quick-fire poster presentations · 3 25 °c 105 °c liquid crystalline solutions (20.8- 23.6 wt.%,...

13
Quick-Fire Poster Presentations 1

Upload: others

Post on 19-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Quick-Fire Poster Presentations

1

Page 2: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Manufacturing Composites with DualStructural and Energy Storage FunctionsMark Turk

2

This project is investigating the formability and manufacturability of composites when divided into structural power and purely structural areas.Forming simulationIdentify areas of high shear as a the ply is formed over the shape.

Segmenting multi‐ functional and structural areasAreas of high shear are designated as purely structural. Areas of low deformation and curvature are designated for energy storage. 

Page 3: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

3

105 °C25 °C

Liquid Crystalline Solutions (20.8- 23.6 wt.%, Tc > 100- 105 °C)

Dry-jet Wet Fibre Spinning of Cellulose Fibres

• E (~42GPa) higher than most commercial cellulose fibres (Viscose ~9GPa, Lyocell ~15GPa, Cordenka ~17-32GPa, Ioncell-F ~34GPa).

V2V1

Air gap

Extruder Winding unit

Processing time ↓86%Production cost ↓30%Fibre properties ↑84%

Composites Manufacturing by HiPerDif Method

5 m

m

Output Prepreg Tape

Cellulose solution

Development of High Performance Regenerated Cellulose Fibres as Sustainable Reinforcing Fibres for CompositesC. Zhu, A. Koutsomitopoulou, M. Longana, S. Eichhorn, K. Potter

Fibre-watersuspension

vacuum

Dissolution of Cellulose in Ionic Liquid with DMSO as a Co-solvent

Dr Chenchen [email protected]

Specific E equal to E-glass fibres

Page 4: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Material Optimisation of Composite Coils for Negating Disturbances in MRI MagnetsJames McArdle, Kevin Potter, Jonathan Belnoue, M’hamed Lakrimi

4

2.

The problem:

Methodology and approaches:

• Superconducting (zero resistance state) magnets quench (turn resistive) unpredictably

• Understanding material failure modes and their relationship with quench events

II. Optimisation approach. Parametric study, process modelling

I. Model development.Varying geometric features, inputs

III. Material selection. Employ selection based on analysis

Page 5: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Large-scale, high strain-rate Z-pinned composite delamination testAlex Cochrane, James Lander, Joel Serra, Stephen Hallett, Ivana Partridge

5

• Z‐pins  Z-pin fracture toughness enhancement only fully realised during large-scale bridging Current test methods do not produce large-scale bridging as insufficient scale; Gap in pyramid of testing.

Full structure

Subelement

Coupon

Component

Quasi-static single-pin, beamDynamic single-pin, beam

Large-scale dynamic impact

x

x

Fig 1: Pyramid of testing for composite componentaerospace certification

Figs 2(a): Finite element model of test design2(b): Side-view of real impact test

(a) (b)

Page 6: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

• Textile Modelling Capabilities

Deformation Modelling of Textile Composites

[email protected]

A: Micro/meso‐scale digital element method

B: Meso‐scale 3D‐Shell method

Shell element (for out‐of‐plane behaviours) Membrane element (for in‐plane behaviours) 

C: Marco‐scale Shell/membrane method

• Benchmarking Modelling Capabilities• Computational Cost• Level of details captured in single,

multiple layer(s) and 3D woven fabric• Fidelity in compaction, forming and

draping process simulationsMethod B

2D Woven Forming

Compaction of Multiple 2D Woven Layers

Method A

Method CMethod B

Xiaochuan (Ric) Sun, Adam Thompson, Bassam El Said, Stephen Hallett

Page 7: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Mechanical modelling of a sheared textile composite unit cellM. Song, A. Thompson, B. El-Said, D. Ivanov, S. R. Hallett

7

Shear angle

Mechanical property (E.g. E22’)

0° 40° (max)

27GPa

34GPa

20°

Forming simulation

Look-up table

Fibre direction

1

Fibre direction

2

E11’

E22’

E11’ = 27.310 GPaE22’ = 27.837 GPa

E11’

E22’

E11’ = 13.387 GPaE22’ = 34.109 GPa

Directional properties

Region of high shear

Page 8: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

1. Chemical composition

2. Rheology Analysis3. DSC Analysis

Cyanate esters

Novel ultrathin, radiation resistant nanocomposite structures for space applicationsMayra Yadira Rivera Lopez, Fabrizio Scarpa, Ian Hamerton

8

4. FTIR Analysis5. Curing cycles

6. Future work

1stattempt

4thattempt

8thattempt

12thattempt

Mayra Yadira Rivera [email protected]

OligosiloxanesCatalysts

Page 9: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

22/11/2018

ACCIS Conference 2018

Resonators in Periodic Media for a Vibroacoustic ControlMarc-Antoine Campana

My objectives

Objectives

Resonators

Unit Cell Floquet‐Bloch Theorem

Bandgap

Page 10: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

NEW CORETOPOLOGIES

FOAM OR RESONATOR INSTERTS

+        = 

ENGINEERED META‐SANDWICH 

PANELS

KIRIGAMI

THERMOFORMING

FOLDING

METAMATERIAL

Kirigami Periodic Cores: Vibration filtering propertiesWant to know more aboutVIBRATION FILTERING 

capabilities ofPERIODIC STRUCTURES

orKIRIGAMI?

[email protected]

Page 11: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Hybrid microbraids –Through thickness multifunctionalityCaroline O’Keeffe

11

• Provide one or more functions beyond beneficial structural properties• Crack sensing as well as strengthening of structures simultaneously• In-service assessment of structures• Improve the safety and performance of structures

Multifunctional composite

Damage sensing

Conductivity Delamination resistance

Physical structural properties

Page 12: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

12Effect of Processing Parameters on Quality of Thermoplastic Overmoulded CompositesMario A. Valverde, R. Kupfer, L. Kawashita, M. Gude, S. Hallett

0

250

500

750

1000

1250

1500

0.00

0.10

0.20

0.30

0.40

0.50

0.60

350 370

Forc

e (N

)

Def

orm

atio

n (m

m)

Preform heating temperature (°C)

Preform deformation Rib pull-off force

370 °C350 °C

• Overmoulded composites have high mechanical properties, high levels of geometric complexity and very low cycle times.

• Consolidation mechanics are poorly understood• CF-PPS ribbed plate was manufactured at varying process

temperatures and pressures at TU Dresden, Fig. 1.• Built custom test fixture for testing the bond force between ribs

• Increasing temperature improves bond strength, Fig. 2• Matrix-rich regions and higher preform deformation observed

at 370 °C compared to 350 °C, Fig. 3.

Fig. 2: Effect of pre-heating temperature on preform deformation and rib pull-off force

Fig. 3: Micrographs showing preform deformation for different heating temperatures

230

mm

Short-fibre CF-PPS (33% vf)

Continuous-fibre CF-PPS (59% vf)

Fig. 1: Overmoulded ribbed plate component

Page 13: Quick-Fire Poster Presentations · 3 25 °C 105 °C Liquid Crystalline Solutions (20.8- 23.6 wt.%, T c > 100- 105 °C) Dry-jet Wet Fibre Spinning of Cellulose Fibres •E ( ~42GPa)

Questions??Please speak with the Presenters at their Posters

13