quicktimeý Dz ai-ai energy associatesǙDZÇÃÉsÉnÉ`ÉÉǾå ... · 2010-02-26 ·...

44
Energy Efficiency Improvement of Energy Efficiency Improvement of Energy Efficiency Improvement of Energy Efficiency Improvement of the Factory the Factory the Factory the Factory QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-ÇÅB Ai-Ai Energy Associates 1 Feb 2010 Feb 2010 Feb 2010 Feb 2010 Shigeru Sakashita Shigeru Sakashita Shigeru Sakashita Shigeru Sakashita Ai Ai Ai Ai- - -Ai Energy Associates Co., Ltd. Ai Energy Associates Co., Ltd. Ai Energy Associates Co., Ltd. Ai Energy Associates Co., Ltd. [email protected] [email protected] [email protected] [email protected] URL: http://www.aiaiea.com

Upload: others

Post on 05-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Energy Efficiency Improvement of Energy Efficiency Improvement of Energy Efficiency Improvement of Energy Efficiency Improvement of the Factory the Factory the Factory the Factory

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

1

Feb 2010Feb 2010Feb 2010Feb 2010Shigeru SakashitaShigeru SakashitaShigeru SakashitaShigeru SakashitaAiAiAiAi----Ai Energy Associates Co., Ltd.Ai Energy Associates Co., Ltd.Ai Energy Associates Co., Ltd.Ai Energy Associates Co., Ltd.

[email protected]@[email protected]@me.comURL: http://www.aiaiea.com

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

AgendaAgendaAgendaAgenda

� Material Flow and Energy Flow in Factory� Factory management, Energy efficiency improvement and Waste

management� Analysis of Process for understanding the Factory.� Virtual factory in computer

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

2

� Virtual factory in computer � Energy Efficiency improvement with Virtual Factory � Energy saving activity � Reference of Energy saving Project in Vietnam Brewery with CDM � Energy saving Example in Sugar Mill Factory � Energy saving study in Philippines

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Material & Energy Stream of FactoryMaterial & Energy Stream of FactoryMaterial & Energy Stream of FactoryMaterial & Energy Stream of Factory

Factory

Process 1 Process 2 Process 3Raw material Product

Energy,

Utility

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

3

Efficiency

Waste heat

Waste water, Waste

Production efficiency (yield)=Product

Raw material

Specific energy (utility) consumption=

Energy,

Utility

Product

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy AssociatesFactory ManagementFactory ManagementFactory ManagementFactory ManagementBreakBreakBreakBreak----even Analysiseven Analysiseven Analysiseven Analysis

Profit

Depreciation

Proceeds (turnover)

Costs

Cash flowBreak-even

point

Break-even point shifts to higher

sales amount and less profit

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

4

Depreciation

Fixed costs

Variable costs

Sales

Amount ofcoverage

Worldwide Increase of raw material & Energy

cost

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

The Natural relationship in CP The Natural relationship in CP The Natural relationship in CP The Natural relationship in CP

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Increase in profit

Decrease in waste

treatment cost

Production efficiency

improvement and Energy

efficiency improvement

will contribute to factory

management and

environment

conservation.

5

Increase in yield

Decrease in waste

Environment-friendly

Increase in energy efficiency /productio

n

CO2 emission reduction

Energy efficiency improvem

ent

conservation.

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

What should we do to improve the efficiency?What should we do to improve the efficiency?What should we do to improve the efficiency?What should we do to improve the efficiency?Good Good Good Good understandingunderstandingunderstandingunderstanding of the factory is key.of the factory is key.of the factory is key.of the factory is key.

� Understanding the process in detail� Understanding the energy usage mechanism in the process.� Making the Virtual Factory in computer is very effective to

understand the factory process mechanism.� Virtual Factory verifies the theoretical energy consumption to

6

� Virtual Factory verifies the theoretical energy consumption to compare with the actual data.

� Virtual Factory accepts any changes easily and estimates the improved energy consumption accordingly.

� Energy-saving equipment and system can be also designed and implemented in the Virtual Factory.

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Energy consumption in process unitsEnergy consumption in process unitsEnergy consumption in process unitsEnergy consumption in process unitsbased on the Material & Energy balance analysisbased on the Material & Energy balance analysisbased on the Material & Energy balance analysisbased on the Material & Energy balance analysis

WK Total

5849 Mcal

2.76 10.85 tstm

5%

Boiling

3591 Mcal

6.66 tstm

Ex.vapor 5%

1274 Mcal

2.36 t/b Temp.Rise

37% /brew 2258 Mcal

4.19 tstm

H.LOSS 5%

Hop Storage

“Example of Wort boiling in Brewery”Estimated energy

consumption

7

2147 Mcal Evap.W.

3.98 t/b 6.35ton

448 80.0C 100.0 ℃487 494 95.0C

0.919917864 0.906882591 143 m3/h Maltose

0 ton/b

0 HL

Boiling Ratio

80.0C 7.5%

60min

95.0C

1.015999544

Cast out Wort

wort 87.9ton 89.6ton wort 89.6ton wort 89.6ton wort 83.2ton Wort(t) 83.2ton

water 78.3ton 80.0ton water 80.0ton water 80.0ton water 73.7ton Water(t) 73.7ton

864HL 882HL 882HL 898HL 830HL (HL) 830HL

76.0C 76.0C 76.0C 100.0C 100.0C Temp. 100.0C

Extract 9.6ton Extract 9.6ton Extract 9.6ton Extract 9.6ton Extract 9.6ton Extract 9.6ton

plato 11.1 kg/HL 10.8 kg/HL Ex.content 10.85 Ex.content 10.7 Ex.content 11.5 kg/HL Ex.content 11.5 kg/HL

sg 1.016943209 1.016088852 sg 1.01611292 sg 0.997927 sg 1.002425008 S.G. 1.002425008

PRT WK WHP

TRT

Material &

energy

balance

Process

description

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Virtual Brewery in Computer Virtual Brewery in Computer Virtual Brewery in Computer Virtual Brewery in Computer – an examplean examplean examplean example

8

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅB

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Structure of Virtual BreweryStructure of Virtual BreweryStructure of Virtual BreweryStructure of Virtual BreweryBeer Brewing Process

Production Technology of

Japanese Brewer

MillingSilo

Receiving

Brewhouse

Vapour-rcovery

System from Wort

Kettle

Fermentation,

Maturation

,Conditioning

External cooling

Filtratio

n

DAW

Cooling

Packaging

Energy-saving

System

for Bottle

washer &

pasteurizer

Warehous

e

Yeast

manage

ment

Yeast

Utility Buffer

CIP

9

Utility System

CO2 recovery

System

High Efficiency

CO2 High recovery

ratio

Utility Buffer

Brewing Hot

Water Tank

Industrial Hot

Water Tank

Chilled

Water Tank

Energy

Storage

Boiler System

Small Fire Tube

Boiler (Japanese

Boiler

Manufacture) +

Steam

Air Compressor

System

Hot Water

recovery System

N2 Production

System

Refrigeration System

Cascade Cooling

System

Dynamic Ice System

Hot Water Recovery

System

Thermal

Stratification

Tank

Dynamic Ice

Storage Tank

Waste Treatment System

Industrial Hot

Water Tank

Spent G rain

Treatment

(Vapour Recovery

System)

Spent Yeast

Treatment

(Vapour Recovery

System)

Waste Water

Treatment System

High Temperature

Anaerobic System

Biogas Treatment

System

Biogas Boiler

Biogas Co-

generation System

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy AssociatesEnergyEnergyEnergyEnergy----saving analysis using saving analysis using saving analysis using saving analysis using Virtual FactoryVirtual FactoryVirtual FactoryVirtual Factory

Virtual Factory

(existing)

Virtual Factory

(Energy saving

Plan)

10

� Compare to Calculated result with actual data.� Investigate the reason of differences

material loss, heat loss?mistake in program?control system ?bad efficiency of equipment

� Try to modify or adjust actual factory operation� Try energy-saving operation referring to Virtual

Factory data

� Design the energy saving System � Estimate energy saving amount� Feasibility study

location, available spacebudget estimationestimation of CER: Carbon Emission ReductionCDM Project or noteconomical analysis: IRR, PBP

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

EnergyEnergyEnergyEnergy----saving activitysaving activitysaving activitysaving activity

� Search the points of losses and repair or modify them.� Modify or adjust control system.� Clean or modify the heat exchanger.� Add more data in monitoring system.� Add more and appropriate buffers with control system in order to

11

� Add more and appropriate buffers with control system in order to keep high-efficiency operation for the utility equipment such as boilers and compressors.

� Add heat recovery or biogas recovery system in order to reduce energy consumption.

� Modify the production process itself.

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Reference of Brewery in VietnamReference of Brewery in VietnamReference of Brewery in VietnamReference of Brewery in Vietnam---- Thanh Hoa BeerThanh Hoa BeerThanh Hoa BeerThanh Hoa Beer

� Established in 1987

� 150km from capital Hanoi (3 hrs by car)

� 51ML annual beer production (in 2004, 7th largest production (1.2million kL-beer total in

THANH HOATHANH HOATHANH HOATHANH HOA BREWERYBREWERYBREWERYBREWERY BIA HAI PHONG

12

(1.2million kL-beer total in Vietnam)

� ISO9000 certified in 2002

Expanded production line in Apr 2004

(Capacity:8kL/brew ), and renewal of the exiting brewhouse (30kL/brew) in Sep 2004

� Products: Bia Thanh Hoa, Saigon, Hanoi

BIA SAIGON

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Implemented EnergyImplemented EnergyImplemented EnergyImplemented Energy----saving Systemssaving Systemssaving Systemssaving SystemsLatest VRC SystemLatest VRC SystemLatest VRC SystemLatest VRC System Optimal Pasteurizing SystemOptimal Pasteurizing SystemOptimal Pasteurizing SystemOptimal Pasteurizing System

13

BBT

CCV

ChillerChiller

Chiller

Cascade Cooling SystemCascade Cooling SystemCascade Cooling SystemCascade Cooling System Dynamic Ice Storage/Transportation Dynamic Ice Storage/Transportation Dynamic Ice Storage/Transportation Dynamic Ice Storage/Transportation SystemSystemSystemSystem

Economical Methane recoveryEconomical Methane recoveryEconomical Methane recoveryEconomical Methane recoverySystemSystemSystemSystem

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

VRC System for Wort KettleVRC System for Wort KettleVRC System for Wort KettleVRC System for Wort Kettle

Saving steam by reusing the discharged steam

14

Discharged steam has great energy!

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

VRC System VRC System VRC System VRC System Wort Kettle: evaporates about 2 tons of water in 1 batch. The conventional system discharges waste steam into atmosphere

Scrubber: cleans the waste steam and generates hot water for pre-heating the wort for the following batch

99ºCHot Wort

15

Drain

99ºC

85ºCWort Pre-Heater

97ºC

Wort

78ºCEnergy Storage Tank

61m3

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Steam CompressorSteam CompressorSteam CompressorSteam Compressor

� Screw compressor� High performance� Good reliability� Wide operation range of pressure

- compared with centrifugal type - compared with thermo

16

- compared with thermo compressor

※ discharge pressure is change by fouling of heat exchanger surface and inert gas.

� Wide operation range of pressure - compared with centrifugal type - compared with thermo

compressor

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Heat Pump for pasteurizerHeat Pump for pasteurizerHeat Pump for pasteurizerHeat Pump for pasteurizer

� Temperature of Showering for final cooling zone is kept by Heat Pump Chiller stably.

� Heat Pump supply the condensing heat to the first heating zone to heat up the bottled Beer.

PASTEURIZER

STMHOT Water

17

heat up the bottled Beer.� Irregular operation

(starting,finishing and temporary stop and restart),cooling tower supply and recuperate the heat of the pasteurizer depending on the situation.

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Biogas Recovery SystemBiogas Recovery SystemBiogas Recovery SystemBiogas Recovery System

Waste Water

from Brewhouse

UASB (high

temperature)

18

Gas Holder

Bio-gas Boiler

Gas compressor

Steam Accumulator

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Cascade cooling system for ice water chillingCascade cooling system for ice water chillingCascade cooling system for ice water chillingCascade cooling system for ice water chilling

Water cooling from

28oC to 5oC (Large temp.

differential) .

Based on 1763kW (500TR)

Cooling load.

Power consumption reduces to 60%.

Compressor capacity reduces to 70%.

Displacement volume of Compressor

Cascade Cooling SystemBased on 1763kW (500TR)

Conventional Cooling System

19

Chiller

COP=4.87

Tc=35oC

28oC

5oC

Te=0oC

Chiller

Chiller

Chiller

Cascade Cooling System

i

ii

Tc Te dT kW M3/h

35 0 35 362 1992

35 15 20 70 463

35 8 27 73 463

35 0 35 76 463

II Total 219 1389

II /I 60% 70%

II -I 143 603

Tc=35oC COP=8.06

28oC

18oC

10oC

5oC

Te=0oC

Te=15oC

Te=8oC

Based on 1763kW (500TR)

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Cascade Cooling SystemCascade Cooling SystemCascade Cooling SystemCascade Cooling System

Brewing

Water

Ambient

Hot

Brewing

Water

Hot Wort

99ºC

Started operation in August 2005

20

No.1

No.2

No.3

30ºC

0ºC

Ambient

Temp.

Ethanol Brine

Tank

12m3

(Using existing

Tank)

Chilled Water

Tank

For Wort Cooling

140m3

Wort

cooler

Water

Tank

85ºC

99ºC

3ºC

Fermentation

Tank30-40m3/1brew

300-400m3/1day

30oC

20ºC

10ºC

0ºC

Water

cooler

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Dynamic Ice Storage & Transportation SystemDynamic Ice Storage & Transportation SystemDynamic Ice Storage & Transportation SystemDynamic Ice Storage & Transportation System

Jacket cooling Jacket cooling Plate cooling Plate cooling

Air cooler Air cooler

Dynamic Ice Dynamic Ice Storage TankStorage Tank

21

Plate cooling Plate cooling

Dynamic Ice Transporting Loop PipingDynamic Ice Transporting Loop Piping

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Comparison table of Transportation Comparison table of Transportation Comparison table of Transportation Comparison table of Transportation PerformancePerformancePerformancePerformance

TemperatureTemperature

Transport systemTransport system

Specific heatSpecific heat19.8W/kg19.8W/kg

Chilled waterChilled waterDynamic iceDynamic ice

00℃℃℃℃℃℃℃℃/3/3ooCC--22ooC/3C/3ooCC

3.5W/kg 3.5W/kg

22

Specific heatSpecific heat

transportationtransportation

Diameter of PipeDiameter of Pipe

Required volume Required volume

of waterof water

Required Required

pump powerpump power

Running costRunning cost

19.8W/kg19.8W/kg 3.5W/kg 3.5W/kg

250mmNB250mmNB125mmNB125mmNB

332m332m33/h/h59m59m33/h/h

30.0kW30.0kW5.5kW5.5kW

450450yenyen/h/h8383yenyen/h/h

Cooling load is 1000Mcal/hCooling load is 1000Mcal/h

Head of pump is 20mHead of pump is 20m

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Dynamic Ice System Dynamic Ice System Dynamic Ice System Dynamic Ice System

Pd:

Heat recovery from

NH3 discharge gas

to make hot water

Evaporative Condenser

23

Dynamic Ice Storage tank

-4ºC, 170m3

Dynamic Ice Maker

To use existing refrigeration compressor to make dynamic ice

Refrig. Comp.

No.1 100kW

Refrig. Comp.

No.2 100kW

Refrig. Comp.

No.3 100kW

Refrig. Comp.

No.4 100kW

Pd:

Td: 110ºC

Fermentation

2nd Brewhouse WC

2nd Brewhouse FT

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Total Energy Saving PerformanceTotal Energy Saving PerformanceTotal Energy Saving PerformanceTotal Energy Saving Performance

�Energy-saving: 3,386 Toe�CO2 emission reduction: 10,376 Ton

24

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Example 1: Sugar mill factoryExample 1: Sugar mill factoryExample 1: Sugar mill factoryExample 1: Sugar mill factory

G

Cane Receiving Cane Milling

Juice Heating

Bagass Boiler

25

Concentration

Crystallization

Steam Turbine

Molasses Tank

Ethanol productionSugar storage

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

VRC System for the Concentration ProcessVRC System for the Concentration ProcessVRC System for the Concentration ProcessVRC System for the Concentration Process

MSteam Compressor

26

Inlet cane juice

about 11Bx

Outlet cane juice

about 55~60Bx

Multi Effect Evaporator

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

EnergyEnergyEnergyEnergy----saving System with VRC system for saving System with VRC system for saving System with VRC system for saving System with VRC system for Ethanol Distillation processEthanol Distillation processEthanol Distillation processEthanol Distillation process

Current Configuration VRC Configuration

95%Alcohol Product

Cooling Water

Hot water

27

VRC MIndirectHeat Exchanger

DirectHeat Exchanger

Vapor

AlcoholProduct

Vapor

To wastewater

To wastewater

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Example 2: Seafood FactoryExample 2: Seafood FactoryExample 2: Seafood FactoryExample 2: Seafood Factory

�Freezing�Cold Storage

Ice making

Main Energy ConsumerMain Energy ConsumerMain Energy ConsumerMain Energy Consumer

28

�Ice making※Main energy consumed is electricity for

refrigeration plant�Hot water for cleaning�Steam consumption for boiling

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy AssociatesRefrigeration Cycle and Energy Refrigeration Cycle and Energy Refrigeration Cycle and Energy Refrigeration Cycle and Energy ConsumptionConsumptionConsumptionConsumption

� Theoretical COP of carnot = (273.16+Tc)/(Tc-Te) -1

� Tc= condensing temperature

� Theoretical COP of carnot = (273.16+Tc)/(Tc-Te) -1

� Tc= condensing temperature

P Mpa

Condenser

29

� Tc= condensing temperature

� Te= evaporative temperature

� To reduce the energy consumptionKeep Tc low !Keep Te high !

� Tc= condensing temperature

� Te= evaporative temperature

� To reduce the energy consumptionKeep Tc low !Keep Te high !

Liquid Wet vaporSuperheat Vapor

P Mpa

Enthalpy

Condensing Process

Compression Process

ExpansionProcess

Evaporation Process

Compressor

Evaporator

ExpansionValve

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Temperature shift & Cooling load in Freezing Temperature shift & Cooling load in Freezing Temperature shift & Cooling load in Freezing Temperature shift & Cooling load in Freezing (Shrimp)(Shrimp)(Shrimp)(Shrimp)

� Room temperature; -40oC� Te (evaporative Temp.; -48oC� COP=1.62� Specific heat

Pre-freezing; 0.88kcal/kgAfter-freezing; 0.47kcal/kg

� Latent heat; 65.12kcal/kg� Cooling load 0

10

20

30

℃)

Temp.of Product

Room Temp

Temp.of Product

30

� Cooling load0.88*(20-(-1))=18.48kcal/kg(18.5%)0.47*(-1-(-35))=15.98kcal/kg(16%)

65.12kcal/kg (65.5%)Total 99.58kcal/kg

� Cooling load of Cooler fan; 50% of cooling load of production

� Total cooling load for refrigeration compressor; 99.58*1.5=149.37 kcal/kg

� Total electric power required=149.37/1.62/0.86/0.9+49.8/0.86=177 kW/kg

-50

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Min

Tem

p. (

Pre-freezing

FreezingAfter freezing

Te2=-48℃

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

EnergyEnergyEnergyEnergy----saving in freezingsaving in freezingsaving in freezingsaving in freezing

� Avoid temperature rise in processing before freezing.Processing table with table zone cooling. cooling

5℃ 10℃

Thermal

stratification

31

table zone cooling.� Pre-cooling before

freezer with high Te cooling method.

Pre-cooling with dynamic ice of sea water or salt (-3℃)

冷却機器cooling

800

mm

120

0m m

Dynamic ice

Freezer

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

EnergyEnergyEnergyEnergy----saving with Dynamic Ice saving with Dynamic Ice saving with Dynamic Ice saving with Dynamic Ice & Cascade cooling& Cascade cooling& Cascade cooling& Cascade cooling

� Dynamic ice(-3℃)cooling to 60% freezing. Te: -9℃

COP: 3.6cooling loadpre-freezing: 18.5kcal/kgfreezing: 65.12*0.6= 37kcal/kg 0

10

20

30

(℃)

Temp.of Product

Room Temp

Temp.of Product

Te1=-9℃

32

freezing: 65.12*0.6= 37kcal/kgafter freezing: 0.47*2= 0.94kcal/kg

sub Total= 55.5kcal/kg� Freezer cooling: =44.08kcal/kg� Total cooling load of freezer:

44.08*1.5=66.12kcal/kgCOP=1.62

� Total electric power required=(55.5/3.6+66.12/1.62)/0.9+22.04/0.86=88.

1 kW/h

-50

-40

-30

-20

-10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Min

Tem

p. (

Freezing After freezing

Dynamic Icecooling

Te2=-48℃

Te1=-9℃

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy AssociatesComparison Table of Energy Comparison Table of Energy Comparison Table of Energy Comparison Table of Energy ConsumptionConsumptionConsumptionConsumption

ConventionalEnergy-saving

systemDifference

Cooling Load (Te-9oC) COP;3.6 55.5kcal/kg

Cooling Load (Te-48oC) COP;1.62 149.4kcal/kg 44.1kcal/kg

33

Cooling load for fan of cooler 49.8kcal/kg 22.5kcal/kg

Cooling load total 199.2kcal/kg 122.1kcal/kg 77.1kcal/kg

Electric power required for Ref. compr. 107.2kW/kg 62.5kW/kg

Electric power required for Fan 56.6kW/kg 25.6kW/kg

Total (W/kg) 177W/kg 88.1W/kg 88.9W/kg

Total (kWh/ton/h) 177kWh 88.1kWh 88.9kWh

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Energy saving study in Philippines Energy saving study in Philippines Energy saving study in Philippines Energy saving study in Philippines

� Company: Fresh Catch International Company� Category: Sea food processing � Product: Squid (freezing) 1500kg/day for export� Octopus(freezing) 500kg/day for export

Block Ice 15ton/day domestic use for transportation

34

� Block Ice 15ton/day domestic use for transportation of fresh seafood

� Equipments: Air blast freezer × 2 contact freezer× 2� Cold storage × 2 � Block ice making plant Flake ice maker� Refrigeration compressor × 5

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Process flow Process flow Process flow Process flow ---- Octopus Octopus Octopus Octopus

cut head

brush tentaclescutting soaking salt tumbler soaking boiling

cool down

( running water)

25℃water Ice 25℃water Ice 25℃water Ice 25℃water

35

soaking

in chilled water

vacuuum

pack freezing slicevacuuum

pack freezing cold storage

<10℃ <10℃ <10℃ boiling 25℃

<5℃

25℃water Ice

-45℃ -45℃ -30℃

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Temperature condition of process OctopusTemperature condition of process OctopusTemperature condition of process OctopusTemperature condition of process Octopus

40℃

50℃

60℃

70℃

80℃

90℃

100℃

boiling

cool down

by running water

36

0℃

40℃

10℃

20℃

30℃

-10℃

-20℃

-30℃

-40℃

-50℃

-60℃

cut head &

brush

tentacle

soaking

salt tumbler

soaking

soaking

in child water

bacuum pack

air blast freezing

slice

air blast

freezing

cold storage

TE -15 TE -15 TE -15

TE -53 TE -53

TE -38

-5℃ -5℃ -5℃

flake Ice flake Ice flake Ice

10℃10℃

10℃

-45℃ -45℃

-30℃

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Energy analysis with COPcarnotEnergy analysis with COPcarnotEnergy analysis with COPcarnotEnergy analysis with COPcarnot

� COPcarnot=(273.16+Te)/(Tc-Te)� actual COP=COPcarnot×60%(rough assumption)

� Energy (electricity) consumption for compressor� Cooling load: 10,000kcal

37

� Cooling load: 10,000kcal� Case 1 Tc,Te: 35dC,-30dC� COPcarnot=(273.16+(-30))/(35-(30))=3.74� COPact=3.74×0.6=2.24� BKW=10,000/2.24/860=5.19kW� Electricity cons. of motor: 5.19kW/0.9(Eff.motor)=5.76kW� Case 2 Tc,Te: 35dC,0dC� COPact=(273.16+0)/(35-0)×0.6=4.68� Electricity cons.of motor: 10,000/4.68/860/0.9=2.76kW

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Energy consumption with COPcarnt Energy consumption with COPcarnt Energy consumption with COPcarnt Energy consumption with COPcarnt raw material Octopus

production rate 100 kg/h

Cooling Load 1st soaking CL2 soaking soaking (Chill) 1st freezing 2nd freezing Cold storage total

temp. in 25.0 dC 15.0 dC 35.0 dC 10.0 dC -5.0 dC -20.0 dC

temp. out 10.0 dC 10.0 dC 5.0 dC -20.0 dC -20.0 dC -30.0 dC

sensible heat before freezing 1260kcal/h 420kcal/h 2520kcal/h 1260kcal/h 0kcal/h

freezing heat 6400kcal/h 6400kcal/h

sensible heat before freezing 660kcal/h 660kcal/h 4kcal/h

fan etc. 4992kcal/h 4236kcal/h

38

fan etc. 4992kcal/h 4236kcal/h

heat loss 60% 60% 60% 20% 20% 20%

Total 2016kcal/h 672kcal/h 4032kcal/h 15974kcal/h 13555kcal/h 5kcal/h 36255kcal/h

existing condition

Te: evaporative temperatuer -15.0 dC -15.0 dC -15.0 dC -53.0 dC -53.0 dC -38.0 dC

Tc: condensing temperature 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC

COPcarnot 5.16 5.16 5.16 2.50 2.50 3.22

3.10 3.10 3.10 1.50 1.50 1.93

calculated BKW 0.8kWh 0.3kWh 1.5kWh 12.4kWh 10.5kWh 0.0kWh 25.4kWh

electricity consumption 0.8kWh 0.3kWh 1.7kWh 13.7kWh 11.7kWh 0.0kWh 28.2kWh

spacific heat before freezing 0.84 kcal/kg℃

spacific heat after freezing 0.44 kcal/kg℃

freezing heat 64 kcal/kg

freezing temperature -5 ℃

motor efficiency 90%

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

The point of Energy savingThe point of Energy savingThe point of Energy savingThe point of Energy saving

� 1. Soaking bath cooling

� Cooled by ice: Ice maker needs -15dC(Te) COP=3.1

� > to make 10dC chilled water > reasonable Te=7dC with plate HEX

� >COP increase to 6>electricity cons.reduce to half

flake icemakerwith comp.

c

c

Plate HEX

NH3 Evaporater

Te:-15dC Te:7dC

39

half

� 2. Air blast freezer

� For vacuum packaged product we can use soaking cooling with brine(salt water).

� Air blast freezer needs -53dC for Te >> COP=1.5

� Cooling load from fan is quite big (approx. 60% of cooling load for product)

� Cooling load: 1.6 times and COP=1.5

� Soaking freezing Te=-23dC,COP=2.58

� Comparison Air blast: 1.6/1.5=1.1

� >> soaking: 1/2.58=0.39(35%)

soaking bath soaking bath

Air blast FreezerTe:-53dC Te:-23dC

soaking bath

c

c

Plate HEX

NH3 Evaporater

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Improved Te with reasonable SystemImproved Te with reasonable SystemImproved Te with reasonable SystemImproved Te with reasonable System

40℃

50℃

60℃

70℃

80℃

90℃

cut head &

brush

boiling

cool down

by running water

soaking

in child water

40

0℃

10℃

20℃

30℃

-10℃

-20℃

-30℃

-40℃

-50℃

-60℃

brush

tentacle

soaking

salt tumbler

soaking

in child water

bacuum pack

sinking freesing

with salt water

slice

sinking freesing

with salt water

cold storage

TE 7℃

TE -38

-5℃plate HEX

10℃10℃

10℃

-30℃

plate HEX

TE 7℃plate HEX

TE 7℃

TE -23℃

-20℃

TE -23℃

-20℃

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Energy consumption Analysis with COPcarnot Energy consumption Analysis with COPcarnot Energy consumption Analysis with COPcarnot Energy consumption Analysis with COPcarnot for Octopus processfor Octopus processfor Octopus processfor Octopus process

raw material Octopus

production rate 100 kg/h

Cooling Load 1st soaking CL2 soaking soaking (Chill) 1st freezing 2nd freezing Cold storage total

temp. in 25.0 dC 15.0 dC 35.0 dC 10.0 dC -5.0 dC -20.0 dC

temp. out 10.0 dC 10.0 dC 5.0 dC -20.0 dC -20.0 dC -30.0 dC

sensible heat before freezing 1260kcal/h 420kcal/h 2520kcal/h 1260kcal/h 0kcal/h

freezing heat 6400kcal/h 6400kcal/h

sensible heat before freezing 660kcal/h 660kcal/h 4kcal/h

fan etc. 4992kcal/h 4236kcal/h

heat loss 60% 60% 60% 20% 20% 20%

Total 2016kcal/h 672kcal/h 4032kcal/h 15974kcal/h 13555kcal/h 5kcal/h 36255kcal/h

existing condition

Te: evaporative temperatuer -15.0 dC -15.0 dC -15.0 dC -53.0 dC -53.0 dC -38.0 dC

41

Te: evaporative temperatuer -15.0 dC -15.0 dC -15.0 dC -53.0 dC -53.0 dC -38.0 dC

Tc: condensing temperature 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC

COPcarnot 5.16 5.16 5.16 2.50 2.50 3.22

3.10 3.10 3.10 1.50 1.50 1.93

calculated BKW 0.8kWh 0.3kWh 1.5kWh 12.4kWh 10.5kWh 0.0kWh 25.4kWh

electricity consumption 0.8kWh 0.3kWh 1.7kWh 13.7kWh 11.7kWh 0.0kWh 28.2kWh

rational condition

cooling load 1386kcal/h 462kcal/h 2772kcal/h 9152kcal/h 7766kcal/h 5kcal/h

Te: evaporative temperatuer 7.0 dC 7.0 dC 2.0 dC -23.0 dC -23.0 dC -38.0 dC

Tc: condensing temperature 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC 35.0 dC

COPcarnot 10.01 10.01 8.34 4.31 4.31 3.22

6.00 6.00 5.00 2.59 2.59 1.93

calculated BKW 0.3kWh 0.1kWh 0.6kWh 4.1kWh 3.5kWh 0.0kWh 8.6kWh

electricity consumption 0.3kWh 0.1kWh 0.7kWh 4.6kWh 3.9kWh 0.0kWh 9.6kWhreasonable temp.diff. with

plate heat exchanger 3.0 dC 3.0 dC 3.0 dC 3.0 dC 3.0 dC 8.0 dC

spacific heat before freezing 0.84 kcal/kg℃

spacific heat after freezing 0.44 kcal/kg℃ 34%

freezing heat 64 kcal/kg

freezing temperature -5 ℃

motor efficiency 90%

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Flow diagram of Refrigeration System (existing)Flow diagram of Refrigeration System (existing)Flow diagram of Refrigeration System (existing)Flow diagram of Refrigeration System (existing)

MotorMotorMotorMotor MotorMotorMotorMotor

c

cold storage

c

natural evaporative condenssor

piston compr. 1piston compr. 3

2 stage

piston compr. 4

TE=-53TC=35

42

MotorMotorMotorMotor MotorMotorMotorMotor

MotorMotorMotorMotor

c

air blast freezer

air blast freezer

c

c

c

flake icemakerwith comp.

block ice plant

piston compr. 2piston compr. 4

2 stage

piston compr. 5

2 stage

soaking bath

TE=-25

TE=-15

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

Flow diagram of Refrigeration System Flow diagram of Refrigeration System Flow diagram of Refrigeration System Flow diagram of Refrigeration System ((((improvedimprovedimprovedimproved))))

MotorMotorMotorMotor MotorMotorMotorMotor

c

cold storage

c

natural evaporative condenssor

piston compr. 1

piston compr. 2

piston compr. 3

2 stage

piston compr. 4

2 stage

TE=-38TC=35

43

MotorMotorMotorMotor MotorMotorMotorMotor

MotorMotorMotorMotor

c

air blast freezer

air blast freezer

c

c

c

block ice plant piston compr. 5

2 stage

soaking bathfreezing bathc

to freezing bath

to soaking bath

TE=-25

TE=-3

QuickTimeý Dz êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç)ÅBAi-Ai Energy Associates

44

Thank you very much!