quantum chemical models of electronic transitions of ... · atoms, and one p electron for every...

17
Quantum Chemical Models of Electronic Transitions of Conjugated Dyes 2 Brittany Schaum 1 March 2014 (Partner: Yuantao Chen) Abstract UV-Vis spectroscopy was used to determine the energy of transition, , from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of several cationic dyes. Each dye contains a conjugated, hydrocarbon π system with nitrogens at each end, which act as potential barriers for the π electrons in these systems. In this experiment, we have treated each dye as a one-dimensional “particle in a box” in order to simplify the calculation of . We also derive eq. 12 and 13 from this model in order to predict l #$% , which we compared with experimental data. Our initial approximation of l #$% (eq. 12) was poor, with ~20% error on average, but when a variable parameter, α, was added, calculations were quite accurate, with < 5% error. The calculated value for α was 0.682543. Gaussian was also used to predict l #$% , also with large error, ~20%. However, experimental data for l #$% was quite accurate, with < 1% error compared to literature values. I. Introduction Our understanding of the behaviour of electrons owes itself to quantum mechanics. Quantum mechanics reveals that particles exhibit wave-like properties on the atomic scale, and thus, exist in discrete states with characteristic energy levels. Since the amount of energy an electron can have in non-continuous, it follows that an electron can only gain or lose an amount of energy exactly equal to the difference in energy between its current state and another discrete state. It is known that electrons gain or lose energy in the form of electromagnetic radiation, which of course always has a characteristic wavelength. The electronic transitions which occur between atomic and also complex molecular orbitals

Upload: others

Post on 09-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

QuantumChemicalModelsofElectronicTransitionsofConjugatedDyes2

BrittanySchaum 1March2014

(Partner:YuantaoChen)

Abstract

UV-Visspectroscopywasusedtodeterminetheenergyoftransition,∆𝐸,fromthehighest

occupiedmolecularorbital(HOMO)tothelowestunoccupiedmolecularorbital(LUMO)ofseveral

cationicdyes.Eachdyecontainsaconjugated,hydrocarbonπsystemwithnitrogensateachend,which

actaspotentialbarriersfortheπelectronsinthesesystems.Inthisexperiment,wehavetreatedeach

dyeasaone-dimensional“particleinabox”inordertosimplifythecalculationof∆𝐸.Wealsoderiveeq.

12and13fromthismodelinordertopredictl#$%,whichwecomparedwithexperimentaldata.Our

initialapproximationofl#$%(eq.12)waspoor,with~20%erroronaverage,butwhenavariable

parameter,α,wasadded,calculationswerequiteaccurate,with<5%error.Thecalculatedvalueforα

was0.682543.Gaussianwasalsousedtopredictl#$%,alsowithlargeerror,~20%.However,

experimentaldataforl#$%wasquiteaccurate,with<1%errorcomparedtoliteraturevalues.

I. Introduction

Ourunderstandingofthebehaviourofelectronsowesitselftoquantummechanics.Quantum

mechanicsrevealsthatparticlesexhibitwave-likepropertiesontheatomicscale,andthus,existin

discretestateswithcharacteristicenergylevels.Sincetheamountofenergyanelectroncanhavein

non-continuous,itfollowsthatanelectroncanonlygainorloseanamountofenergyexactlyequalto

thedifferenceinenergybetweenitscurrentstateandanotherdiscretestate.Itisknownthatelectrons

gainorloseenergyintheformofelectromagneticradiation,whichofcoursealwayshasacharacteristic

wavelength.Theelectronictransitionswhichoccurbetweenatomicandalsocomplexmolecularorbitals

Page 2: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

canbeobservedbyexploitingthisfact.Thelowestenergytransitionofelectronsinamoleculeis

typicallythetransitionbetweentheHOMO(highestoccupiedmolecularorbital)andtheLUMO(lowest

unoccupiedmolecularorbital).Therelationshipbetweenthedifferenceinenergybetweentwo

electronicstatesandthecorrespondingwavelengthofelectromagneticradiationis4

DE=()l (1)

whereDE,h,c,andlrepresentthechangeinenergy,Planck’sconstant,andthespeedandwavelength

oftheelectromagneticradiation,respectively.Itisclearfromeq.1thatlowerenergytransitionsina

moleculecorrespondtolongerwavelengths.Whentheseenergeticdifferencesarelessthanabout70

kcal/mol,visiblelight(electromagneticradiationintherangeof~ 380-760nm)isemitted/absorbed.

Moleculeswithconspicuouscolortendtobeoneswithhighlyconjugatedp-systems.Fourexamplesof

suchmolecules,cationicdyeswithextendedp-systems,werestudiedinthisexperiment.

Figure1.Structuresandnamesofdyesstudied

Thestatesofelectronsandtheircorrespondingenergiescanalsobedescribedbythenon-

relativistic(time-independent)Schrödingerequation4

Page 3: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

− (+

,-+#∇/ + 𝑉 𝑟 𝛹(𝑟) = 𝐸𝛹(𝑟) (2)

wheremisthemassoftheelectron,∇/istheLaplacianoperator,V(r)istheposition-dependent

potentialoperator,Eistheenergyoftheelectron,and𝛹(𝑟)isthewavefunction(whererrepresents

thepositioncoordinates).Whennopotentialisactingupontheelectron(orifitisnegligible),eq.2

reducesto

− (+

,-+#∇/ 𝛹(𝑟) = 𝐸𝛹(𝑟) (3)

Suchisthecasefora“particleinabox,”oraparticlewhichisconfinedtoanareaofzero(orconstant)

potentialbyinfinitepotential“walls.”Infact,thewavefunctionforaone-dimensionalparticleinabox

is

𝛹 𝑥 = /8sin <-%

8 (4)

whereListhe“length”ofthebox,orthelengthofthespacetowhichtheparticleisconfined.Inhighly

conjugatedp-systems,suchasthoseinthemoleculesshowninfigure1,moleculescanbethoughtofas

essentiallyplanar,withallp orbitalsparalleltooneanotherandwithp electronsmovingfreelywithin

this p system,accordingtoErichHückel.This“free-electron”model3,althoughanapproximation,is

quitesimpleaswellasaccuratewhencomparedtoexperimentalresults.Analysisofthemolecular

orbitalsofthemoleculesshowninfigure1wouldbeotherwisequitecomplex,andindeed,computer

softwarecanalsobeusedforthisanalysis.

Ifthe“freeelectron”modelistobeusedtoanalyzethedyesshowninfigure1,thebenzene

ringsareignoredandthep systemisthoughttoconsistofonep-orbitalforeachofthetwonitrogen

atoms,plusoneforeachcarbonatominthechainconnectingthem.Itisalsoassumedthatpotential

energyremainsconstanteverywherealongthischain,andthatthepotentialessentiallyreachesinfinity

Page 4: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

justbeyondthenitrogenatoms.The“particles”inthisparticleinaboxmodelare,ofcourse,the

p electronsofthisconjugatedsystem,andsolvingeq.3(aneigenvalueequation)bysubstitutingeq.4

(anappropriateeigenfunctionforeq.3)wecanobtaintheirenergylevels(theeigenvaluesofthis

eigenfunction):

𝐸< = (+<+

,#8+ (5)

wherenisanyinteger>0.AccordingtothePauliexclusionprincipal,thenumberofelectronswhich

occupyanygivenenergylevelcannotexceedtwo,whichthereforemeansthatthegroundstateofany

moleculewithNp electronswillhave=/filledenergylevelsifNiseven,and=>?

/filledlevelsifNisodd.

Then-valuewhichcorrespondstotheHOMOwouldbe

𝑛ABCB =

𝑁2𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛

𝑁 + 12

𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑

andthen-valuewhichcorrespondstotheLUMOwouldbe

𝑛8NCB =

𝑁 + 22

𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛

𝑁 + 32

𝑖𝑓𝑁𝑖𝑠𝑜𝑑𝑑

DEforthelowestenergyelectronictransitionisthatofatransitionbetweentheHOMOandLUMO,andisequalto

∆𝐸 = (+

,#8+𝑛8NCB/ −𝑛ABCB/ =

(+

,#8+=+

P+ 𝑁 + 1 − =+

P= (+

,#8+𝑁 + 1 𝑖𝑓𝑁𝑖𝑠𝑒𝑣𝑒𝑛

(+

,#8+=+

P+Q=

/+ R

P− =+

P+ 𝑁 + 1 = (+

,#8+𝑁 + S

PifNisodd

(8)

Page 5: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Forthecationicdyesstudiedinthisexperiment,therearethreep electronsfromthetwonitrogen

atoms,andonep electronforeverycarbonatominthechainconnectingthem.Ifweletp=thenumber

ofcarbonatomsinthep systemofeachdye,itfollowsthatN=p+3.Sincethenumberofcarbonatoms

inthechainofeachdyeisodd,Nwillalwaysbeodd,sinceN=p+3andpisalwaysanoddnumber.

Thus,eq.8reducesto

∆𝐸 = (+

,#8+𝑛8NCB/ −𝑛ABCB/ = (+

,#8+𝑁 + 1 (9)

Inthisexperiment,thelowest-energyelectronictransitionofeachdyepicturedinfigure1was

analyzedusingUV-Visspectroscopy.Sincethistransitioninthesedyesoccursuponabsorptionof

electromagneticradiationinthevisiblelightregion,themostprominentabsorbancebandforeach

moleculeshouldbebetween380and760nm.Ifwesubstituteeq.1intoeq.9andsolveforl,wehave

l#$% = ,#)8+

((=>?) (10)

wherel#$%isthewavelengthofmaximumabsorbance,sinceaBoltzmann5distributionpredictsthat

thewavelengthofmaximumabsorbancewillbethatofthelowestenergyelectronictransition(that

whichoccursbetweentheHOMOandLUMO).Lforeachdyeisestimatedtobethesumofthelengthof

thecarbonchainbetweenthenitrogenatomsandonebondlengthoneachside.Sincethenumberof

bondsbetweeneachnitrogenatomisp+1,ifeachbondlengthisestimatedtobeapproximatelythe

same(duetoconjugation),say,alengthl,thenL=(p+3)l.Ifwesubstitutethisintoeq.10andusethe

factthatN=p+3,wehave

l#$% = ,#)X+ Y>Q +

( Y>P (11)

Page 6: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Ifwepredictthatlisapproximatelyequaltothebondlengthobservedinbenzene(1.39Å),and

substitutethemassofanelectron,thespeedoflight,andPlanck’sconstant,wecansaythat

l#$% = 63.7 Y>Q +

Y>P (12)

approximately,wherel#$%isinnanometers.Sinceitismorelikelythatthepotentialateachendofthe

chainrisesgraduallyratherthanjumpingtoinfinity,wecanaddavariableparameter,α,toLtoaccount

forthisadditionallength(thiswillalsohelpmaketheapproximationofthebondlengthsinthechain

moreappropriate,sincetheymaynotbeexactly1.39Å)bysayinginsteadthatL=(p + 3 + α)l.Thus,eq.

12becomes

l#$% = 63.7 Y>Q>] +

Y>P (13)

whereαshouldremainconstantforthisseriesofmolecules(theonlydifferencebetweeneachmolecule

isthelengthoftheinternitrogenouscarbonchain).Inthisexperiment,calculationsofl#$%usingeq.13

werecomparedtoexperimentalobservationsofl#$%foreachdyeinordertooptimizeα.

Additionally,thecomputerprogram,Gaussian,wasusedtopredictthelowest-energy

conformationofeachstructureshowninfigure1,andthentocalculatetheenergyoftheHOMOand

LUMOofeachdye(whichcanbeusedtoestimatel#$%).Theseresultswerealsocomparedto

experimentaldata.

II. Experimentalmethod

Part1.AnOceanOpticsSpectrometerwasusedtoobtainUV-Visspectraofeachcationicdye

showninfigure1.Methanolicsolutionsofeachdyewerecreated,andconcentrationswereadjusted

untilabsorbancebandshadmaximumintensitiesjustbelow1(allconcentrationswereontheorderof

Page 7: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

micromolar).TheabsorbancedataforeachdyewasrecordedandplottedinMicrosoftExcel.Thisdata

wasusedtodeterminel#$%foreachdye.

Part2.Eq.13wasused,withastartingvalueof1forα,inordertoobtaintheoreticalvaluesfor

l#$%foreachdye.InMicrosoftExcel,theSolveradd-inwasusedtooptimizeα;αwasallowedto

varyuntiltheminimumvalueforthesumofthedifferenceofsquaresofeachtheoreticaland

experimentall#$%wasobtained.

Part3.Thecomputerprogram,Gaussian,wasusedtocalculatel#$%foreachdyeshown

infigure1.First,semi-empiricalAM1geometryoptimizationsforeachdyewereperformed

(hydrogenatomsweresubstitutedfortheethylgroupsattachedtonitrogenineachdyewhen

constructingeachmolecule).Next,morerigorousgeometricaloptimizationwasperformedatthe

HF/3-21Glevel.Theoutputofthesegeometricoptimizationswereusedinordertoperformsingle-

pointcalculationsattheDFT/3-21GandDFT/6-31+level.TheMOeditorinGaussianwasusedin

ordertoobtaintheenergyoftheHOMOsandLUMOsofeachdyeforeachcalculationmethod.

OnceGaussianwasusedtodeterminetheenergyoftheHOMOandLUMOofeachdye,∆𝐸was

calculatedinordertoobtainatheoreticalvalueforl#$%,usingeq.1(whereeq.1wasrearrangedto

solveforl#$%).ThiswasdonefortheresultsofboththeDFT/3-21GandDFT/6-31G+methodsof

singlepointcalculation.

III. Results

First,anOceanOpticsSpectrometerwasusedtoobtainUV-Visspectraofeachcationicdye

showninfigure1.Methanolicsolutionsofeachdyewerecreated,andconcentrationswereadjusted

Page 8: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

untilabsorbancebandshadmaximumintensitiesjustbelow1.Thesespectracanbeviewedinfigure2.

Figure2.AbsorbancespectraofmethanolicsolutionsofDTC,DTCC,DTDC,andDTTCwithconcentrationsof4.3µM,

3.2µM,3.9µM,and5.1µM,respectively,obtainedusinganOceanOpticsspectrometer.

Todeterminel#$%foreachdye,absorptiondatawascopiedintoMicrosoftExcel.Absorbance

valuesforeachdyeweresortedgreatest-to-leastbyExcel,andthecorrespondingwavelengthswere

recorded.Thevaluesobtainedforl#$%foreachdyecanbeviewedintable1.

-0.2

0

0.2

0.4

0.6

0.8

1

370 420 470 520 570 620 670 720 770

Absorbance

Wavelength(nm)

DTDC

DTTC

DTCC

DTC

Page 9: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Dyemolecule Concentration(µM) 𝐴#$% l#$%(nm)

DTC 4.3 0.619 422.9

DTCC 3.2 0.703 556.6

DTDC 3.9 0.613 651.5

DTTC 5.1 0.949 758.5

Table1.ConcentrationofmethanolicsolutionsofDTC,DTCC,DTDC,andDTTC(inµM),theirmaximumabsorbances

(𝐴#$%),andwavelengthat𝐴#$%(l#$%,innanometers).

Next,eq.13wasused,withastartingvalueof1forα,inordertoobtaintheoretical

valuesforl#$%foreachdye.ValuesofpusedforDTC,DTCC,DTDC,andDTTCwere3,5,7,and9,

respectively.InMicrosoftExcel,theSolveradd-inwasusedtooptimizeα.Thiswasdonebyallowingα

tovaryuntiltheminimumvalueforthesumofthedifferenceofsquaresofeachtheoreticaland

experimentall#$%wasobtained.Theresultsofthisoptimizationcanbeviewedintable2.

Dyemolecule p l_%Y_`a#_<b$c (nm) l)$c)dc$b_e (nm) (lfghil)$c))/

DTC 3 422.9

406.3731

273.1396

DTCC 5 556.6

533.5693

530.4146

DTDC 7 651.5

660.8396

87.22772

DTTC 9 758.5

788.1498

879.1102

Total:

1769.892

α: 0.682543

Table2.TheresultsofoptimizationofαusingSolverinMicrosoftExcel.Tableshowsexperimentalvaluesfor

l#$%foreachdye,valuesforl#$%calculatedusingeq.13whileallowingαtovaryforeachdye,thedifferenceof

squaresofthesevalues,thesumofthesedifferencesofsquares,andtheresultingoptimizedvalueforα.

Page 10: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Predictionsforthevalueofl#$%werealsocalculatedwithoutthevariableparameterα,shownin

table2-a,andanexampleofthiscalculationcanbeviewedinfigure3.

DTC: p=3

(12) l#$% = 63.7 Y>Q +

Y>P=63.7 Q>Q +

Q>P=(63.7𝑛𝑚) Qk

l=327.6nm

Figure3.Samplecalculationofl#$%usingeq.12.

Dyemolecule l#$%(nm)

DTC 327.6

DTCC 453.0

DTDC 579.1

DTTC 705.6

Table2-a.Theoreticalvaluesforl#$%calculatedusingeq.12(withoutα),innanometers.

Thecomputerprogram,Gaussian,wasalsousedtocalculatel#$%foreachdyeshownin

figure1.First,semi-empiricalAM1geometryoptimizationsforeachdyewereperformed(hydrogen

atomsweresubstitutedfortheethylgroupsattachedtonitrogenineachdyewhenconstructingeach

molecule).Next,morerigorousgeometricaloptimizationwasperformedattheHF/3-21Glevel.The

outputofthesegeometricoptimizationswereusedinordertoperformsingle-pointcalculationsatthe

DFT/3-21GandDFT/6-31+level.TheMOeditorinGaussianwasusedinordertoobtaintheenergyof

theHOMOsandLUMOsofeachdyeforeachcalculationmethod.Theresultsofthesecalculationscan

beviewedintable3.

Page 11: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

DFT/3-21G: DFT/6-31G+:

𝐸ABCB(H) 𝐸8NCB(H) 𝐸ABCB(H) 𝐸8NCB(H)

DTC -0.33134 -0.19399 -0.32881 -0.19311

DTCC -0.30352 -0.20108 -0.30140 -0.20011

DTDC -0.28650 -0.19870 -0.28448 -0.19744

DTTC -0.27325 -0.19631 -0.27125 -0.19487

Table3.ValuesobtainedfortheenergyoftheHOMOsandLUMOsofDTC,DTCC,DTDC,andDTTCusingDFT/3-21G

andDFT/6-31G+singlepointcalculations,inHartrees(H).

TheMOeditorinGaussianwasalsousedtovisualizetheHOMOsandLUMOsofeachdye.

Samplesofthesevisualizationsareshowninfigures4–7.

Figure4.VisualizationoftheHOMOofDTCusingDFT/6-31G+singlepointcalculationinGaussian.Initialgeometric

optimizationusingAM1canalsobeseen(thestructurewasestimatedtobecompletelyplanar).Oppositephases

arerepresentedbygreenandred,sulfurisrepresentedbyyellowtube,andnitrogenisrepresentedbyabluetube.

Theremainingtubestructure(ingrey)representstheremainingcarbon“frame”ofthemolecule.

Page 12: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Figure5.VisualizationoftheLUMOofDTC,alsousingDFT/6-31G+singlepointcalculationinGaussian

(representationissimilartothatoffigure4).

Figure6.VisualizationoftheHOMOofDTTC,usingDFT/3-21GsinglepointcalculationinGaussian(representation

issimilartothatoffigures4and5).

Page 13: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Figure7.VisualizationoftheLUMOofDTTC,usingDFT/3-21GsinglepointcalculationinGaussian(representation

issimilartothatoffigures4,5,and6).

OnceGaussianwasusedtodeterminetheenergyoftheHOMOandLUMOofeachdye(table3),

thedifferenceinenergybetweentheHOMOandLUMOofeachdyewascalculatedinordertoobtaina

theoreticalvalueforl#$%,usingeq.1(whereeq.1wasrearrangedtosolveforl#$%).Thiswasdone

fortheresultsofboththeDFT/3-21GandDFT/6-31G+methodsofsinglepointcalculation.Since

GaussianyieldsenergyvaluesinunitsofHartrees,thesevalueswereconvertedtoJoulesbeforeusing

eq.1.Anexampleofthiscalculationcanbeviewedinfigure8andtheresultsofthesecalculationscan

beviewedintable4.

DTC,DFT/3-21G: DE=𝐸8NCB-𝐸ABCB=-0.19399H+0.33134H=0.13735H

0.13735HxP.QSR,%?mnopq

?A=5.998x10i?R𝐽

(1) l#$%=()∆t= k.k/k%?m

nuvq∗x /.RR,%?moy<# xS.RR,%?mnozq

=331.7nm

Figure8.Calculationofl#$%ofDTCusingeq.1andDFT/3-21GenergycalculationsfromGaussian(seetable3).

Page 14: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

DFT/3-21G: DFT/6-31G+:

∆𝐸(H) l#$%(nm) ∆𝐸(H) l#$%(nm)

DTC 0.13735 331.7 0.13570 335.8

DTCC 0.10244 444.8 0.10129 449.8

DTDC 0.08780 518.9 0.08704 523.5

DTTC 0.07694 592.2 0.07638 596.5

Table4.Calculatedvaluesfor∆𝐸andtheoreticalvaluesforl#$%usingresultsoftable3andthecalculations

showninfigure8.

Finally,valuesobtainedforl#$%usingeq.12,eq.13,andGaussianwerecomparedto

experimentalvalues(table1).Percenterrorsintheoreticalvalueswereobtainedusingthesample

calculationshowninfigure9andtheresultsofthesecalculationscanbeviewedintable5.

l𝒎𝒂𝒙forDTCusingGaussian,DFT/6-31G+singlepointcalculation:335.8nm

Experimentall𝒎𝒂𝒙forDTC:422.9nm

%error=l𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍il𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍

l𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍x100%=-2.06%

Figure9.Samplecalculationofpercenterrorforthetheoreticalcalculationofl#$%forDTCusingGaussianDFT/6-

31G+singlepointcalculation.

%errorincalculationsusing:

Freeelectronapproximation

Gaussiansinglepointcalculation

withoutα(eq.12)

withα(eq.13)

DFT/3-21Gmethod

DFT/6-31+method

DTC -22.5 -3.9 -21.6 -20.6

DTCC -18.6 -4.1 -20.1 -19.2

DTDC -11.1 +1.4 -20.4 -19.6

DTTC -7.0 +3.9 -21.9 -21.4

Table5.Percenterroroftheoreticalvaluesobtainedforl#$%usingeq.12,eq.13,GaussianDFT/3-21G,and

GaussianDFT/6-31G+ascomparedtoexperimentalvalues.

Page 15: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

Literaturevaluesforl#$%werealsousedtocalculatepercenterrorinexperimentaland

theoreticaldataobtained.Theseresults,aswellastheliteraturevalues1forl#$%ofeachdye,are

shownintable5-a.

%errorincalculationsusing:

Freeelectronapproximation

Gaussiansinglepointcalculation

withoutα(eq.12)

withα(eq.13)

DFT/3-21Gmethod

DFT/6-31+method

Experimentaldata

Literaturevalues1forl#$%(nm)

DTC -22.7 -4.2 -21.8 -20.8 -0.3 424DTCC -19.1 -4.7 -20.6 -19.7 -0.6 560DTDC -11.6 +0.9 -20.8 -20.1 -0.5 655DTTC -7.8 +3.0 -22.6 -22 -0.8 765

Table5-a.Literaturevaluesforl#$%ofeachdye,andpercentdeviationfromthesevaluesoftheexperimental

data,freeelectronapproximations,andGaussiancalculations.

IV. Discussion

ItwouldseemfromthegivenliteraturevaluesforDTC,DTCC,DTDC,andDTTCthatthe

experimentaldataisquiteaccurate(theabsolutevalueofthepercentdeviationofeachislessthan1%).

Itwouldalsoseemthatapproximationsusingeq.13arealsoquiteaccurate(theabsolutevalueofthe

percentdeviationofeachislessthan5%).However,allotherapproximations,especiallythoseusing

Gaussian,seemtobequiteinaccurate(theabsolutevalueofthepercentdeviationofeachisgreater

than5%,andinfact,oftenexceeds20%,whichisquitehigh).Ingeneral,almostallapproximationsare

underestimationsofl#$%,withonlytwoexceptions(bothofwhichareapproximationsusingeq.13).

Consideringthefactthattheentireelectromagneticspectrumspanstwenty-fourordersof

magnitude,thatthevisiblelightspectrumishardlyoneorderofmagnitudeinsize,andthatthe

approximationsusingGaussianandeq.12estimatel#$%tobesomewhereintherangeofvisiblelight,

Page 16: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

thesemethodsactuallyseemquiteimpressive.However,thereareobviousflawsinthese

approximations.Intheapproximationofl#$%usingeq.12,itisassumedthatthebondlengthbetween

allatomsintheinternitrogenouschainofeachdyemoleculeispreciselythatofcarbon-carbonbondsin

benzene(1.39Å),andthatthereispreciselyonebondlengthofthislengthoneithersideofeach

nitrogenbeforethepotentialofthemoleculereachesinfinity.Inreality,despitethefactthatthisregion

ofeachmoleculeisconjugated,itisnotknownifthesebondlengthsareprecisely1.39Å(buteq.12

assumesthatthisisso).Also,itismuchmorelikelythatinsteadoftherebeinganinfinitepotential

“wall”oneithersideofeachnitrogen,thepotentialmostlikelyrisesgradually,whichwouldallowan

electrontomoveabitfurtherthanexpected.Thisexplainsthepositivevalueofα;Lisprobablyabit

longerthan(p+3)l.Additionally,eveniftherewereinfinitepotential“walls”beyondeithersideofeach

nitrogen,quantumtunnelingpredictsthatthereisacertainprobabilityoffindinganelectronbeyond

thosewalls.DespitethehugeerrorintheGaussianapproximationsof∆E,figures4–7showthatthe

lowestenergyconformationofeachofthedyemoleculesstudiedisplanar,andthatthereisa

“boundary”(anode)justbeyondeachnitrogen,inboththeHOMOandLUMOofeachmolecule.We

haveignoredtheethylgroupsattachedtonitrogenineachmolecule,replacingthemwithhydrogens.In

theory,thisshouldnotaffecttheenergyoftheπsystem,butbecauseoftheplanarnatureoftheπ

systemandthefactthatthecarbontwiceremovedfromnitrogenshouldbeabletomovefreely,thereis

perhapsachancethatthereissomeπorσinteractionfromthiscarbon,whichwouldofcourseaffect

theenergyoftheπsystemandmakeitdeviatefromtheconditionsofthe“freeelectron”model.

CalculationswouldhavetoberepeatedwithGaussianwiththeseethylgroupsaddedinordertosee

whetherornottheyaffecttheenergyoftheHOMOandLUMO(atime-dependentDFTmaybeinorder,

sincethecarbonsinquestionshouldbeinanon-inertialframerelativetotherestofthemolecule).Also,

whileeq.13mayseemmostaccurate,itisstillanartifice,sincewearesimplyusingavariable

parameterto“makeup”forthelackofaccuracyintheassumptionswhichallowedustoderiveit,rather

Page 17: Quantum Chemical Models of Electronic Transitions of ... · atoms, and one p electron for every carbon atom in the chain connecting them. If we let p = the number of carbon atoms

thanaccountingforphysicalfactorswhichwouldexplainthislackofaccuracy.Onesimplecorrection,to

startwith,wouldbetorecognizethatthepotentialwithintheπsystemshouldnotsimplybezero,but

rather,anon-zeroconstant(orapotentialthatisessentiallyconstant).Thiswouldaffecttheapplication

ofeq.2(thenon-relativisticSchrödingerequation),andthus,wouldresultindifferenteigenvalues

(energies).Thiswouldnotaffect∆𝐸.Butifinstead,anon-zeropotential(V(r))werepresentintheπ

system,theneq.5wouldinsteadread

𝐸< = ℎ/𝑛/

8𝑚𝐿/+𝑉<(𝑟)

andeq.9wouldread

∆𝐸 = (+

,#8+𝑁 + 1 + 𝑉</ 𝑟 − 𝑉<? 𝑟

wherethesubscriptsn1andn2representapossibledependenceofV(r)onn.Sinceusingeq.12predicts

ashorterwavelength(higher∆𝐸)fortheHOMO/LUMOtransitionineverydyemolecule,ifV(r)

dependedonn,therewouldbeagreaterdisparityintheenergyoftheHOMOandLUMO.Explorations

ofapossiblefunctionfor𝑉< 𝑟 shouldbeexploredbyexaminingthediscrepancybetweenexperimental

dataandcalculationsfromeq.12.

References:1.http://www.sigmaaldrich.com/catalog/product/sial/390410?lang=en&region=US2.AdaptedfromGarland,C.W.,Nibler,J.W,andShoemaker,D.P.ExperimentsinPhysicalChemistry,8thEd.,McGraw-Hill,2009,pp.393-3983.Kuhn,H.J.Chem.Phys.1949,17,11984.Atkins,P.W.,dePaula,J.PhysicalChemistry,8thEd.,NewYork,Freeman,2006,pp.2795.Bennett,C.A.,PrincipalsofPhysicalOptics,1stedition;Danvers,MA;2008