quark model calculations of meson baryon scattering

3
Volume 26B. number 8 PHYSICS LETTERS 18 March 1968 QUARK MODEL CALCULATIONS OF MESON BARYON SCATTERING * Ramesh CHAND Department of Physics, Wayne State University, Detroit, Michigan 48202, USA Received 16 February 1968 In an SU(3) symmetric quark model, the high energy scattering of pseudo-scalar mesons with the baryons is investigated in the crossed t-channel. Under the assumption that the physical baryon octet is given by: 8_ (physical) = 8' cos 0 +8 sin{?, where 8' and 8 baryons arise from 3 ® ~ and 3 ~, 6 respectively, we find good agreement between the experimental data and the quark model predictions for 0 20 °. Recently, Barger et al. have analyzed the high energy data on meson nucleon scattering and found disagreement between the quark model pre- dictions and the experimental results [1]. How- ever, most of the previous quark model calcula- tions are performed within the framework of SU(6) symmetry [2]. In SU(6) symmetry scheme, baryons are assigned to the symmetric 5.66 r e p r e - + sentation which contains only one ½ baryon octet. In this note we wish to investigate the meson baryon processes in an SU(3) symmetric quark model. In our SU(3) symmetric quark model, the pseudo-scalar mesons even though composites of quark-antiquark pairs (Q ~)), are treated as basic entities. We denote the pseudo-scalar meson octet by the matrix (P~), where in our no- tation, the lower index referg to the quark and the upper index to the antiquark; the indices 1, 2, and 3 refer to the Po, no, and ~o quarks respec- tively. The baryon states are composites of three quarks: 3 ®3 ®3 = 10® 80 8'O 1, (1) where 8 and 8' arise from 3 ® 3 and 3 ® 6 res- pectively. Since in the SU(3) symmetric quark model, there are two baryon octets, the physical baryon octet can be taken as a linear combination, of the form: 8 (physical) ~ _8' cos0 +8sin0 , (2) where for simplicity, we choose the mixing angle 0 to be real. The basic difference between other quark models [2,3] and ours lies in the extra degree of freedom which we have in terms of the choice of 0. * Work partially supported by the U.S.Atomie Energy Commission through Syracuse University. In terms of the quark state Qi (k) for internal momentum k, we define the three quark states by the relation: Bijk ~ Qi (kl) Qj (k2) Qk (k3) • (3) In this paper, we shall completely suppress the space-time dependence of Bij k. Now, normaliz- ing each Bijk to unity, the normalized baryon states contained in (1) can be written as: S = eijkBijk/4-6 , (4.1) N'ji = iron (Branj +Bmjn)/ 4-~ , (4.2) N i " 1 i ] = (~zmnBjm n --~SjekmnBkmn)/V~, (4.3) DOk = (Bij k +Bikj +Bjki +Bjik +Bk 0 + Bkji)/g-6- , (4.4) where N'], N i, and Dij k are given in terms of the baryon st~ttes by the SU(3) symmetry [4,5]. The non existence of the baryon singlet S implies a constraint on the BOle'S , the right hand side of (4.1) equal to zero. Expressions (4) on inversion give B0k'S in terms of the baryon states. The basic assumption of our quark model is "the additivity". Under this assumption, the meson baryon interaction can be represented by the figure shown; Qc = Qd for elastic scattering. Since at high energies, the crossed l-channel effects dominate, the basic interaction is gov- erned by the exchange of the SU(3) singlet and the octet objects only. Therefore, the /-channel effective Lagrangian can be written as: Lef t = A 1BabCBabcPs d + (BabCBab d + (5.1) ~CBabe B , d 1 dPsf)+A8a •d - :~°d abel× [A8s(Psc -~5c /ac] ' 535

Upload: ramesh-chand

Post on 25-Aug-2016

214 views

Category:

Documents


2 download

TRANSCRIPT

Volume 26B. number 8 P H Y S I C S L E T T E R S 18 March 1968

Q U A R K M O D E L C A L C U L A T I O N S O F M E S O N B A R Y O N S C A T T E R I N G *

R a m e s h CHAND Department of Physics, Wayne State University, Detroit, Michigan 48202, USA

Received 16 February 1968

In an SU(3) symmetr ic quark model, the high energy scattering of pseudo-scalar mesons with the baryons is investigated in the crossed t-channel. Under the assumption that the physical baryon octet is given by: 8_ (physical) = 8 ' cos 0 +8 sin{?, where 8' and 8 baryons a r i se from 3 ® ~ and 3 ~, 6 respect ively, we find good agreement between the experimental data and the quark model predictions for 0 20 °.

R e c e n t l y , B a r g e r et a l . h a v e a n a l y z e d the h igh e n e r g y da ta on m e s o n nuc leon s c a t t e r i n g and found d i s a g r e e m e n t be tween the q u a r k m o d e l p r e - d i c t ions and the e x p e r i m e n t a l r e s u l t s [1]. H o w - e v e r , m o s t of the p r e v i o u s qua rk m o d e l c a l c u l a - t ions a r e p e r f o r m e d wi th in the f r a m e w o r k of SU(6) s y m m e t r y [2]. In SU(6) s y m m e t r y s c h e m e , b a r y o n s a r e a s s i g n e d to the s y m m e t r i c 5.66 r e p r e - + sen ta t ion which con t a in s only one ½ b a r y o n oc te t . In th is no te we wi sh to i n v e s t i g a t e the m e s o n b a r y o n p r o c e s s e s in an SU(3) s y m m e t r i c q u a r k mode l .

In our SU(3) s y m m e t r i c q u a r k mode l , the p s e u d o - s c a l a r m e s o n s even though c o m p o s i t e s of q u a r k - a n t i q u a r k p a i r s (Q ~)), a r e t r e a t e d a s b a s i c en t i t i e s . We deno te the p s e u d o - s c a l a r m e s o n oc t e t by the m a t r i x (P~), w h e r e in our no - ta t ion , the l o w e r i ndex r e f e r g to the qua rk and the uppe r index to the a n t i q u a r k ; the i n d i c e s 1, 2, and 3 r e f e r to the Po, no, and ~o q u a r k s r e s p e c - t i ve ly . The ba ryon s t a t e s a r e c o m p o s i t e s of t h r e e q u a r k s :

3 ® 3 ® 3 = 1 0 ® 8 0 8 ' O 1 , (1)

w h e r e 8 and 8' a r i s e f r o m 3 ® 3 and 3 ® 6 r e s - p e c t i v e l y . S ince in the SU(3) s y m m e t r i c q u a r k mode l , t h e r e a r e two b a r y o n o c t e t s , the p h y s i c a l b a r y o n oc t e t can be t aken as a l i n e a r comb ina t i on , of the f o r m :

8 (phys ica l ) ~ _8' c o s 0 + 8 s i n 0 , (2)

w h e r e fo r s i m p l i c i t y , we c h o o s e the mix ing ang l e 0 to be r e a l . The b a s i c d i f f e r e n c e be tween o t h e r qua rk m o d e l s [2,3] and o u r s l i e s in the e x t r a d e g r e e of f r e e d o m which we have in t e r m s of the c h o i c e of 0.

* Work part ial ly supported by the U.S .Atomie Energy Commission through Syracuse Universi ty.

In t e r m s of the q u a r k s t a t e Qi (k) fo r i n t e r n a l m o m e n t u m k, we de f ine the t h r e e qua rk s t a t e s by the r e l a t i o n :

Bijk ~ Qi ( k l ) Qj (k2) Qk (k3) • (3)

In th is p a p e r , we sha l l c o m p l e t e l y s u p p r e s s the s p a c e - t i m e d e p e n d e n c e of Bij k. Now, n o r m a l i z - ing each Bijk to uni ty, the n o r m a l i z e d ba ryon s t a t e s con ta ined in (1) can be wr i t t en as:

S = e i j k B i j k / 4 - 6 , (4.1)

N'ji = iron (Bran j + Bmjn ) / 4-~ , (4.2)

N i " 1 i ] = (~zmnBjm n - - ~ S j e k m n B k m n ) / V ~ , (4.3)

DOk = (Bij k +Bikj +Bjki +Bjik +Bk 0 + Bkji)/g-6- ,

(4.4)

w h e r e N'], N i , and Dij k a r e g iven in t e r m s of the ba ryon st~ttes by the SU(3) s y m m e t r y [4,5]. The non e x i s t e n c e of the ba ryon s i ng l e t S i m p l i e s a c o n s t r a i n t on the BOle'S , the r i gh t hand s ide of (4.1) equal to z e r o . E x p r e s s i o n s (4) on i n v e r s i o n g ive B 0 k ' S in t e r m s of the ba ryon s t a t e s .

The b a s i c a s s u m p t i o n of our qua rk mode l i s " the add i t i v i t y " . Under th i s a s s u m p t i o n , the m e s o n ba ryon i n t e r a c t i o n can be r e p r e s e n t e d by the f i g u r e shown; Qc = Qd fo r e l a s t i c s c a t t e r i n g . S i n c e at high e n e r g i e s , the c r o s s e d l - c h a n n e l e f f ec t s d o m i n a t e , the b a s i c i n t e r a c t i o n is g o v - e r n e d by the exchange of the SU(3) s ing le t and the oc te t o b j e c t s only. T h e r e f o r e , the / - c h a n n e l e f f e c t i v e L a g r a n g i a n can be w r i t t e n as :

L e f t = A 1BabCBabcPs d + (BabCBab d + (5.1)

~CBabe B , d 1 d P s f ) + A 8 a • d - :~°d a b e l × [A8s(Psc - ~ 5 c / a c ] '

535

Volume 26B. number 8 P H Y S I C S L E T T E R S 18 March 1968

Meson - ~ ~ ~ Meson

Fig. I. Typical diagram for the elastic and inelastic scattering of pseudo-scalar mesons with baryons in a

quark model.

where

Ps ~ ½(PP + PP) , Pa =- ½(PP- PP) . (5.2)

The ove ra l l ampl i tudes A1, A8s and A8a which a r e in genera l complex, a r e the in tegra l s over the s p a c e - t i m e v a r i a b l e s and hence contain al l the spin and k inemat ic dependences . In our no- tation, with B abc -:/~abc, the b a r r e d s ta tes r e f e r to the incoming pa r t i c l e s and the unbar red to the outgoing pa r t i c l e s .

Combining the ma t r ix e l emen t s given by (5.1) with the definit ion of the physical baryon octet , we at once get the ma t r ix e l emen t s for the s ca t - t e r ing of p s e u d o - s c a l a r mesons with the phys ica l baryons . The ma t r ix e l ements , not p re sen ted h e r e [7], sa t is fy al l the SU(3) re la t ions [8], i r - r e s p e c t i v e of the va lue of the mixing angle 0. This of course is not su rp r i s i ng s ince SU(3) s y m m e t r y is a built in fea ture of our quark model. However , SU(3) s y m m e t r y breaking ef- fects can be eas i ly in t roduced, by t r ea t ing the exchange' of S = ± 1 objects d i f ferent ly f r o m the S = 0 objects . This is equivalent to t r ea t ing the X o quark di f ferent ly f r o m the Po and n o quarks.

In this paer , our main ob jec t ive i s t o d i scuss those f ea tu res of our quark model for which the re exis ts cons ide rab le d i sc repancy between the expe r imen ta l data and the pred ic t ions of o ther quark models [1,3]. Fo r this purpose , we define

A(AB) = ~t(AB) - ~t(AB) . (6)

Combining the ma t r ix e l emen t s obtained f rom (5.1) with the definit ion of the physical baryon octet g ives

A(Kp) = 2F(4+a) ,

A(Trp) = 4F(I +a) ,

A(Kn) = 2 F ( 2 - a ) ,

(7.1)

(7.2)

(7.3)

536

Table 1 A comparison between the calculated and the experi- mental values of the ratios of A(Kn), £~(?rp) and ½A(Kp),

given by (7).

Experiment [1] Quark model SU(6) [3] 0 = 20 ° ~) = 15 °

A (Kn) 1.8 1.8 0 1 1 A(~p)

A(Kp) 1.4 1.40 1 1 2A(/rp)

A(Kp) 0.8 0.78 1 1 2A(Kr{)

where

a - - - c o s 2 0 - f 3 sin 20 , F = (41r/k) .AImA8a. (7.4)

In these express ions , for s impl ic i ty , the word physical has been dropped f r o m the proton p and the neutron n s ta tes . We a s s u m e that at the e n e r - g ies of i n t e r e s t to us, the c .m. momentum k is the same for al l the above t h r ee p r o c e s s e s . F r o m (7), independent of the value of 0, we at once get the weak J o h n s o n - T r e i m a n re la t ion [3]:

A (Kp) = ~ (Trp) + A (Kn) , (8)

which is reasonably well obeyed exper imenta l ly [1]. The ca lcula ted and the expe r imen ta l va lues of the ra t ios of the quant i t ies of (7) a r e p resen ted in the table. One immed ia t e ly no t ices that for 0 = 20 ° , our quark model predic t ions ag ree a l - most pe r f l ec t ly with the exper imenta l data where as 6 = 15 ° r ep roduces the SU(6) r e su l t s of John- s o n - T r e i m a n [3]. In addition to these , we a lso find that for 0 = 20 o, our quark model p r e d i c - t ions a r e cons is ten t with o ther exper imenta l r e - sui ts d i scussed in ref . 1. In o rde r to de t e rmine if t he re is deep s igni f icance in the value 0 = 20 °, at the p re sen t t ime, inves t iga t ions a r e on the way on other e l emen ta ry pa r t i c l e reac t ions in our SU(3) s y m m e t r i c quark model.

It is a p l ea su re to thank P r o f e s s o r E. C. G. Sudarshan for his hospi ta l i ty at Syracuse Uni- v e r s i t y during the s u m m e r of 1967 when this work was ini t iated. Our specia l thanks to Drs . N. Mukunda and A. M. Gleeson for in t e re s t ing conversa t ions .

Rcfe~'cnccs

1. V.Barger and L.Durand, Phys. Rev. 156 (1967) 1525.

2. H.Lipkin, Phys. Rev. Letters 16 (1966) 1015; G. Joshi, V. Bhasin and A. Mitra, Phys. Rev. 156 (1967) 1572.

Volume 26B, number 8 P H Y S I C S L E T T E R S 18 March 1968

3. K. Johnson and S. B. T re iman , Phys . Rev. Le t t e r s 14 (1965) 189.

4. S. Okubo, Lec tu r e s on uni tary s y m m e t r y , Univers i ty of Roches te r Rept. (unpublished).

5. G. Zweig, Sy m m et r i e s in e l emen ta ry par t ic le phys- ics, 1965, Internat ional School of Phys i c s "Ettore Majorana" (Academic P r e s s . 1965) p. 192.

6. R. Chand, Non-leptonic hyperon decays in a quark model, to be published.

7. R. Chand, A detailed account of me son -ba ryon s c a t - t e r ing in a quark model will be published.

8. M.Gourdin , Uni tary s y m m e t r i e s (North-Holland, A m s t e r d a m , 1967). Other re la ted r e f e r e nc e s can be found in this book.

537