qtpie: a minimal extension of goddard's qeq model with correct dissociation

1
Polarization effects are important in classical molecular dynamics simulations Structure of water improved when polarization is accounted for, even if implicitly 1 Needed to describe local environmental effects, e.g. hydration of chloride in water clusters 2 Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 91 (1987) 6269-71. Stuart, S. J.; Berne, B. J. J. Phys. Chem. 100 (1996) 11934 -11943. Yu, H.; van Gunsteren, W. F. Comput. Phys. Commun. 172 (2005) 69- 85. Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 95 (1991) 3358-3363. Chen, J.; Martínez, T. J. Chem. Phys. Lett. 438 (2007) 315-320. Lide, D. R. CRC Handbook of Chemistry and Physics, 73rd ed., 1992. Gubskaya, A. V.;Kusalik, P. G. J. Chem. Phys. 117 (2002) 5290-5302. Jorgensen, W. L.; et al., J. Chem. Phys. 79 (1983) 926-935. NIST Webbook. Murphy, W. F. J. Chem. Phys. 67 (1977) 5877-5882. Ren, P.; Ponder, J. W. J. Phys. Chem. B 107 (2003) 5933-5947. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. OPLS/FQ Polarizable force field OPLS/AA Non-polarizable force field How to represent explicit polarization? 3 Polarizable point dipole models +q, α 1 -q, α 2 Induced dipoles calculated from site polarizabilities Drude oscillator/charge-on-spring/shell models charge -Q >> q mass m << M charge q+Q mass M-m spring k Electronegativity equalization/charge equilibration/fluctuating- charge models Model polarization as a type of charge transfer electro- negativity chemical hardness screened Coulomb interaction (inverse) capacitance electric potential electrical circuits atoms in molecule 0 V χ 2 η 1 η 2 QEq 4 , a typical fluctuating-charge model Energy minimized with respect to charges subject to constraint on total charge Q Jiahao Chen and Todd J. Martínez QTPIE: A minimal extension of Goddard’s QEq model with correct dissociation Department of Chemistry, Frederick Seitz Materials Research Laboratory, and the Beckman Institute University of Illinois at Urbana-Champaign Screened Coulomb interactions s-type Slater orbitals Limitations of QEq No out-of-plane dipole polarizability Overestimates in-plane dipole polarizability Unphysical charge distributions predicted for non-equilibrium geometries Cause: no distance penalty for charge transfer η 2 distance η 2 η 2 η 2 QTPIE 5 , our new charge model Charge-transfer with polarization current equilibration Voltage attenuates with increasing distance η 2 voltage distance η 2 η 2 η 2 Features of QTPIE Correct dissociation limit for uncharged fragments Minimally parameterized in terms of chemically meaningful quantities (electronegativites and hardnesses) Can obtain results for electrostatic properties comparable to those from more sophisticated force fields Dissocation of water in QEq and QTPIE Correct asymptotics Charge separation on OH fragment retained -1.0 -0.5 0.0 0.5 1.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 R/Å q/e QTPIE prediction improved over QEq without reoptimizing parameters ab initio = DMA charges from CASSCF(6/4)/STO-3G wavefunction ab initio QEq QTPIE Dipole moment of water increases from 1.854 Debye 6 in gas phase to 2.95±0.20 Debye 7 at r.t.p. liquid phase Polarization enhances dipole moment Water models with implicit or no polarization can’t describe local electri- cal fluctuations Cooperative polarization in water Replace implicit polarization in TIP3P 8 by explicitly polarizable charges using QTPIE and QEq QTPIE, QEq implemented in TINKER Reparameterized to reproduce ab initio dipole moments and anisotropic polarizabilities of a single water molecule ab initio = DF-LMP2/aug-cc-pVDZ Creating a water model with QTPIE New parameters for TIP3P/QTPIE and TIP3P/QEq Mulliken electronegativities and Parr-Pearson hardnesses Mean dipole moment per water TIP3P/QTPIE predicts dipoles well Simpler, computationally cheaper, yet results comparable to AMOEBA Distance-dependent electronegativity difference leads to correct asympot- ic behavior of dissociating neutral fragments New TIP3P/QTPIE water model predicts dipole moments better than TIP3P/QEq TIP3P/QTPIE models polarization effects with results comparable to more expensive force fields Conclusions Acknowledgments Prof. Todd J. Martínez Martínez Group Funding from DOE DE-FG02-05ER46260 References Water model AMOEBA TIP3P TIP3P/QEq TIP3P/QTPIE No. of electrostatics parameters 14 3 4 4 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 0 5 10 15 20 25 30 35 40 Number of water molecules, N ( /N)/Debye TIP3P AMOEBA DF-LMP2/aug-cc-pVDZ TIP3P/QTPIE TIP3P/QEq gas phase (experimental) 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 0 5 10 15 20 25 30 35 40 Number of water molecules, N ( /N)/Debye TIP3P AMOEBA DF-LMP2/aug-cc-pVDZ TIP3P/QTPIE TIP3P/QEq gas phase (experimental) Dipole response of linear water chains Use parameters from single water molecule to model chains of waters Compared with gas phase experimental data 10 , ab initio (DF-LMP2/aug- cc-pVDZ), and AMOEBA 11 , a point polarizable dipole force field eV Original 4 QTPIE QEq Expt. 9 χ H 4.528 4.960 5.116 7.176 χ O 8.741 8.285 8.125 7.540 η H 13.890 10.125 10.125 12.844 η O 13.364 20.680 20.680 12.157 Planar Twisted

Upload: jiahao-chen

Post on 27-Jan-2015

106 views

Category:

Business


2 download

DESCRIPTION

Poster presented at the Fall 2007 ACS national meeting.

TRANSCRIPT

Page 1: QTPIE: A minimal extension of Goddard's QEq model with correct dissociation

Polarization eff ects are important in classical molecular dynamics simulations

Structure of water improved when polarization is accounted for, even if implicitly1

Needed to describe local environmental eff ects, e.g. hydration of chloride in water clusters2

Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 91 (1987) 6269-71. Stuart, S. J.; Berne, B. J. J. Phys. Chem. 100 (1996) 11934 -11943. Yu, H.; van Gunsteren, W. F. Comput. Phys. Commun. 172 (2005) 69-85. Rappé, A. K.; Goddard, W. A. J. Phys. Chem. 95 (1991) 3358-3363. Chen, J.; Martínez, T. J. Chem. Phys. Lett. 438 (2007) 315-320. Lide, D. R. CRC Handbook of Chemistry and Physics, 73rd ed., 1992. Gubskaya, A. V.;Kusalik, P. G. J. Chem. Phys. 117 (2002) 5290-5302. Jorgensen, W. L.; et al., J. Chem. Phys. 79 (1983) 926-935. NIST Webbook. Murphy, W. F. J. Chem. Phys. 67 (1977) 5877-5882. Ren, P.; Ponder, J. W. J. Phys. Chem. B 107 (2003) 5933-5947.

1.

2.3.

4.5.6.7.8.9.10.11.

OPLS/FQPolarizable force fi eld

OPLS/AANon-polarizable force fi eld

How to represent explicit polarization?3

Polarizable point dipole models•

+q, α1 -q, α2

Induced dipoles calculated from site polarizabilitiesDrude oscillator/charge-on-spring/shell models•

charge -Q >> qmass m << M

charge q+Qmass M-m

spring kElectronegativity equalization/charge equilibration/fl uctuating-charge models

Model polarization as a type of charge transfer

electro-negativity

chemicalhardness screened

Coulombinteraction

(inverse)capacitance

electricpotential

electricalcircuits

atoms inmolecule

0 V

χ�2

η�1

η�2

QEq4, a typical fl uctuating-charge modelEnergy minimized with respect to charges subject to constraint on total charge Q

Jiahao Chen and Todd J. Martínez

QTPIE: A minimal extension of Goddard’s QEq model with correct dissociation

Department of Chemistry, Frederick Seitz Materials Research Laboratory, and the Beckman InstituteUniversity of Illinois at Urbana-Champaign

Screened Coulomb interactions•

s-type Slater orbitals•

Limitations of QEqNo out-of-plane dipole polarizabilityOverestimates in-plane dipole polarizabilityUnphysical charge distributions predicted for non-equilibrium geometriesCause: no distance penalty for charge transfer

••••

η�2

distance

η�2 η�2η�2

QTPIE5, our new charge modelCharge-transfer with polarization current equilibrationVoltage attenuates with increasing distance

••

η�2

voltage

distance

η�2

η�2η�2

Features of QTPIECorrect dissociation limit for uncharged fragmentsMinimally parameterized in terms of chemically meaningful quantities (electronegativites and hardnesses)Can obtain results for electrostatic properties comparable to those from more sophisticated force fi elds

••

Dissocation of water in QEq and QTPIECorrect asymptoticsCharge separation on OH fragment retained

••

-1.0

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

R/Å

q/e

QTPIE prediction improved over QEq without reoptimizing parameters ab initio = DMA charges from CASSCF(6/4)/STO-3G wavefunction

ab initioQEq

QTPIE

Dipole moment of water increases from 1.854 Debye6 in gas phase to 2.95±0.20 Debye7 at r.t.p. liquid phasePolarization enhances dipole momentWater models with implicit or no polarization can’t describe local electri-cal fl uctuations

••

Cooperative polarization in water

Replace implicit polarization in TIP3P8 by explicitly polarizable charges using QTPIE and QEq QTPIE, QEq implemented in TINKERReparameterized to reproduce ab initio dipole moments and anisotropic polarizabilities of a single water moleculeab initio = DF-LMP2/aug-cc-pVDZ

••

Creating a water model with QTPIE

New parameters forTIP3P/QTPIE and TIP3P/QEq

Mulliken electronegativities and Parr-Pearson hardnesses•

Mean dipole moment per water

TIP3P/QTPIE predicts dipoles wellSimpler, computationally cheaper, yet results comparable to AMOEBA•

Distance-dependent electronegativity diff erence leads to correct asympot-ic behavior of dissociating neutral fragmentsNew TIP3P/QTPIE water model predicts dipole moments better than TIP3P/QEq TIP3P/QTPIE models polarization eff ects with results comparable to more expensive force fi elds

Conclusions

AcknowledgmentsProf. Todd J. Martínez

Martínez GroupFunding from DOE DE-FG02-05ER46260

References

Water model AMOEBA TIP3P TIP3P/QEq TIP3P/QTPIENo. of electrostatics parameters 14 3 4 4

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 5 10 15 20 25 30 35 40

Number of water molecules, N

( /N)/Debye

TIP3P

AMOEBADF-LMP2/aug-cc-pVDZ

TIP3P/QTPIE

TIP3P/QEq

gas phase (experimental)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 5 10 15 20 25 30 35 40

Number of water molecules, N

( /N)/Debye

TIP3P

AMOEBA

DF-LMP2/aug-cc-pVDZ

TIP3P/QTPIE

TIP3P/QEq

gas phase (experimental)

Dipole response of linear water chainsUse parameters from single water molecule to model chains of watersCompared with gas phase experimental data10, ab initio (DF-LMP2/aug-cc-pVDZ), and AMOEBA11, a point polarizable dipole force fi eld

••

eV Original4 QTPIE QEq Expt.9

χH 4.528 4.960 5.116 7.176χO 8.741 8.285 8.125 7.540ηH 13.890 10.125 10.125 12.844ηO 13.364 20.680 20.680 12.157

Planar

Twisted