quantum thermal transport in nanostrucutures

31
Quantum Thermal Transport in Nanostrucutures Jian-Sheng Wang Center for Computational Science and Engineering and Department of Physics, NUS; IHPC & SMA

Upload: adanne

Post on 14-Jan-2016

62 views

Category:

Documents


0 download

DESCRIPTION

Quantum Thermal Transport in Nanostrucutures. Jian-Sheng Wang Center for Computational Science and Engineering and Department of Physics, NUS; IHPC & SMA. Outline. Nonequilibrium Green’s function (NEGF) approach to thermal transport, ballistic and nonlinear - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Thermal Transport in Nanostrucutures

Quantum Thermal Transport in Nanostrucutures

Jian-Sheng WangCenter for Computational Science and Engineering

and Department of Physics, NUS; IHPC & SMA

Page 2: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

2

Outline

• Nonequilibrium Green’s function (NEGF) approach to thermal transport, ballistic and nonlinear

• QMD – classical molecular dynamics with quantum baths

• Outlook and conclusion

Page 3: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

3

Approaches to Heat Transport

Molecular dynamics Strong nonlinearity Classical, break down at low temperatures

Green-Kubo formula Both quantum and classical

Linear response regime, apply to junction?

Boltzmann-Peierls equation

Diffusive transport Concept of distribution f(t,x,k) valid at nanoscale?

Landauer formula Ballistic transport T→0, no nonlinear effect

Nonequilibrium Green’s function

A first-principle method Perturbative. A theory valid for all T?

Page 4: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

4

Nonequilibrium Green’s Function Approach

, ,

,

1 1,

2 21

3

T TL LC C C CR Rn

L C R

T T

C C Cn ijk i j k

ijk

H H u V u u V u H

H u u u K u

H T u u u

Left Lead, TL Right Lead, TR

Junction Part

T for matrix transpose

mass m = 1,

ħ = 1

Page 5: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

5

Heat Current

( 0)

1Tr [ ]

2

1Tr [ ] [ ] [ ] [ ]

2

L L

LCCL

r aL L

CL LCL L

I H t

V G d

G G d

V g V

Where G is the Green’s function for the junction part, ΣL is self-energy due to the left lead, and gL is the (surface) Green’s function of the left lead.

Page 6: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

6

Landauer/Caroli Formula

• In systems without nonlinear interaction the heat current formula reduces to that of Laudauer formula:

0

/( )

1[ ] ,

2

[ ] Tr ,

,

1

1B

L R L R

r aL R

r a

k T

I I d T f f

T G G

i

fe

See, e.g., Mingo & Yang, PRB 68 (2003) 245406; JSW, Wang, & Lü, Eur. Phys. J. B, 62, 381 (2008).

Page 7: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

7

Contour-Ordered Green’s Functions

( '') ''

0

'

0

( , ') ( ) ( ') ,

( , ') lim ( , ' '),

, , , ,

,

ni H dT

t t

r t a t

G i T u u e

G t t G t i t i

G G G G G G G G

G G G G G G

τ complex plane

See Keldysh, or Meir & Wingreen, or Haug & Jauho

Page 8: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

8

Adiabatic Switch-on of Interactions

t = 0

t = −

HL+HC+HR

HL+HC+HR +V

HL+HC+HR +V +Hn

gG0

G

Governing Hamiltonians

Green’s functions

Equilibrium at Tα

Nonequilibrium steady state established

Page 9: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

9

Contour-Ordered Dyson Equations

0 1 2 1 1 2 0 2

0 1 2 0 1 1 2 2

0 0 2

0 0 0

1

0

( , ') ( , ') ( , ) ( , ) ( , ')

( , ') ( , ') ( , ) ( , ) ( , ')

Solution in frequency domain:

1, 0

( )

,

1,

C C

n

r aC r

r a

r

r rn

r an

G g d d g G

G G d d G G

G Gi I K

G G G

GG

G G G

0( ) ( )r r a an nI G G I G

Page 10: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

10

Feynman Diagrams

Each long line corresponds to a propagator G0; each vertex is associated with the interaction strength Tijk.

Page 11: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

11

Leading Order Nonlinear Self-Energy

' ' ', 0, 0,

'' '' '', ' 0, 0,

, ''

4

'[ ] 2 [ '] [ ']

2

'2 '' [0] [ ']

2

( )

n jk jlm rsk lr mslmrs

jkl mrs lm rslmrs

ijk

di T T G G

di T T G G

O T

σ = ±1, indices j, k, l, … run over particles

Page 12: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

12

Energy Transmissions

The transmissions in a one-unit-cell carbon nanotube junction of (8,0) at 300 Kelvin. From JSW, J Wang, N Zeng, Phys. Rev. B 74, 033408 (2006).

Page 13: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

13

Thermal Conductance of Nanotube Junction

Con

d-m

at/0

6050

28

Page 14: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

14

Molecular Dynamics

• Molecular dynamics (MD) for thermal transport– Equilibrium ensemble, using Green-Kubo formula

– Non-equilibrium simulation• Nosé-Hoover heat-bath• Langevin heat-bath

• Disadvantage of classical MD– Purely classical statistics

• Heat capacity is quantum below Debye temperature of 1000 K

• Ballistic transport for small systems is quantum

Page 15: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

15

Quantum Corrections

• Methods due to Wang, Chan, & Ho, PRB 42, 11276 (1990); Lee, Biswas, Soukoulis, et al, PRB 43, 6573 (1991).

• Compute an equivalent “quantum” temperature by

• Scale the thermal conductivity by

1 1

exp( / ) 2BB Q

Nk Tk T

MDQ

dT

dT

(1)

(2)

Page 16: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

16

Quantum Heat-Bath & MD

• Consider a junction system with left and right harmonic leads at equilibrium temperatures TL & TR, the Heisenberg equations of motion are

• The equations for leads can be solved, given

,

,

L LCL L C

C CL CRC L R

R RCR R C

u K u V u

u F V u V u

u K u V u

0

2 20

2 2

( ) ( ) ( ') ( ') ',

where

( ) 0, ( ) ( )

tLC

L L L C

L LL L

u t u t g t t V u t dt

d dK u t K g t t I

dt dt

(3)

(4)

1

2

j

u

u

u

u

Page 17: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

17

Quantum Langevin Equation for Center

• Eliminating the lead variables, we get

where retarded self-energy and “random noise” terms are given as

( ') ( ') 't

CC C L Ru F t t u t dt

0

, ,

, ,

C CL R

CL R

V g V

V u

(5)

(6)

Page 18: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

18

Properties of Quantum Noise

† 0 0

( ) 0,

( ) ( ') ( ) ( ')

( ') ( '),

( ') ( ) ( '),

( ') ( ) [ ] 2 ( )Im [ ]

CL T LCL L L L

CL LCL L

T

L L L

T i tL L L L

t

t t V u t u t V

V i g t t V i t t

t t i t t

t t e dt i f

For NEGF notations, see JSW, Wang, & Lü, Eur. Phys. J. B, 62, 381 (2008).

(7)

(8)

(9)

Page 19: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

19

Quasi-Classical Approximation, Schmid (1982)

• Replace operators uC & by ordinary numbers

• Using the quantum correlation, iħ∑> or iħ∑< or their linear combination, for the correlation matrix of .

• Since the approximation ignores the non-commutative nature of , quasi-classical approximation is to assume, ∑> = ∑<.

• For linear systems, quasi-classical approximation turns out exact! See, e.g., Dhar & Roy, J. Stat. Phys. 125, 805 (2006).

Page 20: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

20

Implementation

• Generate noise using fast Fourier transform

• Solve the differential equation using velocity Verlet• Perform the integration using a simple rectangular

rule• Compute energy current by

2 /1( ) i lk M

kk

t lh ehM

( ') ( ') 't

TLL C L c L

dHI u t t u t dt

dt

(10)

(11)

Page 21: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

21

Comparison of QMD with NEGF

QMD ballistic

QMD nonlinear

Three-atom junction with cubic nonlinearity (FPU-). From JSW, Wang, Zeng, PRB 74, 033408 (2006) & JSW, Wang, Lü, Eur. Phys. J. B, 62, 381 (2008).

kL=1.56 kC=1.38, t=1.8 kR=1.44

Page 22: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

22

Equilibrium Simulation1D linear chain (red lines exact, open circles QMD) and nonlinear quartic onsite (crosses, QMD) of 128 atoms. From Eur. Phys. J. B, 62, 381 (2008).

Page 23: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

23

From Ballistic to Diffusive Transport

1D chain with quartic onsite nonlinearity (Φ4 model). The numbers indicate the length of the chains. From JSW, PRL 99, 160601 (2007).

NEGF, N=4 & 32

4

16

64

256

1024

4096

Classical, ħ 0

,S

J TL

Page 24: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

24

FPU- model

} relaxing

rate NEGF

It is not clear whether QMD over or under estimates the nonlinear effect. From Xu, JSW, Duan, Gu, & Li, arXiv:0807.3819.

Page 25: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

25

Electron Transport & Phonons

• For electrons in the tight-binding form interacting with phonons, the quantum Langevin equations are

( ') ( ') ' ,

( ') ( ') '

tk

k

t

ic Hc t t c t dt M u c

u Ku t t u t dt c Mc

† †

( ) ( ') ( '), ( ') ( ) ( '),

( ) ( ') ( '), ( ') ( ) ( ')

T

TT

t t i t t t t i t t

t t i t t t t i t t

(12)

(13)

(14)

(15)

Page 26: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

26

Ballistic to Diffusive

Electronic conductance vs center junction size L. Electron-phonon interaction strength is m=0.1 eV. From Lü & JSW, arXiv:0803.0368.

Page 27: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

27

Conclusion & Outlook

• NEGF is elegant and efficient for ballistic transport. More work need to be done for nonlinear interactions

• QMD for phonons is correct in the ballistic limit and high-temperature classical limit. Much large systems can be simulated (comparing to NEGF)

• Still need to demonstrate its usefulness for more realistic systems, e.g., nanotubes

Page 28: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

28

Collaborators

• Baowen Li• Pawel Keblinski• Jian Wang• Jingtao Lü• Nan Zeng

• Lifa Zhang• Xiaoxi Ni• Eduardo Cuansing• Jinwu Jiang

• Saikong Chin• Chee Kwan Gan• Jinghua Lan• Yong Xu

Page 29: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

29

Definitions of Phonon Green’s functions

( , ') ( ') [ ( ), ( ')] ,

( , ') ( ' ) [ ( ), ( ')] ,

( , ') ( ) ( ') ,

( , ') ( ') ( ) ,

( , ') ( ') ( , ') ( ' ) ( , ')

rjk j k

ajk j k

jk j k

jk k j

t

D t t i t t u t u t

D t t i t t u t u t

D t t i u t u t

D t t i u t u t

D t t t t D t t t t D t t

Page 30: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

30

Relation among Green’s functions

/( )

,

,

, ( )

1( )

1B

r a r a

t t r t

t t r a r a

k T

D D D D D D

D D D D D D D

D D D D D f D D

fe

Page 31: Quantum Thermal Transport in Nanostrucutures

Suzhou 08

31

From self-energy to Green’s functions, to heat current

2

1,

( ) ,

Tr2

r

C r rn

r an

r aL L L

Gi K

G G G

dI G G