quantum entanglement and topological order

22
Quantum Entanglement and Topological Order Ashvin Vishwanath UC Berkeley Tarun Grover Berkeley->KITP Ari Turner Amsterdam M. Oshikawa ISSP Yi Zhang Berkeley-> Stanford

Upload: others

Post on 11-Jun-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Entanglement and Topological Order

Quantum Entanglement and Topological Order

Ashvin Vishwanath

UC Berkeley

Tarun Grover

Berkeley->KITP

Ari Turner

Amsterdam

M. Oshikawa

ISSP

Yi Zhang Berkeley-> Stanford

Page 2: Quantum Entanglement and Topological Order

OUTLINE

โ€ข Part 1: Introduction

โ€“ Topological Phases, Topological entanglement entropy.

โ€“ Model wave-functions.

โ€ข Part 2: Topological Entropy of nontrivial bipartitions.

โ€“ Ground state dependence and Minimum Entropy States.

โ€“ Application: Kagome spin liquid in DMRG.

โ€ข Part 3: Quasi particle statistics (modular S-Matrix) from Ground State Wave-functions.

Ref: Zhang, Grover, Turner, Oshikawa, AV: arXiv:1111.2342

Page 3: Quantum Entanglement and Topological Order

Distinguished by spontaneous symmetry breaking.

Can be diagnosed in the ground state wave-function by a local order parameter.

โ€ข Magnets (broken spin symmetry) M ฯˆ โ€ข Superfluids

Solid

โ€ข Solid (broken translation)

In contrast โ€“topological phasesโ€ฆ

Conventional (Landau) Phases

Page 4: Quantum Entanglement and Topological Order

Topological Phases

Integer topological phases

โ€ข Integer Quantum Hall & Topological insulators

โ€ข Haldane (AKLT) S=1 phase

โ€ข Interacting analogs in D=2,3 (Kitaev, Chen-Gu-Wen, Lu&AV)

Non-trivial surface states

Fractional topological phases

โ€ข Fractional Quantum Hall

โ€ข Gapped spin liquids

Topological Order:

1. Fractional statistics excitations (anyons).

2. Topological degeneracy on closed manifolds.

How to tell โ€“ given ground state wave-function(s)? Entanglement as topological `order parameterโ€™.

Page 5: Quantum Entanglement and Topological Order

Topological Order โ€“ Example 1

โ€ข Laughlin state (ฮฝ=1/2 bosons) [`Chiral spin Liquidโ€™]

ฮจ {๐‘ง๐‘–} = ๐‘ง๐‘– โˆ’ ๐‘ง๐‘—2๐‘’โˆ’ ๐‘ง๐‘–

2๐‘–

๐‘–<๐‘—

),,(),,( 21121 NCN rrrrrr 2

Lattice Version

โ€ข Ground State Degeneracy (N=2g):

N=1 N=2

Quasiparticle Types: {1, s}.

# = Torus degeneracy

๐‘–

s is a semion

Page 6: Quantum Entanglement and Topological Order

Topological Order โ€“ Example 2 Ising (Z2) Electrodynamics

0 E

โ€ข Here E=0,1; B=0,ฯ€ (mod 2) (E field loops do not end)

ฮจ =

โ€ข Degeneracy on torus=4.

โ€ข Degeneracy on cylinder=2

(no edge states)

Page 7: Quantum Entanglement and Topological Order

Topological Order โ€“ Example 2 Z2 Quantum Spin Liquids

RVB spin liquid: (Anderson โ€™73). Effective Theory: Z2 Gauge Theory.

Recently, a number of candidates in numerics with no conventional order.

Definitive test: identify topological order.

Kagome (Yan et al) Honeycomb Hubbard (Meng et al)

Square J1_J2 (Jiang et al, Wang et al)

ฮจ =PG(ฮจBCS)

Page 8: Quantum Entanglement and Topological Order

Entanglement Entropy

โ€ข Schmidt Decomposition:

ฮจ = ๐‘๐‘–๐‘–๐ด๐‘– โŠ— ๐ต๐‘–

Entanglement Entropy (von-Neumann):

๐‘†๐ด = โˆ’ ๐‘๐‘–log ๐‘๐‘–๐‘–

Note: 1) ๐‘†๐ด = ๐‘†๐ต

2) Strong sub-additivity (for von-Neumann entropy)

0 ABCABACBCCBA SSSSSSS

Page 9: Quantum Entanglement and Topological Order

Topological Entanglement Entropy

โ€ข Gapped Phase with topological order. โ€“ Smooth boundary, circumference LA:

B A

Topological Entanglement Entropy (Levin-Wen;Kitaev-Preskill)

ฯ’=Log D . (D : total quantum dimension). Abelian phases:

๐ท = โˆš{๐‘‡๐‘œ๐‘Ÿ๐‘ข๐‘  ๐ท๐‘’๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘๐‘ฆ}

- aL S AA

Z2 gauge theory: ฯ’=Log 2 Constraint on boundary โ€“ no gauge charges inside. Lowers Entropy by 1 bit of information.

Page 10: Quantum Entanglement and Topological Order

Entanglement Entropy of Gapped Phases

โ€ข Trivial Gapped Phase:

โ€“ Entanglement entropy: sum of local contributions.

1/ฮบ

A

22 )( lF 4210 aaaa

Curvature Expansion (smooth boundary):

A

AL

AL 2

0

2

20A

a

]aa[dlS

B

Z2 symmetry of Entanglement Entropy: SA= SB AND ฮบโ†’- ฮบ. So a1=0 No constant in 2D for trivial phase.

X

Grover, Turner, AV: PRB 84, 195120 (2011)

Page 11: Quantum Entanglement and Topological Order

Extracting Topological Entanglement Entropy

โ€ข Smooth partition boundary on lattice?

B A

OR

โ€ข Problem:

`topological entanglement entropyโ€™ depends on ground state. (Dong et al, Zhang et al)

โ€ข General Partition

B A

C

ABCABACBCCBA SSSSSSS-

(LevinWen;Preskill Kitaev)

Strong subadditivity implies: Identical result with Renyi entropy How does this work with generic states?

0

Page 12: Quantum Entanglement and Topological Order

Topological Entropy of Lattice Wavefunctions

ฯ’ โ€“ From MonteCarlo Evaluation of Gutzwiller Projected Lattice wave-functions. ๐’†โˆ’๐‘บ๐Ÿ = โŸจ๐‘บ๐‘พ๐‘จ๐‘ท๐‘จโŸฉ. (Y. Zhang, T. Grover, AV Phys. Rev. B 2011.)

0.42 ยฑ 0.14

Good agreement for chiral spin liquid. Z2 not yet in thermodynamic limit(?)

Alternate approach to diagnosing topological order: Entanglement spectrum (Li and Haldane, Bernevig et al.).

Closely related to edge states Does not diagnose Z2 SL Cannot calculate with Monte Carlo.

Page 13: Quantum Entanglement and Topological Order

Part 2: Ground State Dependence of Topological Entropy

Page 14: Quantum Entanglement and Topological Order

Topological Entanglement in Nontrivial bipartitions

โ€ข Nontrivial bipartition - entanglement cut is not contractible. Can `senseโ€™ degenerate ground states.

โ€ข Result from Chern-Simons field theory: (Dong

et al.)

โ€ข Abelian topological phase with N ground states on torus.

There is a special basis of ground states for a cut, such that:

โ€ข ฮจ = ๐‘๐‘›|๐œ™๐‘›โŸฉ๐‘๐‘›=1 (๐‘๐‘› = ๐‘๐‘›

2)

๐›พ = 2๐›พ0 โˆ’ ๐’‘๐’ ๐ฅ๐จ๐ ๐Ÿ

๐’‘๐’

๐‘ต๐’=๐Ÿ

Topological entropy in general reduced. 0 โ‰ค ๐›พ โ‰ค 2๐›พ0 For the special states ๐œ™๐‘› , equal to usual value (๐›พ = 2๐›พ0=2log D). These Minimum Entropy States correspond to quasiparticles in cycle of the torus

Page 15: Quantum Entanglement and Topological Order

Eg. Z2 Spin Liquid on a Cylinder

โ€ข The minimum entropy states (๐›พ = log 2) are `visonโ€™ states โ€“ magnetic flux through the cylinder that entanglement surface can measure.

โ€ข State ๐‘’ has ๐›พ = 0. Cancellation from:

โ€ข Degenerate sectors: even and odd E winding around cylinder.

Minimum Entropy States:

๐‘’

๐‘œ 0, ๐œ‹ = ( ๐‘’ ยฑ |๐‘œโŸฉ)/โˆš2

B A

ฮจ = ๐ด, ๐‘’๐‘ฃ๐‘’๐‘› ๐ต, ๐‘’๐‘ฃ๐‘’๐‘› + ๐ด, ๐‘œ๐‘‘๐‘‘ ๐ต, ๐‘œ๐‘‘๐‘‘

โˆš2

0โŸฉ, |๐œ‹

Page 16: Quantum Entanglement and Topological Order

Application: DMRG on Kagome Antiferromagnet

โ€ข Topological entanglement entropy found by extrapolation within 1% of log 2.

โ€ข Minimum entropy state is selected by DMRG (low entaglement).

โ€ข Possible reason why only one ground state seen.

Depenbrock,McCulloch, Schollwoeck (arxiv:1205:4858). Log base 2

Jiang, Wang, Balents: arXiv:1205.4289

B A

Page 17: Quantum Entanglement and Topological Order

Ground State Dependence of Entanglement Entropy

โ€ข Chiral spin liquid on Torus:

โ€“ Degenerate ground states from changing boundary conditions on Slater det.

),,(),,( 21121 NCN rrrrrr 2

1C

Trivial Bipartition: No ground state dependence.

1 2cos sin

Page 18: Quantum Entanglement and Topological Order

Ground State Dependence of Entanglement Entropy

โ€ข Chiral spin liquid on Torus:

โ€“ Degenerate ground states from changing boundary conditions on Slater det.

1C

Non trivial Bipartition: Ground state dependence!

1 2cos sin

Page 19: Quantum Entanglement and Topological Order

Ground State Dependence of Topological Entropy from Strong Sub-additivity

โ€ข Strong subadditivity: ๐‘†๐ด๐ต๐ถ + ๐‘†๐ต โˆ’ ๐‘†๐ด๐ต โˆ’ ๐‘†๐ต๐ถ โ‰ค 0

๐œธ๐Ÿ ๐œธ๐Ÿ ๐œธ๐ŸŽ

Obtain `uncertaintyโ€™ relation:

๐œธ๐Ÿ + ๐œธ๐Ÿ โ‰ค ๐Ÿ๐œธ๐ŸŽ

Naรฏve result, ๐›พ1 = ๐›พ2 = 2๐›พ0 ๐‘๐‘Ž๐‘›๐‘›๐‘›๐‘œ๐‘ก hold from general quantum information requirement. True even without topological field theory .

Page 20: Quantum Entanglement and Topological Order

Part 3: Mutual Statistics from Entanglement

โ€ข Relate minimum entropy states along independent torus cuts. (modular transformation: S matrix)

๐‘€๐ธ๐‘†: ๐œ™1, ๐œ™2 ๐‘€๐ธ๐‘†: ๐œ™โ€ฒ1, ๐œ™โ€ฒ2

๐œ™โ€ฒ1๐œ™โ€ฒ2= ๐‘บ๐œ™1๐œ™2

S encodes quasiparticle braiding statisitics: Chiral Spin Liquid:

๐‘† =1

โˆš2

1 11 โˆ’1

e

e

s

s

๐‘†ab ๐‘Ž b

Page 21: Quantum Entanglement and Topological Order

Zhang, Grover, Turner, Oshikawa, AV (2011).

Semion Statistics! 1.09 0.89

0.89 1.02 9

1

S

Statistics from Entanglement โ€“ Chiral Spin Liquid

Wavefunction `knowsโ€™ about semion exciations;

Page 22: Quantum Entanglement and Topological Order

Conclusions

โ€ข Entanglement of non-trivial partitions can be used to define `quasiparticleโ€™ like states, and extract their statistics.

โ€ข Useful to distinguish two phases with same D. (eg. Z2 and doubled chiral spin liquid, no edge states) Less prone to errors.

โ€ข Can topological entanglement entropy constrain new types of topological order (eg D=3)?

โ€ข Experimental measurement? Need nonlocal probe.