quality of numerics: tides. application to the rössler...

55
Quality of numerics: TIDES. Application to the Rössler model. R. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University of Zaragoza, SPAIN A. Shilnikov Institute of Neuroscience, University of Georgia, USA Workshop on Bifurcation Analysis and its Applications Montreal, Canada, July 7-10, 2010 R. Barrio (University of Zaragoza) TIDES & Rössler 1 / 33

Upload: others

Post on 22-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Quality of numerics: TIDES.Application to the Rössler model.

R. Barrio, F. Blesa, M. Rodríguez, S. Serrano

GME – University of Zaragoza, SPAIN

A. ShilnikovInstitute of Neuroscience, University of Georgia, USA

Workshop on Bifurcation Analysis and its ApplicationsMontreal, Canada, July 7-10, 2010

R. Barrio (University of Zaragoza) TIDES & Rössler 1 / 33

Page 2: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

I State-of-the-art numerical ODE integrator: TIDESI Study the parametric phase space of three-dimensional systems

(but also general dynamical systems and Hamiltonian systems)

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 2 / 33

Page 3: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

I State-of-the-art numerical ODE integrator: TIDESI Study the parametric phase space of three-dimensional systems

(but also general dynamical systems and Hamiltonian systems)

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 2 / 33

Page 4: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

I State-of-the-art numerical ODE integrator: TIDESI Study the parametric phase space of three-dimensional systems

(but also general dynamical systems and Hamiltonian systems)

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 2 / 33

Page 5: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 3 / 33

Page 6: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Biparametric analysis in Lorenz: σ = 10

0 21 3

MLE

parameter r

para

met

er b

-1

0

1

2

3b=8/3

r=200

BD

-1MLE

146 166.1 214

R. Barrio (University of Zaragoza) TIDES & Rössler 4 / 33

Page 7: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

The Hénon-Heiles Hamiltonian

−0.11 −0.105 −0.1 −0.095 −0.09 −0.085 −0.08 −0.075 −0.070.2529

0.253

0.2531

0.2532

0.2533

0.2534

0.2535

Coordinate y

Ene

rgy

E

−4 −2 0 2 40.2529

0.253

0.2531

0.2532

0.2533

0.2534

0.2535

Stability index k

1

2

m=1Saddle-node bifurcationgeneric

m=1Pitchfork bifurcationsymmetric

SN

P

e< 0 e> 0e= 0

1

2

m=3Touch-and-go bifurcationgeneric

TG1

1

11

1

1

P

SN

TG

SN

TG

P

m=1m=3

m=1

Safe regions: Stable and bounded regions far from the KAM tori

R. Barrio (University of Zaragoza) TIDES & Rössler 5 / 33

Page 8: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical requirements

1 Periodic orbits, invariant tori→ Short integration times, sometimes with very highprecision and simultaneous solution of the variational equations

2 Stability of the systems→ Medium to large integration times and simultaneoussolution of the variational equations

3 Structure in the complex plane, location of complex singularities, . . .→ Very highprecision (500, 1000 digits)

I TAYLOR’s method: Automatic differentiation

y(t0) = y0,

y(ti) ' yi = yi−1 +dy(ti−1)

dthi +

12!

d2y(ti−1)

dt2 h2i + . . .+

1p!

dpy(ti−1)

dtp hpi .

Very “new” −→ EULER, G. Wanner, G. Corliss, ...

In Dynamical Systems −→ NEW LIFECarles Simó and collaborators

A. Jorba and M. ZouJohn Guckenheimer and collaborators

GME (Zaragoza, SPAIN) TIDESR. Barrio (University of Zaragoza) TIDES & Rössler 6 / 33

Page 9: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical requirements

1 Periodic orbits, invariant tori→ Short integration times, sometimes with very highprecision and simultaneous solution of the variational equations

2 Stability of the systems→ Medium to large integration times and simultaneoussolution of the variational equations

3 Structure in the complex plane, location of complex singularities, . . .→ Very highprecision (500, 1000 digits)

I TAYLOR’s method: Automatic differentiation

y(t0) = y0,

y(ti) ' yi = yi−1 +dy(ti−1)

dthi +

12!

d2y(ti−1)

dt2 h2i + . . .+

1p!

dpy(ti−1)

dtp hpi .

Very “new” −→ EULER, G. Wanner, G. Corliss, ...

In Dynamical Systems −→ NEW LIFECarles Simó and collaborators

A. Jorba and M. ZouJohn Guckenheimer and collaborators

GME (Zaragoza, SPAIN) TIDESR. Barrio (University of Zaragoza) TIDES & Rössler 6 / 33

Page 10: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical requirements

1 Periodic orbits, invariant tori→ Short integration times, sometimes with very highprecision and simultaneous solution of the variational equations

2 Stability of the systems→ Medium to large integration times and simultaneoussolution of the variational equations

3 Structure in the complex plane, location of complex singularities, . . .→ Very highprecision (500, 1000 digits)

I TAYLOR’s method: Automatic differentiation

y(t0) = y0,

y(ti) ' yi = yi−1 +dy(ti−1)

dthi +

12!

d2y(ti−1)

dt2 h2i + . . .+

1p!

dpy(ti−1)

dtp hpi .

Very “new” −→ EULER, G. Wanner, G. Corliss, ...

In Dynamical Systems −→ NEW LIFECarles Simó and collaborators

A. Jorba and M. ZouJohn Guckenheimer and collaborators

GME (Zaragoza, SPAIN) TIDESR. Barrio (University of Zaragoza) TIDES & Rössler 6 / 33

Page 11: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical requirements

1 Periodic orbits, invariant tori→ Short integration times, sometimes with very highprecision and simultaneous solution of the variational equations

2 Stability of the systems→ Medium to large integration times and simultaneoussolution of the variational equations

3 Structure in the complex plane, location of complex singularities, . . .→ Very highprecision (500, 1000 digits)

I TAYLOR’s method: Automatic differentiation

y(t0) = y0,

y(ti) ' yi = yi−1 +dy(ti−1)

dthi +

12!

d2y(ti−1)

dt2 h2i + . . .+

1p!

dpy(ti−1)

dtp hpi .

Very “new” −→ EULER, G. Wanner, G. Corliss, ...

In Dynamical Systems −→ NEW LIFECarles Simó and collaborators

A. Jorba and M. ZouJohn Guckenheimer and collaborators

GME (Zaragoza, SPAIN) TIDESR. Barrio (University of Zaragoza) TIDES & Rössler 6 / 33

Page 12: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical requirements

1 Periodic orbits, invariant tori→ Short integration times, sometimes with very highprecision and simultaneous solution of the variational equations

2 Stability of the systems→ Medium to large integration times and simultaneoussolution of the variational equations

3 Structure in the complex plane, location of complex singularities, . . .→ Very highprecision (500, 1000 digits)

I TAYLOR’s method: Automatic differentiation

y(t0) = y0,

y(ti) ' yi = yi−1 +dy(ti−1)

dthi +

12!

d2y(ti−1)

dt2 h2i + . . .+

1p!

dpy(ti−1)

dtp hpi .

Very “new” −→ EULER, G. Wanner, G. Corliss, ...

In Dynamical Systems −→ NEW LIFECarles Simó and collaborators

A. Jorba and M. ZouJohn Guckenheimer and collaborators

GME (Zaragoza, SPAIN) TIDESR. Barrio (University of Zaragoza) TIDES & Rössler 6 / 33

Page 13: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 7 / 33

Page 14: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

What is TIDES?TIDES: a Taylor series Integrator for Differential EquationS

Taylor series method using Variable-Stepsize Variable-Order formulationand extended formulas for the variational equations.

Free numerical software based on extended Taylor series method:TIDES (Abad, B., Blesa & Rodríguez ’09).

Extremely easy to use via a MATHEMATICA preprocessorminf-TIDES (Fortran), minc-TIDES (C)dp-TIDES (C-double precision), mp-TIDES (C-arbitrary precision)

Automatic construction of Fortran or C codes for solving ODEs

Automatic construction of C codes for solving solutions of ODEs andvariational equations up to any order (and sensitivities with respect toany parameter up to any order)

Easy to use arbitrary precision (do you need 500 digits?, 1000?)

Robust and stable numerical ODE solver (being an explicit method)

Solution as a power series (useful for events detection)

R. Barrio (University of Zaragoza) TIDES & Rössler 8 / 33

Page 15: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

What is TIDES?TIDES: a Taylor series Integrator for Differential EquationS

Taylor series method using Variable-Stepsize Variable-Order formulationand extended formulas for the variational equations.

Free numerical software based on extended Taylor series method:TIDES (Abad, B., Blesa & Rodríguez ’09).

Extremely easy to use via a MATHEMATICA preprocessorminf-TIDES (Fortran), minc-TIDES (C)dp-TIDES (C-double precision), mp-TIDES (C-arbitrary precision)

Automatic construction of Fortran or C codes for solving ODEs

Automatic construction of C codes for solving solutions of ODEs andvariational equations up to any order (and sensitivities with respect toany parameter up to any order)

Easy to use arbitrary precision (do you need 500 digits?, 1000?)

Robust and stable numerical ODE solver (being an explicit method)

Solution as a power series (useful for events detection)

R. Barrio (University of Zaragoza) TIDES & Rössler 8 / 33

Page 16: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Join TIDES community

Where?: http://gme.unizar.es/software/tidesor Email: [email protected]

And ... IT IS FREE (freeware-software)!!!!!!

R. Barrio (University of Zaragoza) TIDES & Rössler 9 / 33

Page 17: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Join TIDES community

Where?: http://gme.unizar.es/software/tidesor Email: [email protected]

What is TIDES?

minf-tides basic TSM FORTRAN

minc-tides basic TSM C

dp-tides extended TSM C

mp-tides extended TSM + arbitrary precision C, MPFR

MathTIDES preprocessor MATHEMATICA

And ... IT IS FREE (freeware-software)!!!!!!

R. Barrio (University of Zaragoza) TIDES & Rössler 9 / 33

Page 18: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Join TIDES community

Where?: http://gme.unizar.es/software/tidesor Email: [email protected]

What is TIDES?

minf-tides basic TSM FORTRAN

minc-tides basic TSM C

dp-tides extended TSM C

mp-tides extended TSM + arbitrary precision C, MPFR

MathTIDES preprocessor MATHEMATICA

And ... IT IS FREE (freeware-software)!!!!!!

R. Barrio (University of Zaragoza) TIDES & Rössler 9 / 33

Page 19: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Proposition (Extended AD rules)If f (t , y(t)), g(t , y(t)) : (t , y) ∈ Rs+1 7→ R functions of class Cn, i = (i1, . . . is) ∈ Ns

0,i∗ = i− (0, . . . , 0, 1, 0, . . . , 0) = (i1, i2, . . . , ik − 1, 0, . . . , 0) and ‖i‖ =

∑sj=1 ij the total

order of derivation, we denote

f [j, i] :=1j!

∂‖i‖ f (j)(t)∂y i1

1 ∂y i22 · · · ∂y is

s

, f [j, 0] := f [j] =1j!

d j f (t)dt j ,

the jth Taylor coefficient of the partial derivative of f (t , y(t)) with respect to i and

h[j, v]n, i = h[j, v], (j 6= n or v 6= i), h[n, i]

n, i = 0.

Besides, given v = (v1, . . . , vs) ∈ Ns0 we define the multi-combinatorial number( i

v

)=( i1

v1

)·( i2

v2

)· · ·( is

vs

), and we consider the classical partial order in Ns

0. Then

(v) If h(t) = f (t)α with α ∈ R then h[0, 0] = (f [0](t))α and

h[0, i] =1

f [0]∑

v≤ i∗

(i∗

v

){α h[0, v] · f [0, i−v] − h[0, i−v]

0, i · f [0, v]}, i > 0,

h[n, i] =1

n f [0]

n∑j=0

(nα− j(α + 1)

) {∑v≤ i

( i

v

)h[j, v]

n, i · f [n−j, i−v]}, n > 0, i > 0.

R. Barrio (University of Zaragoza) TIDES & Rössler 10 / 33

Page 20: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Programming: WITHOUT VARIATIONAL EQUATIONS

Two body problem (Kepler)

x = − x(x2 + y2)3/2 , y = − y

(x2 + y2)3/2

KEPLER PROBLEM

for m = 0 to n − 2 doc = (1 + m)(2 + m)

s[m]1 = x × x

[m]+ y × y

[m]

s[m]2 = (s1)

−3/2[m]

x [m+2] = − x × s2[m]/c

y [m+2] = − y × s2[m]/c

end

R. Barrio (University of Zaragoza) TIDES & Rössler 11 / 33

Page 21: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Programming: WITHOUT VARIATIONAL EQUATIONS

Two body problem (Kepler)

x = − x(x2 + y2)3/2 , y = − y

(x2 + y2)3/2

KEPLER PROBLEM

for m = 0 to n − 2 doc = (1 + m)(2 + m)

s[m]1 = x × x

[m]+ y × y

[m]

s[m]2 = (s1)

−3/2[m]

x [m+2] = − x × s2[m]/c

y [m+2] = − y × s2[m]/c

end

KEPLER PROBLEM & SENSITIVITY VALUES

for m = 0 to n − 2 doc = (1 + m)(2 + m)for v = 0 to i do

s[m,v]1 = x × x

[m,v]+ y × y

[m,v]

s[m,v]2 = (s1)

−3/2[m,v]

x [m+2,v] = − x × s2[m,v]

/c

y [m+2,v] = − y × s2[m,v]

/cend

end

R. Barrio (University of Zaragoza) TIDES & Rössler 11 / 33

Page 22: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Standard integrator: USE

Lorenz Equations: x = σ(y − x), y = −xz + rx − y , z = xy − bz

Hénon-Heiles Hamiltonian: H = 12 (x

2 + y2) + 12 (x

2 + y2) + x2y − y3

3

MATHEMATICA code:lor=FirstOrderODE[{s*(y-x), -x*z+r*x-y, x*y-b*z},

t, {x, y, z}, {s, r, b}];CodeFiles[lor,"lorenz",MinTIDES->"Fortran",

Output->"lorOut.txt"]

HH=HamiltonianToODE[H, t, {x, y, X, Y}];CodeFiles[HH,"henon",MinTIDES->"Fortran",

Output->"henon.txt"]

R. Barrio (University of Zaragoza) TIDES & Rössler 12 / 33

Page 23: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Numerical test: minf-TIDES vs. DOP853, ODEXdouble precision + quadruple precision

10−10

10−5

10−3

10−2

CPU

time

dop853odexminftides

10−15

10−10

10−5

10−3

10−2

Relative error

CPU

time

dop853odexminftides

Henon-Heiles Lorenz problem

10−30

10−20

10−10

10−1

100

101

102

CPU

time

dop853odexminftides

Henon-Heiles

10−30

10−20

10−10

10−1

100

101

Relative error

CPU

time

dop853odexminftides

Lorenz problemRelative error

Relative error

DOUB

LE P

RECI

SION

QUAD

RUPL

E PR

ECIS

ION

R. Barrio (University of Zaragoza) TIDES & Rössler 13 / 33

Page 24: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

PARTIAL DERIVATIVES: USE

Kepler potential (two body problem): V = −1/(x2 + y2)1/2

MATHEMATICA code:kep=PotentialToODE[V, t, {x, y}]CodeFiles[kep,"kepler1",addPartials->{{x},1},

Output->"kep1Out.txt"]CodeFiles[kep,"kepler2",addPartials->{{x,y,X,Y},7},

Output->"kep2Out.txt"]

CodeFiles[lor,"lorenz1.txt",addPartials->{{s},1},Output->"lor1Out.txt"]

CodeFiles[lor,"lorenz2.txt",addPartials->{{s,b},9},Output->"lor1Out.txt"]

∂x∂s,∂y∂s,∂z∂s, . . .

∂5x∂s2∂b3 , . . . ,

∂9z∂b9

R. Barrio (University of Zaragoza) TIDES & Rössler 14 / 33

Page 25: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

PARTIAL DERIVATIVES: USE

Kepler potential (two body problem): V = −1/(x2 + y2)1/2

MATHEMATICA code:kep=PotentialToODE[V, t, {x, y}]CodeFiles[kep,"kepler1",addPartials->{{x},1},

Output->"kep1Out.txt"]CodeFiles[kep,"kepler2",addPartials->{{x,y,X,Y},7},

Output->"kep2Out.txt"]

CodeFiles[lor,"lorenz1.txt",addPartials->{{s},1},Output->"lor1Out.txt"]

CodeFiles[lor,"lorenz2.txt",addPartials->{{s,b},9},Output->"lor1Out.txt"]

∂x∂s,∂y∂s,∂z∂s, . . .

∂5x∂s2∂b3 , . . . ,

∂9z∂b9

R. Barrio (University of Zaragoza) TIDES & Rössler 14 / 33

Page 26: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

PARTIAL DERIVATIVES: USE

Kepler potential (two body problem): V = −1/(x2 + y2)1/2

MATHEMATICA code:kep=PotentialToODE[V, t, {x, y}]CodeFiles[kep,"kepler1",addPartials->{{x},1},

Output->"kep1Out.txt"]CodeFiles[kep,"kepler2",addPartials->{{x,y,X,Y},7},

Output->"kep2Out.txt"]

CodeFiles[lor,"lorenz1.txt",addPartials->{{s},1},Output->"lor1Out.txt"]

CodeFiles[lor,"lorenz2.txt",addPartials->{{s,b},9},Output->"lor1Out.txt"]

∂x∂s,∂y∂s,∂z∂s, . . .

∂5x∂s2∂b3 , . . . ,

∂9z∂b9

R. Barrio (University of Zaragoza) TIDES & Rössler 14 / 33

Page 27: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

PARTIAL DERIVATIVES: APPLICATIONS

1 Chaos indicatorsLyapunov exponents

↪→ Partial derivatives up to order 1.OFLI, OFLI2 (Barrio 2005)

↪→ Partial derivatives up to order 2.2 Uncertainty propagation

↪→ Partial derivatives up to order n.

R. Barrio (University of Zaragoza) TIDES & Rössler 15 / 33

Page 28: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

PARTIAL DERIVATIVES: APPLICATIONS

1 Chaos indicatorsLyapunov exponents

↪→ Partial derivatives up to order 1.OFLI, OFLI2 (Barrio 2005)

↪→ Partial derivatives up to order 2.2 Uncertainty propagation

↪→ Partial derivatives up to order n.

R. Barrio (University of Zaragoza) TIDES & Rössler 15 / 33

Page 29: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

TIDES and partial derivativesUncertainty propagation or box propagation: test on the two-body problem

Uncertainties on the initial conditions and parameters

y(t ; y0 + δy ,p + δp) ≈M∑

k=0

∑|i|=k

1i1! · · · is+l !

∂|i|y(t ; y0,p)

∂y i11 · · · ∂y is

s ∂pis+11 · · · ∂pis+l

l

δi11 · · · δ

is+ls+l

with the notation δy = (δ1, . . . , δs) and δp = (δs+1, . . . , δs+l).

- 1.5 -1.0 - 0.5 0.5

- 0.5

0.5

- 1.5 -1.0 - 0.5 0.5

order 1order 2order 3order 5-9points

AA

CC

B

order 9Monte-Carlo

R. Barrio (University of Zaragoza) TIDES & Rössler 16 / 33

Page 30: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

HIGH PRECISION: USE

For Lorenz problem

MATHEMATICA code:lor=FirstOrderODE[eq, t, {x, y, z}, {s, r, b}]CodeFiles[lor,"lorenzMP",Precision->Multiple[300]]

Output->"lorOut.txt"]

Initial conditions:Must be given with 300 digitsObtained through Analytical studies in Lorenz Model(Prof. D. Viswanath)

R. Barrio (University of Zaragoza) TIDES & Rössler 17 / 33

Page 31: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

HIGH PRECISION: USE

For Lorenz problem

MATHEMATICA code:lor=FirstOrderODE[eq, t, {x, y, z}, {s, r, b}]CodeFiles[lor,"lorenzMP",Precision->Multiple[300]]

Output->"lorOut.txt"]

Initial conditions:Must be given with 300 digitsObtained through Analytical studies in Lorenz Model(Prof. D. Viswanath)

R. Barrio (University of Zaragoza) TIDES & Rössler 17 / 33

Page 32: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

HIGH PRECISION: USE

For Lorenz problem

MATHEMATICA code:lor=FirstOrderODE[eq, t, {x, y, z}, {s, r, b}]CodeFiles[lor,"lorenzMP",Precision->Multiple[300]]

Output->"lorOut.txt"]

Initial conditions:Must be given with 300 digitsObtained through Analytical studies in Lorenz Model(Prof. D. Viswanath)

R. Barrio (University of Zaragoza) TIDES & Rössler 17 / 33

Page 33: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Outline

1 Why TIDES?: Motivation

2 Taylor’s method: TIDES

3 The Rössler equations

R. Barrio (University of Zaragoza) TIDES & Rössler 18 / 33

Page 34: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

The Rössler equations

The Rössler equationsdxdt

= −(y + z),dydt

= x + ay ,dzdt

= b + z(x − c),

Three dimensionless control parameters: a,b, c

♥ This model is a famous prototype of a continuousdynamical system exhibiting chaotic behavior withminimum ingredients.

• The fixed points: P1 and P2 (for c2 > 4ab) given byP1 = (−ap1, p1,−p1) and P2 = (−ap2, p2,−p2) with

p1 :=12

(−c

a−√

c2 − 4aba

), p2 :=

12

(−c

a+

√c2 − 4ab

a

).

R. Barrio (University of Zaragoza) TIDES & Rössler 19 / 33

Page 35: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

The Rössler equations

The Rössler equationsdxdt

= −(y + z),dydt

= x + ay ,dzdt

= b + z(x − c),

Three dimensionless control parameters: a,b, c

♥ This model is a famous prototype of a continuousdynamical system exhibiting chaotic behavior withminimum ingredients.

• The fixed points: P1 and P2 (for c2 > 4ab) given byP1 = (−ap1, p1,−p1) and P2 = (−ap2, p2,−p2) with

p1 :=12

(−c

a−√

c2 − 4aba

), p2 :=

12

(−c

a+

√c2 − 4ab

a

).

R. Barrio (University of Zaragoza) TIDES & Rössler 19 / 33

Page 36: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

MLE and OFLI2 plots in the (b, c) plane

c c c

c c c

bbb

bb b

a=0.2 a=0.1

a=0.4

a=0.35

a=0.3

a=0.6

Red: Chaotic orbits, Blue: regular orbits, White: escape orbits.

R. Barrio (University of Zaragoza) TIDES & Rössler 20 / 33

Page 37: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Bifurcation curves in the (b, c) plane

a=0.1

48

A

c

c

b

a=0.1, b=0.4

A1

a=0.1

Bifurcation diagram

MLE+OFLI2+AUTO(bifurcations)

Light: Chaotic orbits, Dark: regular orbits.Red: Period doubling curves.Blue: Fold curves.

R. Barrio (University of Zaragoza) TIDES & Rössler 21 / 33

Page 38: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Bifurcation curves in the (b, c) plane

a=0.2 a=0.3

When the parameter a grows, the structures are no more isolated.The period doubling and fold curves show a repeated pattern anddelimit the structures.

R. Barrio (University of Zaragoza) TIDES & Rössler 22 / 33

Page 39: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Structures in the (b, c) plane

a=0.1B

a=0.2

D

12482 4

Isolated structure LPCPD

Coupled structures

region of coexistence

cusp bifurcation

parameter c

par

amet

er b

parameter c

par

amet

er b

When thestructures arecoupled, acodimension2 cuspbifurcationappears.

R. Barrio (University of Zaragoza) TIDES & Rössler 23 / 33

Page 40: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Coexistence: two limit cycles (B3)

B1 B2

bb

a=0.2, (x,y,z)(0)=(1,1,1) a=0.2, (x,y,z)(0)=(-7,-7,-7)

B3

B4B7B6

B7B6B5

cc

c

a=0.2, b=9

−500

50−50

050

0

100

200

xyz

c=50

coexistence region

B3

R. Barrio (University of Zaragoza) TIDES & Rössler 24 / 33

Page 41: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Coexistence a limit cycle and a chaotic attractor (B4)

B1 B2

bb

a=0.2, (x,y,z)(0)=(1,1,1) a=0.2, (x,y,z)(0)=(-7,-7,-7)

B3

B4B7B6

B7B6B5

cc

a=0.2, b=4.5

coexistence region

c

−100−50

0 50

−100−50

050

0

200

400

xyz

c=60B4

R. Barrio (University of Zaragoza) TIDES & Rössler 25 / 33

Page 42: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Coexistence: two chaotic attractors (B5)

B1 B2

bb

a=0.2, (x,y,z)(0)=(1,1,1) a=0.2, (x,y,z)(0)=(-7,-7,-7)

B3

B4B7B6

B7B6B5

cc

c

a=0.2, b=1

coexistence region−50

050

−100−50

050

0

200

400

xy

z

c=48.5B5

R. Barrio (University of Zaragoza) TIDES & Rössler 26 / 33

Page 43: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Chaotic attractors: topological templates

14 16 18 20 22 24

14

16

18

20

22

24

10 15 20 25

10

15

20

25

10 15 20 25

10

15

20

25

y(n)

y(n+

1)

y(n)

y(n+

1)

y(n)

y(n+

1)

a=0.08969 a=0.2 a=0.25

−0.5 0 0.5 1 1.5 2−0.5

0

0.5

1

1.5

2

a=0.542, b=2, c=4

y(n)

y(n+

1)

spiral attractor screw attractor

01

2301 012

funnel attractor (4 branches)

Letellier et al.

Msp =

(0 −1−1 −1

), Msc =

0 −1 −1−1 −1 −2−1 −2 −2

, Mfu(n) =

0 −1 · · · −1 −1−1 −1 · · · −2 −2

.

.

....

. . ....

.

.

.−1 −2 · · · −(n − 1) −n−1 −2 · · · −n −n

R. Barrio (University of Zaragoza) TIDES & Rössler 27 / 33

Page 44: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

And in the (a, c) plane ...

b=0.2

A

b=2

B

# The bifurcation curves in the (a, c) plane go to ...?

R. Barrio (University of Zaragoza) TIDES & Rössler 28 / 33

Page 45: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations

A

b=0.2

Hopf-P1Hopf-P2

Hopf-P1

BT

ZH

1HB2PDLPC SN

Hopf-P2

Hopf-P1

sp-sc

BT: Bogdanov-Takens (or double-zero) bifurcation point

1: double real leading unstable eigenvalues λ2 = λ3 > 0 (Belyakov).

infinite number of bifurcation curves of homoclinic orbits and foldbifurcations of periodic orbits

R. Barrio (University of Zaragoza) TIDES & Rössler 29 / 33

Page 46: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations

A

b=0.2

Hopf-P1Hopf-P2

Hopf-P1

BT

ZH

1HB2PDLPC SN

Hopf-P2

Hopf-P1

sp-sc

BT: Bogdanov-Takens (or double-zero) bifurcation point

1: double real leading unstable eigenvalues λ2 = λ3 > 0 (Belyakov).

infinite number of bifurcation curves of homoclinic orbits and foldbifurcations of periodic orbits

R. Barrio (University of Zaragoza) TIDES & Rössler 29 / 33

Page 47: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations

A

b=0.2

Hopf-P1Hopf-P2

Hopf-P1

BT

ZH

1HB2PDLPC SN

Hopf-P2

Hopf-P1

sp-sc

BT: Bogdanov-Takens (or double-zero) bifurcation point

1: double real leading unstable eigenvalues λ2 = λ3 > 0 (Belyakov).

infinite number of bifurcation curves of homoclinic orbits and foldbifurcations of periodic orbits

R. Barrio (University of Zaragoza) TIDES & Rössler 29 / 33

Page 48: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations

0 2 4 6

−3

−2

−1

0

x

y

A

b=0.2

Hopf-P1Hopf-P2

Hopf-P1

BT

ZH

1

P2

HB2PDLPC SN

Hopf-P2

Hopf-P1

a=2.39a=2.37a=2.24a=1.99

−5015

−1005

0

30

−10 010−20

0100

50A2

A0

P2 P2

a=0.90 a=0.39

sp-sc

0 5 10−6

020

10

20 A3

P2

a=1.46A1

sp-sc: spiral to screw attractor bifurcation

R. Barrio (University of Zaragoza) TIDES & Rössler 30 / 33

Page 49: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations

0 2 4 6

−3

−2

−1

0

x

y

A

b=0.2

Hopf-P1Hopf-P2

Hopf-P1

BT

ZH

1

P2

HB2PDLPC SN

Hopf-P2

Hopf-P1

a=2.39a=2.37a=2.24a=1.99

−5015

−1005

0

30

−10 010−20

0100

50A2

A0

P2 P2

a=0.90 a=0.39

sp-sc

0 5 10−6

020

10

20 A3

P2

a=1.46A1

sp-sc: spiral to screw attractor bifurcation

R. Barrio (University of Zaragoza) TIDES & Rössler 30 / 33

Page 50: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations b = 2

−10 0 10−1005

0

30

−10 0 10−20

0100

50

−10 020

−20010

0

50

B

B1 B2 B3

b=2

P2

P1

P2P2

P1P1

Hopf-P1

Hopf-P2

22

BT

HB1PDLPC SN

Hopf-P2

Hopf-P1

a=0.55c=5.79

a=0.51c=7.48

a=0.49c=8.61

BT: Bogdanov-Takens (or double-zero) bifurcation point2: neutral saddle-focus bifurcation (resonant eigenvalues λ3 = −α of P1, beingthe eigenvalues λ1,2 = α± iβ and λ3 > 0). (Belyakov).

R. Barrio (University of Zaragoza) TIDES & Rössler 31 / 33

Page 51: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Global bifurcations: homoclinic bifurcations b = 2

−10 0 10−1005

0

30

−10 0 10−20

0100

50

−10 020

−20010

0

50

B

B1 B2 B3

b=2

P2

P1

P2P2

P1P1

Hopf-P1

Hopf-P2

22

BT

HB1PDLPC SN

Hopf-P2

Hopf-P1

a=0.55c=5.79

a=0.51c=7.48

a=0.49c=8.61

BT: Bogdanov-Takens (or double-zero) bifurcation point2: neutral saddle-focus bifurcation (resonant eigenvalues λ3 = −α of P1, beingthe eigenvalues λ1,2 = α± iβ and λ3 > 0). (Belyakov).

R. Barrio (University of Zaragoza) TIDES & Rössler 31 / 33

Page 52: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Conclusions

♣ Taylor method gives an easy, powerful and stable implementation.

Use TIDES. It is GOOD, it is FAST, it is EASY and it is FREE.

♣ Results for the Rössler model:Coexistence of different kind of attractors and escape dynamics.

Three-parametric model explains the already observed behaviour.

Parametric changes.

Global homoclinic bifurcations explain the parametric structure.

Changes in the attractor’s topology (Perestroikas).

♣ New methods to compute T-points

R. Barrio (University of Zaragoza) TIDES & Rössler 32 / 33

Page 53: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Conclusions

♣ Taylor method gives an easy, powerful and stable implementation.

Use TIDES. It is GOOD, it is FAST, it is EASY and it is FREE.

♣ Results for the Rössler model:Coexistence of different kind of attractors and escape dynamics.

Three-parametric model explains the already observed behaviour.

Parametric changes.

Global homoclinic bifurcations explain the parametric structure.

Changes in the attractor’s topology (Perestroikas).

♣ New methods to compute T-points

R. Barrio (University of Zaragoza) TIDES & Rössler 32 / 33

Page 54: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Conclusions

♣ Taylor method gives an easy, powerful and stable implementation.

Use TIDES. It is GOOD, it is FAST, it is EASY and it is FREE.

♣ Results for the Rössler model:Coexistence of different kind of attractors and escape dynamics.

Three-parametric model explains the already observed behaviour.

Parametric changes.

Global homoclinic bifurcations explain the parametric structure.

Changes in the attractor’s topology (Perestroikas).

♣ New methods to compute T-points

R. Barrio (University of Zaragoza) TIDES & Rössler 32 / 33

Page 55: Quality of numerics: TIDES. Application to the Rössler model.cmvl.cs.concordia.ca/baa-2010/presentations/Barrio.pdfR. Barrio, F. Blesa, M. Rodríguez, S. Serrano GME – University

Bibliography

A. Abad, R. Barrio, F. Blesa, M. Rodríguez, TIDES: A Taylor series Integrator forDifferential EquationS. Preprint (2010).

Where?: http://gme.unizar.es/software/tides

or Email: [email protected]

R. Barrio, Sensitivity analysis of ODE’s/DAE’s using the Taylor series method,SIAM J. Sci. Comput. 27 (6) (2006) 1929–1947.

R. Barrio, Sensitivity tools vs. Poincaré sections, Chaos Solitons Fractals 25 (3)(2005) 711–726.

R. Barrio, Painting chaos: a gallery of sensitivity plots of classical problems, Int.J. Bifurc. Chaos 16 (10) (2006) 2777–2798.

R. Barrio, F. Blesa, S. Serrano, Qualitative analysis of the Rössler equations:Bifurcations of limit cycles and chaotic attractors, Phys. D 238 (2009) 1087–1100.

R. Barrio, A. Shilnikov, preprint (2010).

R. Barrio (University of Zaragoza) TIDES & Rössler 33 / 33