quantum lasers, m. momeni 1 quantum lasers ee 566 optical communications massoud momeni grad...

26
Quantum Lasers, M. Momeni 1 Quantum Lasers EE 566 Optical Communications Massoud MOMENI Grad Microelectronics [email protected]

Upload: hubert-murphy

Post on 16-Dec-2015

246 views

Category:

Documents


3 download

TRANSCRIPT

Quantum Lasers,M. Momeni

1

Quantum Lasers

EE 566 Optical Communications

Massoud MOMENIGrad Microelectronics

[email protected]

Quantum Lasers,M. Momeni

2

Overview

1. Quantum Lasers Q L

a) Single-Quantum Well Laser SQW L

b) Multiple-Quantum Well Laser MQW L

c) Separate Confinement Heterostructure Laser SCH L

d) Graded-Index SCH Laser GRINSCH L

e) Quantum Cascade Laser QC L

f) Quantum Dot Laser QD L

2. Summary

3. References and…

Quantum Lasers,M. Momeni

3

1. Quantum Lasers

LASER = Light Amplification by Stimulated Emission of Radiation

Quantum Lasers,M. Momeni

4

Single-Quantum Well Laser (SQWL)

Double Heterostructure:

GFpFn EEE )(1)( VVVC EfhfEf or, alternatively,

Basic Laser condition:

nm

hf

V > 0

P p N

EV

EC

EFpEFn

Eel

Ehole

Quantum Lasers,M. Momeni

5

Refractive Index and Mode Profile

p+ n+ P p n+ P p N

Homostructure Single Heterostructure (SHS) Double Heterostructure (DHS)

n

optical field

Optical confinement is higher for a DHS

Electrical confinement is higher for a DHS lower Ith

Quantum Lasers,M. Momeni

6

Multiple-Quantum Well Laser (MQWL)

P p P

EV

EC

MQW using isotype SQW:

mini bands

P p P p P p P p P

hf hf hf hf

MQW DFB

MQW DFB

Quantum Lasers,M. Momeni

7

Separate Confinement Heterostructure (SCH)

hf

EV

x

P p N

EC

InP

InGaAsP InGaAsP

InP

InG

aAsP

InG

aAs

MQW regionSCH region SCH regioncladding cladding

5 nm 10 nm 50 nm

Quantum Lasers,M. Momeni

8

EC

EG ( InP )

Graded-Index SCH Laser (GRINSCH L)

EG ( InGaAsP )EG ( InGaAs )

EV

GRIN regionGRIN region MQW region

n

cladding cladding

x

Quantum Lasers,M. Momeni

9

Quantum Cascade Laser (QC L) — Principle

interband transition:

intersubband transition:

Eappl

Tunneling rate >> 3 = 1 psand 2 = 0.3 ps << 32 > 1 ps population inversion

Quantum Lasers,M. Momeni

10

QC Laser — -Tailoring

Quantum Lasers,M. Momeni

11

QC Laser — Data

Data [1–5]:

Applications [1–6]:

• Military and Security

• Commercial, Medical

• Free-Space Optical Communication Systems and Astronomy

• Gas detection based on laser spectroscopy with CW or pulsed QC DFB lasers (chemical sensors)

L[m]

Pout[mW]

Jth [A/cm2] /

Eth [kV/cm]

operation mode

T first demo

[year]

$$$

3.4 – 80 200 – 300 (CW) up to 1000 (PM)

250 – 290 /7.5 – 48

PM or CW on cooler

350 1994 AT&T Bell Labs

(later)

Material systems: GaAs based, InP based, Si / SiGe on GaSb, InAs / AlSb on GaSb

CW = continuous wave; PM = pulse mode

Quantum Lasers,M. Momeni

12

Quantum Dot Lasers (QD L) — 1. Principle

b) tunneling-injection QD laser:a) schematic view:

Quantum Lasers,M. Momeni

13

QD L — 2. Principle

a) Prevention of parasitic b) “Limit case” recombination in the OCL

n-cl

addi

ng

p-cl

addi

ng

OC

L

OC

L

QD

electrons

holes

Quantum Lasers,M. Momeni

14

2. SummaryQuantum Lasers use the structures we have discussed so far in order to

1. optimize the properties of a simple Fabry-Perot Laser (L, R, g, ),

2. Increase efficiency ()

3. reduce the threshold current (Ith) and its temperature dependency,

4. change the wavelength of the laser beam (),

5. achieve continuous wave (CW) operation @ RT, and

6. increase the output power (P).

Fabrication:

1. Metallorganic chemical vapor deposition MOCVD2. Molecular beam epitaxy MBE

Quantum Lasers,M. Momeni

15

What we left out… (more presentations?)Basics:

o Quantum Effects (energy quantization, first and second order tunneling effect,…)

o Simple Fabry Perot Laser (FPL) and characteristics

o Concept of gain-guided (active) or index-guided (passive) lasers (wave guiding), e.g. in buried heterostructure lasers (BHS), or separate lateral confinement (LC)

o Distributed bragg reflector (DBR), distributed feedback bragg (reflector) (DFB)

R&D:

Blue Lasers or GaN Lasers

Tunable Lasers (TL) or Tunable Diode Lasers (TDL)

Vertical Cavity Surface Emitting Lasers (VCSEL)

Strained heterostructure QW lasers

Quantum Lasers,M. Momeni

16

3. References (QC L)

[1] Sirtori C., Nagle J., “Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared.” Comptes Rendus Physique, In Press, Corrected Proof, Sep. 2003http://www.sciencedirect.com/science/article/B6X19-49FGMWM-6/2/299ee308e587b6215f4731fbe5cfd566

[2] Garciaa M., Normand E., Stanley C.R., Ironside C.N., Farmer C.D., Duxbury G., Langford N., "An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3.“ Optics Communications, In Press, Uncorrected Proof, Sep. 2003.http://www.sciencedirect.com/science/article/B6TVF-49FXMFB-3/2/607fb52178f815aca3c266c7cf670524

[3] Köhler, R., Tredicucci A., Beltram F., Beere H.E., Linfield E.H., Davies A.G., Ritchie D.A., Iotti, R.C., Rossi F., "Terahertz semiconductor-heterostructure laser" letters to nature, vol. 417 no. 6885, pp. 156–159, May 2002.

[4] Sirtori C., "Applied physics: Bridge for the terahertz gap." Nature news and views, vol. 417, no. 6885, pp. 132–133, May 2002.

[5] Beck M., Hofstetter D., Aellen T., Faist J., Oesterle U., Ilegems M., Gini E., Melchior H., “Continuous wave operation of a mid-infrared semiconductor laser at room temperature.” Science, vol. 295, issue 5553, pp. 301–305, Jan. 2002.

[6] Kosterev A.A., Tittel F.K., "Chemical Sensors Based on Quantum Cascade Lasers." IEEE Journal of Quantum Electronics, vol. 38, no. 6, , pp. 582–591, June 2002.

Quantum Lasers,M. Momeni

17

4. References (QD L)

[7] Asryan L.V., Luryi S., "Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability" IEEE Journal of Quantum Electronics, vol. 37, no. 7, pp. 905–910, July 2001.http://www.ee.sunysb.edu/~serge/177.pdf http://www.ee.sunysb.edu/~serge/publist.pdf

[8] Asryan L.V., Luryi S., Suris R.A., "Internal Efficiency of Semiconductor Lasers With a Quantum-Confined Active Region." IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 404–418, March 2003.http://www.ee.sunysb.edu/~serge/191.pdf

[9] Pelton M., Yamamoto Y., "Ultralow threshold laser using a single quantum dot and a microsphere cavity." Physical Review A, vol. 59, no. 3, pp. 2218–2241, March 1999.

[10] Maximov M.V., Asryan L.V., Shernyakov Yu.M., Tsatsul’nikov A.F., Kaiander I.N., Nikolaev V.V., Kovsh A.R., Mikhrin S.S., Ustinov V.M., Zhukov A.E., Alferov Zh.I., Ledenstov N.N., Bimberg D., "Gain and Threshold Characteristics of Long Wavelength Lasers Based on InAs/GaAs Quantum Dots Formed by Activated Alloy Phase Separation." IEEE Journal of Quantum Electronics, vol. 37, no. 5, pp. 676–683, May 2001.

[11] Luryi S., Xu J.M., Zaslavsky A., Future Trends in Microelectronics: the Nano Millennium, Wiley-IEEE Press, 2002, pp. 219–230.http://www.ee.sunysb.edu/~serge/180.pdf

[12] Bludau, W. Halbleiter-Optoelektronik, München, Wien: Hanser, 1995, pp. 122–123, 151–155, 180–187.

Quantum Lasers,M. Momeni

18

History of Lasers

Welch D.F., “A Brief History of High-Power Semiconductor Lasers.” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1470–1477, Dec. 2000.

Laser history 1917–1996:http://home.achilles.net/~jtalbot/history/

Laser at Bell Laboratories from 1958–1998:http://www.bell-labs.com/history/laser/

Quantum Lasers,M. Momeni

19

Where to find papers…

Where to look for articles on these topics: (use ScienceDirect & IEEE Xplore®)

IEEE http://www.ieee.org/IEEE Journal of Quantum ElectronicsIEEE Photonics Technology LettersIEEE Transactions on Electron DevicesIEEE Proceedings on Optoelectronics

Nature http://www.nature.com/

Science http://www.sciencemag.org/

Applied Physics Letters http://ojps.aip.org/aplo/top.jsp

Laser Focus World http://lfw.pennnet.com/home.cfm

Elsevier http://www.elsevier.com/locate/optcomElsevier Optics CommunicationsElsevier Comptes Rendus Physique

Quantum Lasers,M. Momeni

20

Quantum Lasers,M. Momeni

21

Wanna BUY a quantum laser?

Go online

Click on http://lfw.pennnet.com/home.cfm to get to Laser Focus World

Look for “Buyers Guide” in the left column and click on it!

Type the keywords! E.g. “Quantum Cascade Laser”

You’ll get a list with companies (in this case just one) offering a quantum laser or something related to it, click on the entry and then the company’s link!

You are transferred to the company’s website

BUY ALL YOU WANT OR ALL YOU NEED!(datasheet, images etc. readily available)

Quantum Lasers,M. Momeni

22

1. Example: Quantum Cascade Laser

Laser Components Instrument GroupAddress: 10 Upton Drive

Wilmington, MA 01887Phone: 978-658-9100Fax: 978-658-1888URL: www.laser-components.comEmail: [email protected]: 5Year Founded: 1976Job Openings: unfortunately no…

For prices, talk to Gary Hayes:

This product is a…

HIGHLIGHT!

10.000 – 15.000 US $

Quantum Lasers,M. Momeni

23

n

NE

2. Example: Single-Mode SQW GRINSCH L

Axcel Photonics, Inc.Address: 45 Bartlett Street

Marlborough, MA 01752Phone: 508-481-9200Fax: 508-481-9261URL: http://www.axcelphotonics.com/Email: [email protected]: 18Job Opening: Office Manager

For prices, call John Carry:

1 US $ per mW, up to 500 mW

Quantum Lasers,M. Momeni

24

Pricelist (all in US Dollars)

• MQW DFB Structures:InGaAsP MQW DFB Structure @ 1550 nm 779.35InGaAsP MQW DFB Structure @ 1310 nm 467.00

(more than 600 $ off if you choose a FP!)AlGalnP Index guided MQW structures 24.00 – 189.70

• VCSEL Structures: 8.00 (for each of 50) – 26.00 (for a single one)

• Blue Laser Module 1,795.00 – 2,695.00System 2,195.00 – 9,495.00

• Quantum Cascade Lasers astronomical, even for the diode only

Sources: INTELITE, Inc. http://www.intelite.comThorlabs GmbH http://www.thorlabs.com/index.cfmLaser Components Instrument Group www.laser-components.comAxcel Photonics, Inc. http://www.axcelphotonics.com/

VCSEL

MQW DFB

Quantum Lasers,M. Momeni

25

Abbreviations (Alphabetical Order)

BHS / BH Buried Heterostructure

CW Continuous Wave QL Quantum Laser

DBR Distributed Bragg Reflector QW Quantum Well

DFB Distributed Feedback Bragg SCH Separate Confinement Heterostructure

DHS Double Heterostructure SQW Single-Quantum Well

FP Fabry Perot QC Quantum Cascade

GRINSCH Graded-Index SCH QD Quantum Dot

LASER Light Amplification by Stimulated Emission of Radiation

SHS Single Heterostructure

LC Lateral Confinement SLC Separate Lateral Confinement

MQW Multiple-Quantum Well TL Tunable Lasers

OLC Optical Confinement Layer TDL Tunable Diode Lasers

PM Pulse Mode VCSEL Vertical Cavity Surface Emitting Lasers

Quantum Lasers,M. Momeni

26

For those who want to know more…

Tutorial on Semiconductor Lasers