r. t. garrod & e. herbst the ohio state university r. t. garrod & e. herbst grain surface...

12
R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl Formate in the Warm-up Phase of Hot Molecular Cores (submitted: A&A)

Upload: edmund-holmes

Post on 18-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

Gas Phase Methyl Formate production R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate CH 3 OH H 2 CO → [HC(OH)OCH 3 ] + + H 2 X - Large potential barrier (128 kJ mol -1 ≈ 15,000 K) - Horn et al., 2004, ApJ, 611, Other isomers/ionic pre-cursors may provide a route Inefficient - HCOOCH 3 branching fraction probably ~ 5 % (cf. 50 %) - See e.g. Geppert et al., 2006, Faraday Discussion 133, paper 13 - Inefficiency may well apply to many such molecules [HC(OH)OCH 3 ] + + e - → HCOOCH 3 + H

TRANSCRIPT

Page 1: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

R. T. Garrod & E. Herbst

The Ohio State University

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

Grain Surface Formation of Methyl Formate in the Warm-up Phase of Hot Molecular Cores

(submitted: A&A)

Page 2: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

Hot cores

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

• nH ~ 107 cm-3 T > 100 K

• Associated with protostellar sources (geometry uncertain)• Rich, complex chemistry, large molecules present

- H2O, H2CO, CH3OH, HCOOCH3, CH3OCH3,

HCOOH, CH3CHO ...

• Chemistry influenced by desorption from dust grains

n(HCOOCH3) / n(H2) ~ 10-8

n(CH3OCH3) / n(H2) ~ 10-8

Page 3: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

Gas Phase Methyl Formate production

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

CH3OH2+ + H2CO → [HC(OH)OCH3]

+ + H2 X- Large potential barrier (128 kJ mol-1 ≈ 15,000 K)

- Horn et al., 2004, ApJ, 611, 605- Other isomers/ionic pre-cursors may provide a route

Inefficient- HCOOCH3 branching fraction probably ~ 5 % (cf. 50 %)

- See e.g. Geppert et al., 2006, Faraday Discussion133, paper 13

- Inefficiency may well apply to many such molecules

[HC(OH)OCH3]+ + e- → HCOOCH3 + H

Page 4: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

A Grain Surface Solution?

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

HCO + CH3O → HCOOCH3

andCH3O + CH3 → CH3OCH3

HCO + OH → HCOOH

(Allen & Robinson, 1977, ApJ, 212, 396)

CH3OH2+ + H2CO → CH3OH2OCH2

+ + hν1%H2COH+ + H2CO → H2COHOCH2

+ + hν1%CH3

+ + HCOOH → HC(OH)OCH3+ + hν5%

Also include G-P mechanisms from Horn et al. (2004):Recombination efficiencyfor HCOOCH3 formation

Page 5: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

OSU gas-grain chemical/dynamical model

Rate equations are used to model:

Usual gas phase chemistry

AccretionThermal desorption

Cosmic ray heating desorptionSurface photodissociation

Grain surface reactions(Langmuir-Hinshelwood)

Can now handle T = T(t), nH = nH(t)

Page 6: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

Typical chemical models: Step-change in temperature

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

10 K(Collapse)

Radicals are immobileToo cold!

100 K(Hot core)

Mantles have evaporatedToo hot!

Warm-up phaseJust right!

Typically ignored(except e.g. Viti et al. 2001, 2004)

Time

Temp

Page 7: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

Physical model

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

2) Warm-up:T = 10 → 200 K

nH statictimescale = 2 x 105 yr

Surface H quickly evaporates.Heavy radicals become mobile.

Based on observationally determined protostellar luminosity functions and warm-up timescales, see: - Viti et al., 2001, 2004 - Molinari et al., 2000, A&A, 355, 617 - Bernasconi & Maeder, 1996, A&A, 307, 829

1) Isothermal collapse:T = 10 K

nH = 3 x 103 → 107 cm-3

timescale ~106 yrSurface chemistry H-dominated.

Ices build up.

Page 8: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

Results – HCOOCH3 is formed

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

Gas Grain surface

T ~ 100 K:all ices

evaporateH2CO evaporates

HCOOCH3

10-8 10-8

Warm-up phase

Page 9: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

How HCOOCH3 is formed:

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

H2Ohν

OH

H H3COH2CO

HCOHCOOCH3

CO

CO2

ICE Evaporates (~25 K)

X

Evaporates (~ 40 K)

H2CO H2COH+

GAS PHASE

H2COHOCH2+

e-

Page 10: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

Gas phase

Grain surface

H2CO evaporates

HCOOCH3

10-8 10-8

Results – HCOOCH3 is formed T ~ 100 K:all ices

evaporate

Warm-up phase

Page 11: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

• HCOOCH3 (and CH3OCH3, HCOOH) reach observed

levels.

• Surface reactions are sufficient; gas phase routes may be

plausible if recombination can provide ~1%.

• HCOOCH3 : Surface formation (~75%) from 25 → 40 K

Gas phase formation (~25%) from 40 (→ 60) K

• Longer timescales improve agreement (i.e. larger abundances).

• Radicals originate from C.R.-induced photodissociation of ices.

• Chemistry is non-trivial; relative diffusion/desorption energies

are important.

Conclusions

Page 12: R. T. Garrod & E. Herbst The Ohio State University R. T. Garrod & E. Herbst Grain Surface Formation of Methyl Formate Grain Surface Formation of Methyl

R. T. Garrod & E. Herbst

Grain Surface Formation of Methyl Formate

• Effects of warm-up phase on sulphur chemistry:

with S. Viti, E. Herbst• Extension to larger network of large organic molecules:

with S. Widicus Weaver, E. Herbst

Current/future work

Thank you for listening