quantum mechanics 300 fall... · quantum mechanics fall 2018 prof. sergio b. mendes 1 an essential...

79
Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

Upload: others

Post on 11-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Quantum Mechanics

Fall 2018 Prof. Sergio B. Mendes 1

An essential theory to understand, from a microscopic perspective, properties of matter and light.

• Chemical• Electronic• Magnetic• Thermal• Optical• Etc.

Page 2: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Experimental Basis of Quantum Physics

Fall 2018 Prof. Sergio B. Mendes 2

CHAPTER 3

Page 3: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Topics

Fall 2018 Prof. Sergio B. Mendes 3

• 3.1 Discovery of the X Ray and the Electron• 3.2 Determination of Electron Charge• 3.3 Line Spectra• 3.4 Discrete Quantities• 3.5 Blackbody Radiation• 3.6 Photoelectric Effect• 3.7 X-Ray Production• 3.8 Compton Effect• 3.9 Pair Production and Annihilation

Page 4: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.1 Discovery of the X Rays

Fall 2018 Prof. Sergio B. Mendes 4

Wilhelm Röntgen - 1895

Page 5: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Discovery of the Electron

Fall 2018 Prof. Sergio B. Mendes 5

J. J. Thomson - 1897

Cathode rays were charged particles

Page 6: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Thomson’s Experiment

Fall 2018 Prof. Sergio B. Mendes 6

𝐹𝐹𝑦𝑦 = 𝑞𝑞 𝐸𝐸 = 𝑚𝑚 𝑎𝑎𝑦𝑦 𝑡𝑡𝑎𝑎𝑎𝑎 𝜃𝜃 =𝑣𝑣𝑦𝑦𝑣𝑣𝑥𝑥

=𝑞𝑞 𝐸𝐸𝑚𝑚

𝑙𝑙𝑣𝑣𝑥𝑥 2

𝑣𝑣𝑦𝑦 = 𝑎𝑎𝑦𝑦 𝑡𝑡 =𝑞𝑞 𝐸𝐸𝑚𝑚

𝑙𝑙𝑣𝑣𝑥𝑥

𝑞𝑞𝑚𝑚

=𝑣𝑣𝑥𝑥 2 𝑡𝑡𝑎𝑎𝑎𝑎 𝜃𝜃

𝐸𝐸 𝑙𝑙

𝐵𝐵 = 0

𝑞𝑞 𝑬𝑬 + 𝑞𝑞 𝒗𝒗 × 𝑩𝑩 = 𝑚𝑚 𝒂𝒂

Page 7: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Magnetic Field turned ON and adjusted for:

Fall 2018 Prof. Sergio B. Mendes 7

𝑞𝑞 𝑬𝑬 + 𝑞𝑞 𝒗𝒗 × 𝑩𝑩 = 0

𝑣𝑣𝑥𝑥 =𝐸𝐸𝐵𝐵

𝑞𝑞𝑚𝑚

=𝑣𝑣𝑥𝑥 2 𝑡𝑡𝑎𝑎𝑎𝑎 𝜃𝜃

𝐸𝐸 𝑙𝑙=𝐸𝐸 𝑡𝑡𝑎𝑎𝑎𝑎 𝜃𝜃𝐵𝐵2 𝑙𝑙1.76 × 1011

𝐶𝐶𝑘𝑘𝑘𝑘

=

Page 8: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.2 Millikan’s Experiment

Fall 2018 Prof. Sergio B. Mendes 8

Page 9: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Major Steps:

Fall 2018 Prof. Sergio B. Mendes 9

𝑚𝑚 𝑘𝑘 − 𝑏𝑏 𝑣𝑣 = 𝐹𝐹

𝑚𝑚 𝑘𝑘 − 𝑞𝑞 𝐸𝐸 − 𝑏𝑏 𝑣𝑣 = 𝐹𝐹

= 𝑚𝑚𝑑𝑑𝑣𝑣𝑑𝑑𝑡𝑡 = 0

= 𝑚𝑚𝑑𝑑𝑣𝑣𝑑𝑑𝑡𝑡 = 0

𝑚𝑚 𝑘𝑘 − 𝑏𝑏 𝑣𝑣𝑑𝑑 = 0

𝑚𝑚 𝑘𝑘 − 𝑞𝑞 𝐸𝐸 − 𝑏𝑏 𝑣𝑣𝑢𝑢 = 0

𝑞𝑞 𝐸𝐸 + 𝑏𝑏 𝑣𝑣𝑢𝑢 − 𝑏𝑏 𝑣𝑣𝑑𝑑 = 0

moving down, no electric field

moving down, with electric field 𝑦𝑦

(1)

(2)

(1) - (2):

Page 10: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Charges were multiples of unit “e”

Fall 2018 Prof. Sergio B. Mendes 10

𝑞𝑞 =𝑏𝑏 𝑣𝑣𝑑𝑑 − 𝑣𝑣𝑢𝑢

𝐸𝐸

𝑒𝑒 = 1.6 × 10−19 𝐶𝐶

𝑚𝑚 = 9.1 × 10−31 𝑘𝑘𝑘𝑘

= 𝑎𝑎 𝑒𝑒

Page 11: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.3 Line Spectra

Fall 2018 Prof. Sergio B. Mendes 11

Page 12: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Color Separation by a Diffraction Grating

Fall 2018 Prof. Sergio B. Mendes 12

𝑑𝑑 𝑠𝑠𝑠𝑠𝑎𝑎 𝜃𝜃𝑚𝑚 = 𝑚𝑚 𝜆𝜆 grating equation

0 1 2𝑚𝑚 =

𝑚𝑚 = 1

Page 13: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Light Emission and Absorption by a Hot Body

Fall 2018 Prof. Sergio B. Mendes 13

Light Emission by Atoms and Molecules

Light Absorption by Atoms and Molecules

Page 14: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Emission Spectra of a Few Atoms

Fall 2018 Prof. Sergio B. Mendes 14

• Identification of Chemical Elements

• Composition of Materials

Page 15: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Balmer’s series for the Hydrogen atom, 1885

Fall 2018 Prof. Sergio B. Mendes 15

𝜆𝜆 = 364.56 𝑎𝑎𝑚𝑚𝑘𝑘2

𝑘𝑘2 − 4

𝑘𝑘 = 3, 4, 5, …

Page 16: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

A simple rearrangement:

Fall 2018 Prof. Sergio B. Mendes 16

1𝜆𝜆

= 𝑅𝑅𝐻𝐻1

22−

1𝑘𝑘2

𝜆𝜆 = 364.56 𝑎𝑎𝑚𝑚𝑘𝑘2

𝑘𝑘2 − 4

𝑅𝑅𝐻𝐻 ≡4

364.56 𝑎𝑎𝑚𝑚

𝑘𝑘 = 3, 4, 5, …

=1.096776 × 107

𝑚𝑚

Page 17: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Rydberg equation, 1890

Fall 2018 Prof. Sergio B. Mendes 17

1𝜆𝜆

= 𝑅𝑅𝐻𝐻1𝑎𝑎2

−1𝑘𝑘2

𝑘𝑘 > 𝑎𝑎

Page 18: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.4 Quantization

Fall 2018 Prof. Sergio B. Mendes 18

Discrete Quantities !!

• Electric charge

• Discrete spectral lines

• Atomic mass

• What else ??

Page 19: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.5 Blackbody Radiation

Fall 2018 Prof. Sergio B. Mendes 19

Page 20: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Matter & Light (Electromagnetic Radiation)

in Thermal Equilibrium

Fall 2018 Prof. Sergio B. Mendes 20

• Constant temperature

• Absorption and emission are balanced

• Continuous spectral distribution

𝑻𝑻

Page 21: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Experimental Spectral Distribution

Fall 2018 Prof. Sergio B. Mendes 21

Page 22: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Empirical Laws:

Fall 2018 Prof. Sergio B. Mendes 22

Wien’s Law:

Stefan-Boltzmann Law:

𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 𝑇𝑇 ≅ 2.898 × 10−3 𝑚𝑚 𝐾𝐾

𝑅𝑅 𝑇𝑇 = �0

∞𝛪𝛪 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 = 𝜖𝜖 𝜎𝜎 𝑇𝑇4

𝜎𝜎 = 5.6705 × 10−8 W/(m2 K4)

𝜖𝜖 = 0 , 1

Page 23: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

PhET on Blackbody Radiation

Fall 2018 Prof. Sergio B. Mendes 23

Page 24: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Classical Calculation of Blackbody Radiation

Fall 2018 Prof. Sergio B. Mendes 24

𝑢𝑢 𝑓𝑓,𝑇𝑇 = 𝑁𝑁 𝑓𝑓 �𝐸𝐸𝑓𝑓(𝑇𝑇)

𝛪𝛪 𝑓𝑓,𝑇𝑇 = 𝑐𝑐 𝑢𝑢 𝑓𝑓,𝑇𝑇

∆𝐴𝐴

𝑐𝑐 ∆𝑡𝑡

𝑢𝑢

𝑐𝑐 ∆𝑡𝑡

𝑐𝑐 ∆𝑡𝑡14

Intensity = power / (per-unit-area × per-unit-frequency)

Appendix 1

Page 25: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Density of Standing Waves (Modes) of Electromagnetic Radiation

Fall 2018 Prof. Sergio B. Mendes 25

𝑁𝑁 𝑓𝑓 = 8 𝜋𝜋𝑓𝑓2

𝑐𝑐3

𝑁𝑁 𝑓𝑓 = ? ?

number of standing waves / (per-unit-volume × per-unit-frequency)

Page 26: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

1D Standing Waves

Fall 2018 Prof. Sergio B. Mendes 26

𝑓𝑓 𝑥𝑥 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑎𝑎(𝑘𝑘 𝑥𝑥)

𝑘𝑘 𝐿𝐿 = 𝑚𝑚 𝜋𝜋 ∆𝑚𝑚 = ∆𝑘𝑘𝐿𝐿𝜋𝜋

𝑥𝑥

𝑓𝑓 𝑥𝑥

𝑚𝑚 = 1, 2, 3, …

𝐿𝐿

Page 27: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3D Standing Waves

Fall 2018 Prof. Sergio B. Mendes 27

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑎𝑎(𝑘𝑘𝑥𝑥 𝑥𝑥) 𝑠𝑠𝑠𝑠𝑎𝑎 𝑘𝑘𝑦𝑦 𝑦𝑦 𝑠𝑠𝑠𝑠𝑎𝑎(𝑘𝑘𝑧𝑧 𝑧𝑧)

𝑘𝑘𝑥𝑥 𝐿𝐿𝑥𝑥 = 𝑚𝑚𝑥𝑥 𝜋𝜋 ∆𝑚𝑚𝑥𝑥 = ∆𝑘𝑘𝑥𝑥𝐿𝐿𝑥𝑥𝜋𝜋

𝑘𝑘𝑦𝑦 𝐿𝐿𝑦𝑦 = 𝑚𝑚𝑦𝑦 𝜋𝜋 ∆𝑚𝑚𝑦𝑦 = ∆𝑘𝑘𝑦𝑦𝐿𝐿𝑦𝑦𝜋𝜋

𝑘𝑘𝑧𝑧 𝐿𝐿𝑧𝑧 = 𝑚𝑚𝑧𝑧 𝜋𝜋 ∆𝑚𝑚𝑧𝑧 = ∆𝑘𝑘𝑧𝑧𝐿𝐿𝑧𝑧𝜋𝜋

∆𝑚𝑚𝑥𝑥 ∆𝑚𝑚𝑦𝑦 ∆𝑚𝑚𝑧𝑧 = ∆𝑘𝑘𝑥𝑥 ∆𝑘𝑘𝑦𝑦 ∆𝑘𝑘𝑧𝑧𝑉𝑉𝜋𝜋3

𝑀𝑀 =4 𝜋𝜋3𝑘𝑘3

𝑉𝑉𝜋𝜋3

𝑑𝑑𝑀𝑀𝑉𝑉

=1

2 𝜋𝜋2𝑘𝑘2 𝑑𝑑𝑘𝑘 = 4 𝜋𝜋 𝑓𝑓2

𝑐𝑐3 𝑑𝑑𝑓𝑓𝑘𝑘

2 𝜋𝜋=

1𝜆𝜆

=𝑓𝑓𝑐𝑐

18

𝑑𝑑𝑘𝑘2 𝜋𝜋

=𝑑𝑑𝑓𝑓𝑐𝑐

Page 28: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 28

𝑁𝑁 𝑓𝑓 ≡𝑑𝑑𝑀𝑀𝑉𝑉 𝑑𝑑𝑓𝑓 = 2 × 4 𝜋𝜋

𝑓𝑓2

𝑐𝑐3= 8 𝜋𝜋

𝑓𝑓2

𝑐𝑐3

𝑑𝑑𝑀𝑀𝑉𝑉

= 4 𝜋𝜋𝑓𝑓2

𝑐𝑐3𝑑𝑑𝑓𝑓

2

Page 29: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Average Energy for Each Mode of the Electromagnetic Radiation

Fall 2018 Prof. Sergio B. Mendes 29

�𝐸𝐸 = ? ?

�𝐸𝐸 =∫0∞𝐸𝐸 𝑝𝑝 𝐸𝐸 𝑑𝑑𝐸𝐸

∫0∞𝑝𝑝 𝐸𝐸 𝑑𝑑𝐸𝐸

𝑝𝑝 𝐸𝐸 = 𝑒𝑒−𝐸𝐸𝑘𝑘 𝑇𝑇

= 𝑘𝑘 𝑇𝑇=∫0∞𝐸𝐸 𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇𝑑𝑑𝐸𝐸

∫0∞𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇 𝑑𝑑𝐸𝐸

�𝐸𝐸 = 𝑘𝑘 𝑇𝑇

Appendix 2

Page 30: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Bringing All the Pieces Together:

Fall 2018 Prof. Sergio B. Mendes 30

𝑢𝑢 𝑓𝑓,𝑇𝑇 = 𝑁𝑁 𝑓𝑓 �𝐸𝐸 𝑇𝑇

𝑁𝑁 𝑓𝑓 = 8 𝜋𝜋𝑓𝑓2

𝑐𝑐3

𝛪𝛪 𝑓𝑓,𝑇𝑇 =14𝑐𝑐 𝑢𝑢 𝑓𝑓,𝑇𝑇 = 2 𝜋𝜋 𝑓𝑓2

𝑐𝑐2𝑘𝑘 𝑇𝑇

= 8 𝜋𝜋𝑓𝑓2

𝑐𝑐3𝑘𝑘 𝑇𝑇

�𝐸𝐸 𝑇𝑇 = 𝑘𝑘 𝑇𝑇

Page 31: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 31

𝛪𝛪 𝑓𝑓,𝑇𝑇 = 2 𝜋𝜋 𝑓𝑓2

𝑐𝑐2𝑘𝑘 𝑇𝑇

𝛪𝛪 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 = 𝛪𝛪 𝑓𝑓,𝑇𝑇 𝑑𝑑𝑓𝑓

𝜆𝜆 𝑓𝑓 = 𝑐𝑐

𝛪𝛪 𝜆𝜆,𝑇𝑇 = 2 𝜋𝜋 𝑐𝑐𝜆𝜆4𝑘𝑘 𝑇𝑇

𝑓𝑓 𝑑𝑑𝜆𝜆 + 𝜆𝜆 𝑑𝑑𝑓𝑓 = 0𝑑𝑑𝑓𝑓𝑑𝑑𝜆𝜆

=𝑓𝑓𝜆𝜆

=𝑐𝑐𝜆𝜆2

Rayleigh-Jeans Formula

Page 32: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Theory and Experiment

Fall 2018 Prof. Sergio B. Mendes 32

𝛪𝛪 𝜆𝜆,𝑇𝑇 = 2 𝜋𝜋 𝑐𝑐𝜆𝜆4𝑘𝑘 𝑇𝑇

Rayleigh-Jeans

Page 33: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Planck’s Assumption

Fall 2018 Prof. Sergio B. Mendes 33

�𝐸𝐸 = ? ?

�𝐸𝐸 =∑𝑛𝑛=0∞ 𝐸𝐸𝑛𝑛 𝑝𝑝 𝐸𝐸𝑛𝑛∑𝑛𝑛=0∞ 𝑝𝑝 𝐸𝐸𝑛𝑛

𝑝𝑝 𝐸𝐸 = 𝑒𝑒−𝐸𝐸𝑘𝑘 𝑇𝑇

�𝐸𝐸 =∫0∞𝐸𝐸 𝑝𝑝 𝐸𝐸 𝑑𝑑𝐸𝐸

∫0∞𝑝𝑝 𝐸𝐸 𝑑𝑑𝐸𝐸

𝐸𝐸𝑛𝑛 = 𝑎𝑎 ℎ 𝑓𝑓

=ℎ 𝑓𝑓

𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

Appendix 3

discrete exchange of energy

�𝐸𝐸 =ℎ 𝑓𝑓

𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

Page 34: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Planck Theory of Blackbody Radiation

Fall 2018 Prof. Sergio B. Mendes 34

𝑢𝑢 𝑓𝑓,𝑇𝑇 = 𝑁𝑁 𝑓𝑓 �𝐸𝐸 𝑇𝑇

𝑁𝑁 𝑓𝑓 = 8 𝜋𝜋𝑓𝑓2

𝑐𝑐3

𝛪𝛪 𝑓𝑓,𝑇𝑇 =14𝑐𝑐 𝑢𝑢 𝑓𝑓,𝑇𝑇 =

2 𝜋𝜋 ℎ 𝑓𝑓3

𝑐𝑐2 𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

= 8 𝜋𝜋𝑓𝑓2

𝑐𝑐3ℎ 𝑓𝑓

𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

�𝐸𝐸 𝑇𝑇 =ℎ 𝑓𝑓

𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

Page 35: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Frequency and Wavelength Descriptions:

Fall 2018 Prof. Sergio B. Mendes 35

𝛪𝛪 𝑓𝑓,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑓𝑓3

𝑐𝑐2 𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

𝛪𝛪 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 = 𝛪𝛪 𝑓𝑓,𝑇𝑇 𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓𝑑𝑑𝜆𝜆 =

𝑓𝑓𝜆𝜆 =

𝑐𝑐𝜆𝜆2

𝜆𝜆 𝑓𝑓 = 𝑐𝑐

Page 36: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Comparison

Fall 2018 Prof. Sergio B. Mendes 36

𝛪𝛪 𝜆𝜆,𝑇𝑇 = 2 𝜋𝜋 𝑐𝑐𝜆𝜆4𝑘𝑘 𝑇𝑇

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

Rayleigh-Jeans

Planck

ℎ = 6.6261 × 10−34 𝐽𝐽 𝑠𝑠

Classical Theory by

𝐸𝐸𝑛𝑛 = 𝑎𝑎 ℎ 𝑓𝑓discrete exchange of energy

Page 37: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Wien’s Law from Planck’s Theory

Fall 2018 Prof. Sergio B. Mendes 37

𝑑𝑑𝛪𝛪 𝜆𝜆,𝑇𝑇𝑑𝑑𝜆𝜆

= 0

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

ℎ 𝑐𝑐𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 𝑘𝑘 𝑇𝑇

≅ 4.966 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 𝑇𝑇 ≅ℎ 𝑐𝑐

4.966 𝑘𝑘= 2.898 × 10−3 𝑚𝑚 𝐾𝐾

Appendix 4, Example 3.6

𝑥𝑥 𝑒𝑒 𝑥𝑥 = 5 𝑥𝑥 − 1 𝑥𝑥 ≡ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇

Page 38: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Stefan-Boltzmann Law from Planck’s Theory

Fall 2018 Prof. Sergio B. Mendes 38

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

𝑅𝑅 𝑇𝑇 = �0

∞𝛪𝛪 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆

𝜎𝜎 =2 𝜋𝜋5 𝑘𝑘4

15 ℎ3 𝑐𝑐2= 5.6705 × 10−8 W/(m2 K4)

= �0

∞ 2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

𝑑𝑑𝜆𝜆 =2 𝜋𝜋5 𝑘𝑘4

15 ℎ3 𝑐𝑐2𝑇𝑇4

Example 3.7

Page 39: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.6 Photoelectric Effect

Fall 2018 Prof. Sergio B. Mendes 39

Page 40: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

PhET on Photoelectric Effect

Fall 2018 Prof. Sergio B. Mendes 40

Page 41: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Same frequency, different light intensities:

Fall 2018 Prof. Sergio B. Mendes 41

For light of a specific frequency, the retarding potential energy 𝑒𝑒 𝑉𝑉𝑜𝑜 required to stop the electric current is always the same,

regardless of the light intensity

𝑒𝑒 𝑉𝑉𝑜𝑜 =12𝑚𝑚 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥

2

Page 42: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Same light intensity,different frequencies:

Fall 2018 Prof. Sergio B. Mendes 42

For a given light intensity, the retarding potential energy 𝑒𝑒 𝑉𝑉𝑜𝑜 required to stop the current increases with the light frequency.

Page 43: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Experimental Facts and Puzzles:

Fall 2018 Prof. Sergio B. Mendes 43

• The maximum kinetic energy of the photoelectrons is independentof the light intensity. Why ?

• The maximum kinetic energy of the photoelectrons, for a given light intensity and emitting material, depends on the light frequency. Why ?

• To produce photoelectrons requires a minimum light frequency. Why ?

• The photoelectrons are emitted almost instantly following illumination of the photocathode, independent of the light intensity. Why ?

Page 44: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Einstein’s Article of 1905 on “Creation and Conversion of Light”

Fall 2018 Prof. Sergio B. Mendes 44

full article

Page 45: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 45

12𝑚𝑚 𝑣𝑣2 = ℎ 𝑓𝑓 − 𝜙𝜙

ℎ 𝑓𝑓

𝜙𝜙

𝜙𝜙 is the work function of the material body

Page 46: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 46

ℎ 𝑓𝑓 − 𝜙𝜙 =12𝑚𝑚 𝑣𝑣2 = 𝑒𝑒 𝑉𝑉𝑜𝑜

𝑉𝑉𝑜𝑜

Page 47: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Millikan on Photoelectric Effect:

Fall 2018 Prof. Sergio B. Mendes 47

Millikan utilized light of varying frequency on a sodium electrode and measured the maximum kinetic energies of the photoelectrons.

He found that no photoelectrons were emitted below a frequency of 4.39 X 1014

Hz (or longer than a wavelength of 683 nm).

The results were independent of the light intensity.

The slope of a straight line drawn through the data produced a value of Planck’s constant in excellent agreement with Einstein’s prediction.

Even though Millikan admitted his own data were sufficient proof of Einstein’s photo-electric effect equation, Millikan was not convinced of the photon concept for light and its role in quantum theory.

Robert Millikan (University of Chicago) published data on the

photoelectric effect, Phys. Rev. VII, 352-388 (1916).

Page 48: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Retarding potential energy versus frequency:

Fall 2018 Prof. Sergio B. Mendes 48

The retarding potential energy required to stop the current increases linearly with the light frequency. Regardless of

the material, the slope is always the same.

ℎ 𝑓𝑓 − 𝜙𝜙 =12𝑚𝑚 𝑣𝑣2 = 𝑒𝑒 𝑉𝑉𝑜𝑜

Page 49: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Work Function of Materials

Fall 2018 Prof. Sergio B. Mendes 49

Page 50: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

The photoelectric effect can be described by 𝛾𝛾 + 𝑒𝑒𝑒 → 𝑒𝑒.

Fall 2018 Prof. Sergio B. Mendes 50

Can the reverse process 𝑒𝑒 → 𝑒𝑒𝑒 + 𝛾𝛾occur ?

And the answer is yes.

Page 51: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.7 X-Ray Production

Fall 2018 Prof. Sergio B. Mendes 51

𝑒𝑒 𝑉𝑉𝑜𝑜 = 𝐸𝐸𝑖𝑖

𝐸𝐸𝑓𝑓 + ℎ 𝑓𝑓 = 𝐸𝐸𝑖𝑖

𝐸𝐸𝑓𝑓 + ℎ𝑐𝑐𝜆𝜆

= 𝐸𝐸𝑖𝑖0, 𝑒𝑒 𝑉𝑉𝑜𝑜 = 𝐸𝐸𝑓𝑓

Bremsstrahlung, from the German word for “braking radiation”

𝑒𝑒 → 𝑒𝑒𝑒 + 𝛾𝛾

Page 52: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Three Different Materials

Fall 2018 Prof. Sergio B. Mendes 52

The relative intensity of x-rays for an accelerating voltage of 35 kV.

𝐸𝐸𝑓𝑓 + ℎ𝑐𝑐𝜆𝜆

= 𝐸𝐸𝑖𝑖 𝐸𝐸𝑓𝑓 = 0, 𝑒𝑒 𝑉𝑉𝑜𝑜

𝐸𝐸𝑖𝑖 = 𝑒𝑒 𝑉𝑉𝑜𝑜

Notice that 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 is the same for all three targets.

𝜆𝜆 =ℎ 𝑐𝑐

𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 =

ℎ 𝑐𝑐𝑒𝑒 𝑉𝑉𝑜𝑜𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 = 0.0354 𝑎𝑎𝑚𝑚

Page 53: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

3.8 Compton Effect

Fall 2018 Prof. Sergio B. Mendes 53

Page 54: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

(Classical) Light-Matter Interaction and Scattered Light

Fall 2018 Prof. Sergio B. Mendes 54

• Electric field in the light wave drives the oscillation of electrons present in matter.

• Frequency of oscillation coincides with the frequency of the incident light.

• Re-emitted (scattered) light has the same frequency as the incident light.

• Thomson radiation

Page 55: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Compton Effect, 1923

Fall 2018 Prof. Sergio B. Mendes 55

𝛾𝛾 + 𝑒𝑒 → 𝛾𝛾𝑒 + 𝑒𝑒𝑒

• Conservation of electric charge

• Conservation of energy

• Conservation of linear momentum

• In addition to the collective interaction between light waves & electrons, Arthur Compton (University of Chicago) considered the photon-electron interaction.

• Hypothesized the phenomenon as a single-photon & single-electron collision.

Page 56: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Linear Momentum for Photons:

Fall 2018 Prof. Sergio B. Mendes 56

𝐸𝐸 = ℎ 𝑓𝑓 = 𝑝𝑝 𝑐𝑐

𝐸𝐸2 − 𝑝𝑝2 𝑐𝑐2 = 𝑚𝑚2 𝑐𝑐4

𝐸𝐸 = 𝑝𝑝 𝑐𝑐

𝑚𝑚 = 0

𝑝𝑝 = ℎ𝑓𝑓𝑐𝑐 =

ℎ𝜆𝜆

𝑝𝑝 =ℎ𝜆𝜆

𝑢𝑢 = 𝑐𝑐

Page 57: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 57

Page 58: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Conservation of Energy:

Fall 2018 Prof. Sergio B. Mendes 58

ℎ 𝑓𝑓 + 𝐸𝐸𝑖𝑖 = ℎ 𝑓𝑓𝑒 + 𝐸𝐸𝑓𝑓

𝐸𝐸𝑖𝑖 = 𝑚𝑚 𝑐𝑐2

𝐸𝐸𝑓𝑓2 = 𝑚𝑚 𝑐𝑐2 2 + 𝑝𝑝𝑒𝑒2 𝑐𝑐2

ℎ 𝑓𝑓 = ℎ𝑐𝑐𝜆𝜆

ℎ 𝑓𝑓′ = ℎ𝑐𝑐𝜆𝜆𝑒

ℎ𝑐𝑐𝜆𝜆

+ 𝑚𝑚 𝑐𝑐2 = ℎ𝑐𝑐𝜆𝜆𝑒

+ 𝑚𝑚 𝑐𝑐2 2 + 𝑝𝑝𝑒𝑒2 𝑐𝑐2

Page 59: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Conservation of Linear Momentum:

Fall 2018 Prof. Sergio B. Mendes 59

ℎ𝜆𝜆

=ℎ𝜆𝜆𝑒𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + 𝑝𝑝𝑒𝑒 𝑐𝑐𝑐𝑐𝑠𝑠 𝜙𝜙𝑥𝑥:

0 =ℎ𝜆𝜆𝑒𝑠𝑠𝑠𝑠𝑎𝑎 𝜃𝜃 − 𝑝𝑝𝑒𝑒 𝑠𝑠𝑠𝑠𝑎𝑎 𝜙𝜙𝑦𝑦:

Page 60: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

From linear momentum equations:

Fall 2018 Prof. Sergio B. Mendes 60

ℎ𝜆𝜆−ℎ𝜆𝜆′𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝑝𝑝𝑒𝑒 𝑐𝑐𝑐𝑐𝑠𝑠 𝜙𝜙

ℎ𝜆𝜆𝑒𝑠𝑠𝑠𝑠𝑎𝑎 𝜃𝜃 = 𝑝𝑝𝑒𝑒 𝑠𝑠𝑠𝑠𝑎𝑎 𝜙𝜙

ℎ𝜆𝜆

2

+ℎ𝜆𝜆𝑒

2

− 2ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝑝𝑝𝑒𝑒2

(1)

(2)

(1)2 + (2)2 :

Page 61: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

From energy equation:

Fall 2018 Prof. Sergio B. Mendes 61

ℎ𝑐𝑐𝜆𝜆

+ 𝑚𝑚 𝑐𝑐2 = ℎ𝑐𝑐𝜆𝜆𝑒

+ 𝑚𝑚 𝑐𝑐2 2 + 𝑝𝑝𝑒𝑒2𝑐𝑐2

ℎ𝑐𝑐𝜆𝜆− ℎ

𝑐𝑐𝜆𝜆𝑒

2+ 2 ℎ

𝑐𝑐𝜆𝜆− ℎ

𝑐𝑐𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐2 = 𝑝𝑝𝑒𝑒2𝑐𝑐2

ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

2

+ 2ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐 = 𝑝𝑝𝑒𝑒2

Page 62: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Combining the two equations for 𝑝𝑝𝑒𝑒2 :

Fall 2018 Prof. Sergio B. Mendes 62

ℎ𝜆𝜆

2

+ℎ𝜆𝜆𝑒

2

− 2ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝑝𝑝𝑒𝑒2

ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

2

+ 2ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐 = 𝑝𝑝𝑒𝑒2

−2ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = −2ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

+ 2ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐

ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 =ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐

Page 63: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Compton Equation:

Fall 2018 Prof. Sergio B. Mendes 63

ℎ𝑚𝑚 𝑐𝑐

1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝜆𝜆𝑒 − 𝜆𝜆

ℎ𝜆𝜆

ℎ𝜆𝜆𝑒

1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 =ℎ𝜆𝜆−ℎ𝜆𝜆𝑒

𝑚𝑚 𝑐𝑐

• Compton wavelength: ℎ𝑚𝑚𝑒𝑒 𝑐𝑐

= 0.00243 𝑎𝑎𝑚𝑚

• Compton equation

• Independent of wavelength

• Usually observed with x rays

Page 64: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Experimental Results by Compton:

Fall 2018 Prof. Sergio B. Mendes 64

ℎ𝑚𝑚 𝑐𝑐

1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝜆𝜆𝑒 − 𝜆𝜆

Page 65: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Fall 2018 Prof. Sergio B. Mendes 65

3.9 Pair Production𝛾𝛾 → 𝑒𝑒− + 𝑒𝑒+

Conservation of electric charge

• Cannot satisfy simultaneously conservation of energy and linear momentum

Conservation of electric charge

Conservation of energy

Conservation of linear momentum

ℎ 𝑓𝑓 > 2 𝑚𝑚𝑒𝑒 𝑐𝑐21.022 𝑀𝑀𝑒𝑒𝑉𝑉

Page 66: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Positron-Electron Annihilation

Fall 2018 Prof. Sergio B. Mendes 66

𝑒𝑒− + 𝑒𝑒+ → 𝛾𝛾 + 𝛾𝛾𝑒 Conservation of electric charge

Conservation of energy

Conservation of linear momentum

2 𝑚𝑚𝑒𝑒 𝑐𝑐2 ≅ ℎ 𝑓𝑓1 + ℎ 𝑓𝑓2

Annihilation of a positronium atom (consisting of an electron and positron) producing two photons.

0 ≅ℎ 𝑓𝑓1𝑐𝑐

−ℎ 𝑓𝑓2𝑐𝑐

ℎ 𝑓𝑓 = 𝑚𝑚𝑒𝑒 𝑐𝑐2 ≅ 0.511 𝑀𝑀𝑒𝑒𝑉𝑉

Page 67: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Positron Emission Tomography (PET)

Fall 2018 67

A useful medical diagnostic tool to study the path and location of a positron-emitting radiopharmaceutical in the human body.

Appropriate radiopharmaceuticals are chosen to concentrate by physiological processes in

the region to be examined.

The positron travels only a few millimeters before annihilation, which produces two

photons that can be detected to give the positron position.

Page 68: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Summary

Fall 2018 Prof. Sergio B. Mendes 68

Page 69: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Blackbody Radiation

Fall 2018 Prof. Sergio B. Mendes 69

𝛪𝛪 𝑓𝑓,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑓𝑓3

𝑐𝑐2 𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

Wien’s Law

𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 𝑇𝑇 ≅ 2.898 × 10−3 𝑚𝑚 𝐾𝐾

Stefan-Boltzmann Law

𝑅𝑅 𝑇𝑇 = �0

∞𝛪𝛪 𝜆𝜆,𝑇𝑇 𝑑𝑑𝜆𝜆 = 𝜖𝜖 𝜎𝜎 𝑇𝑇4

𝐸𝐸𝑛𝑛 = 𝑎𝑎 ℎ 𝑓𝑓

𝜎𝜎 =2 𝜋𝜋5 𝑘𝑘4

15 ℎ3 𝑐𝑐2 = 5.6705 × 10−8 W/(m2 K4)𝜖𝜖 = 0 , 1

ℎ = 6.6261 × 10−34 𝐽𝐽 𝑠𝑠

𝛪𝛪 𝜆𝜆,𝑇𝑇

Page 70: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Photoelectric Effect

Fall 2018 Prof. Sergio B. Mendes 70

ℎ 𝑓𝑓 − 𝜙𝜙 =12𝑚𝑚 𝑣𝑣2 = 𝑒𝑒 𝑉𝑉𝑜𝑜

𝛾𝛾 + 𝑒𝑒 → 𝑒𝑒𝑒

Page 71: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

X-Ray Production

Fall 2018 Prof. Sergio B. Mendes 71

𝑒𝑒 → 𝑒𝑒𝑒 + 𝛾𝛾

𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛 =ℎ 𝑐𝑐𝑒𝑒 𝑉𝑉𝑜𝑜

𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥 =𝑒𝑒 𝑉𝑉𝑜𝑜ℎ

Page 72: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Compton Effect

Fall 2018 Prof. Sergio B. Mendes 72

𝛾𝛾 + 𝑒𝑒 → 𝛾𝛾𝑒 + 𝑒𝑒𝑒

ℎ𝑚𝑚 𝑐𝑐

1 − 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 = 𝜆𝜆𝑒 − 𝜆𝜆

Page 73: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Positron-Electron Annihilation

Fall 2018 Prof. Sergio B. Mendes 73

𝑒𝑒− + 𝑒𝑒+ → 𝛾𝛾 + 𝛾𝛾𝑒

𝑚𝑚𝑒𝑒 𝑐𝑐2 ≅ ℎ 𝑓𝑓1 ≅ ℎ 𝑓𝑓2

𝑓𝑓1 ≅ 𝑓𝑓2

ℎ 𝑓𝑓 = 𝑚𝑚𝑒𝑒 𝑐𝑐2 ≅ 0.511 𝑀𝑀𝑒𝑒𝑉𝑉

Page 74: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Spectral Lines of Atoms

Fall 2018 Prof. Sergio B. Mendes 74

1𝜆𝜆

= 𝑅𝑅𝐻𝐻1𝑎𝑎2

−1𝑘𝑘2

𝑘𝑘 > 𝑎𝑎

𝑅𝑅𝐻𝐻 =1.096776 × 107

𝑚𝑚

Page 75: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Appendices

Fall 2018 Prof. Sergio B. Mendes 75

Page 76: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Appendix 1

Fall 2018 Prof. Sergio B. Mendes 76

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 =∫02 𝜋𝜋 𝑑𝑑𝜑𝜑 ∫0

𝜋𝜋/2 𝑑𝑑𝜃𝜃 𝑠𝑠𝑠𝑠𝑎𝑎 𝜃𝜃 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃

∫02 𝜋𝜋 𝑑𝑑𝜑𝜑 ∫0

𝜋𝜋/2 𝑑𝑑𝜃𝜃 𝑠𝑠𝑠𝑠𝑎𝑎 𝜃𝜃= �

0

𝜋𝜋/2𝑑𝑑𝜃𝜃

𝑠𝑠𝑠𝑠𝑎𝑎 2 𝜃𝜃4

=− 𝑐𝑐𝑐𝑐𝑠𝑠 2 𝜃𝜃

8 0

𝜋𝜋/2

=14

Page 77: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Appendix 2

Fall 2018 Prof. Sergio B. Mendes 77

∫0∞𝐸𝐸 𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇 𝑑𝑑𝐸𝐸

∫0∞ 𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇 𝑑𝑑𝐸𝐸

=𝐸𝐸 −𝑘𝑘 𝑇𝑇 𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇 𝐸𝐸=0

𝐸𝐸=∞− ∫0

∞ −𝑘𝑘 𝑇𝑇 𝑒𝑒−𝐸𝐸𝑘𝑘 𝑇𝑇 𝑑𝑑𝐸𝐸

∫0∞ 𝑒𝑒−

𝐸𝐸𝑘𝑘 𝑇𝑇 𝑑𝑑𝐸𝐸

= 𝑘𝑘 𝑇𝑇

Page 78: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Appendix 3

Fall 2018 Prof. Sergio B. Mendes 78

�𝐸𝐸 =∑𝑛𝑛=0∞ 𝐸𝐸𝑛𝑛 𝑝𝑝 𝐸𝐸𝑛𝑛∑𝑛𝑛=0∞ 𝑝𝑝 𝐸𝐸𝑛𝑛

=∑𝑛𝑛=0∞ 𝑎𝑎 ℎ 𝑓𝑓 𝑒𝑒−

𝑛𝑛 ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇

∑𝑛𝑛=0∞ 𝑒𝑒−𝑛𝑛 ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇

= 𝑘𝑘 𝑇𝑇∑𝑛𝑛=0∞ 𝑎𝑎 𝛼𝛼 𝑒𝑒− 𝑛𝑛 𝛼𝛼

∑𝑛𝑛=0∞ 𝑒𝑒− 𝑛𝑛 𝛼𝛼 = 𝑘𝑘 𝑇𝑇 −𝛼𝛼𝑑𝑑 𝑙𝑙𝑎𝑎 ∑𝑛𝑛=0∞ 𝑒𝑒− 𝑛𝑛 𝛼𝛼

𝑑𝑑𝛼𝛼

= 𝑘𝑘 𝑇𝑇 −𝛼𝛼𝑑𝑑 𝑙𝑙𝑎𝑎 1

1 − 𝑒𝑒−𝛼𝛼𝑑𝑑𝛼𝛼

= 𝑘𝑘 𝑇𝑇 𝛼𝛼𝑑𝑑 𝑙𝑙𝑎𝑎 1 − 𝑒𝑒−𝛼𝛼

𝑑𝑑𝛼𝛼

= 𝑘𝑘 𝑇𝑇 𝛼𝛼𝑒𝑒−𝛼𝛼

1 − 𝑒𝑒−𝛼𝛼=

ℎ 𝑓𝑓

𝑒𝑒ℎ 𝑓𝑓𝑘𝑘 𝑇𝑇 − 1

𝛼𝛼 ≡ℎ 𝑓𝑓𝑘𝑘𝑇𝑇

Page 79: Quantum Mechanics 300 fall... · Quantum Mechanics Fall 2018 Prof. Sergio B. Mendes 1 An essential theory to understand, from a microscopic perspective, properties of matter and light

Appendix 4

Fall 2018 Prof. Sergio B. Mendes 79

−5

𝜆𝜆6 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆𝑘𝑘𝑇𝑇 − 1

−ℎ 𝑐𝑐𝑘𝑘 𝑇𝑇 − 1

𝜆𝜆2 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

= 0

−5 +ℎ 𝑐𝑐𝑘𝑘 𝑇𝑇 𝑒𝑒

ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇

𝜆𝜆 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

= 0

𝑑𝑑𝛪𝛪 𝜆𝜆,𝑇𝑇𝑑𝑑𝜆𝜆 = 0

𝛪𝛪 𝜆𝜆,𝑇𝑇 =2 𝜋𝜋 ℎ 𝑐𝑐2

𝜆𝜆5 𝑒𝑒ℎ 𝑐𝑐𝜆𝜆𝑘𝑘𝑇𝑇 − 1

ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 𝑒𝑒

ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 = 5 𝑒𝑒

ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 − 1

ℎ 𝑐𝑐𝜆𝜆 𝑘𝑘 𝑇𝑇 ≅ 4.966Numerical Solution Technique