sampling preferable .

References

[1] K . Pearson , The problem of the random walk, Jature (1905) .

[2] J . C. Kluyver, A local probability problem, Nederl. Akad. Wetensch., Proc. (1906) .

[3] Greenwood and Durand, The distributioll of length and components of the sum of n random unit vectors, Ann . Math. Statistics (1955) .

[4] O. Taussky and J. Todd, Generation and testing of pseudo-random numbers, Symposium on Monte Carlo Methods (Univ. of Florida, 1954).

[5] W. Feller, On the Kolmogorov-Smirnov limit theorems for empirical distributiollB, Anll . Math. Statistics (1948).

[6] J . von Neumann, Various techniques used in connection with random digits, NBS AMS 12 (1951) .

308