qm graphic dynamics

Upload: unima3610

Post on 03-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 QM Graphic Dynamics

    1/26

    Fou nda t ions o f Physics , VoL 18, No. 7, 1988

    Quantum Graphic DynamicsS t a n l e y P . G u d d e r 1Rece i ved June 12 , 1986A d i sc re t e quan t um mechan i c s i s deve l oped an d used t o cons t ruc t mode l s f o r d is -c re t e space - ti me an d f o r t he i n t e rnal dynam i cs o f e lemen t ary par t i cl e s . T h i sdynam i cs i s g i ven i n t e rms o f par t i c l e s pe r f orm i ng a q uant um random wal k on amult igraph.

    1 . I N T R O D U C T I O ND a v i d B o h m p u b l i s h e d a f a s c i n a t i n g a r t i c l e 2 5 y e a r s a g o i n w h i c h h ep r o p o s e d a t o p o l o g i c a l f o r m u l a t i o n o f q u a n t u m t h e o r y / ~ ) H e c a l le d th i sf o r m u l a t i o n a t o p o - c h r o n o l o g y t h e o r y , b y w h i c h h e m e a n t t h e s t u d y o fo r d e r a n d r e l a t i o n s h i p i n p r o c e ss . T h e b a s is o f h i s t h e o r y is t h a t e v e r ya c t i o n i s a r e s u l t o f d i s c r e te p r i m a r y a c t i o n s w h i c h t a k e p l a c e a t t h e s p e e dof l i gh t c . A ge nera l ac t i o n a t a speed l e s s t han c cons i s t s o f a z ig -zag se r ie so f p r i m a r y c o n t a c t s a t t h e s p e e d e , a n d a ll a p p a r e n t l y c o n t i n u o u sm o v e m e n t s a t s p e e d s le ss t h a n c a r e t o b e e x p l a i n e d a s t h e r e s u l t o f s u c h at r e m b l i n g m o v e m e n t . A c c o r d i n g t o B o h m : " T h i s f i t s i n w i t h m o d e r nr e la t iv i st ic q u a n t u m m e c h a n i c a l i d e as c o n c e r n i n g t h e m o v e m e n t o f th e e le c-t r o n . D i r a c ' s e q u a t i o n i m p l i e s , f o r e x a m p l e , t h a t t h e e l e c t r o n m o v e s a t t h es p e e d o f li g h t in t r e m b l i n g m o v e m e n t s ( c al le d Zitterbewegungen). ( T h ea v e r a g e v e l o c i ty , w h i c h is l es s t h a n t h a t o f l ig h t , t h e n c o r r e s p o n d s t o a k i n do f c i r c u l a t i o n i n a sp i r a l p a t h t h a t i s r e s p o n s i b l e f o r t h e p h e n o m e n aa s s o c i a t e d w i t h t h e e l e c t r o n s p i n . ) " T h i s e x p l a i n s w h y c i s a b s o l u t e . I n f a c t ,c is the only p o s s i b l e s p e e d a n d a ll o t h e r s a r e o n l y a p p a r e n t . A s a s im p l i fi e de x a m p l e , s u p p o s e a p a r t i c l e m o v i n g i n o n e d i m e n s i o n t r a v e l s t w o s t e p s

    1Department of Mathematics and Computer Science, University of Denver, Denver,Colorado 80208.751

    0015-9018/88/0700-0751506.00/0 1988 Plenum PublishingCorporation

  • 7/28/2019 QM Graphic Dynamics

    2/26

    752 Gudder

    forward and one step backward in a repeated motion. Although its actualspeed is c, it has an apparent speed of c / 3 .

    Bohm then proposes a mathematical model for his topo-chronologytheory. He represents every actual movement by a point (or vertex) andevery actual process of immediate contact between such moments by a line(or edge). This corresponds mathematically to a graph. Relationshipswhich define each moment in terms of past moments are described by cer-tain kinds of matrices. He indicates that these matrices have a close connec-tion with fermions and bosons and they might provide an explanation forthe structure of elementary particles. In the present paper we intend toexpand upon Bohm's ideas by constructing various concrete mathematicalmodels. However, instead of calling this a topochronology theory we shalluse the term quantum graphic dynamics.

    As its name implies, quantum graphic dynamics (QGD) consists oftwo main ingredients, a graph and a quantum dynamics. The graph (ormultigraph) is interpreted as a generalized discrete phase space in whichthe vertices represent discrete positions which a particle can occupy and theedges represent discrete directions that a particle can propagate. The quan-tum dynamics is induced by a transition amplitude which generates aquantum random walk on the graph.Our developmment of QGD has two purposes.. First, QGD can beused to describe the motion of a particle in discrete space-time. In this case,the graph represents an actual discrete phase space and the discrete time isgiven by the time steps of the random walk. Second, QGD can be used todescribe the internal dynamics of "elementary particles." In this case, thevertices represent quarklike constituents of a particle, and edges representinteraction paths for gluons which are emitted and absorbed by the ver-tices. A vertex can emit or absorb a gluon at each time step of the randomwalk.In Section 2 we begin the development of QGD for an abstract mul-tigraph. Section 3 illustrates this theory by considering two models of dis-crete space-time. The first model is a cubic lattice, and the second is a treemodel. Section 4 develops a multigraph model for elementary particles, andSection 5 derives the gluon dynamics for these multigraphs. For otherapproaches to discrete quantum mechanics, the reader is referred to Refs.1-4 and 6-9.

    2. ABSTRACT MULTIG RAPHSIn a previous paper, ~5) we began to develop a theory of discrete quan-tum mechanics. To make the present work self-contained, we shall review

  • 7/28/2019 QM Graphic Dynamics

    3/26

    Quantum Graphic Dynamics 753s o m e o f t h a t m a t e r i a l h e r e. M o r e o v e r , i n R ef. 5 w e o n l y c o n s i d e r e d g r a p h sw h i l e i n t h i s w o r k w e s h a l l r e q u i r e a t h e o r y o n m u l t i g r a p h s .A multigraph i s a p a i r G = ( V , E ) , w h e r e V is a n o n e m p t y s e t a n d E i sa c o l l e c t i o n o f o n e - a n d t w o - e l e m e n t s u b s e t s o f V . T h e e l e m e n t s o f V a r ec a l l e d vertices, t h e t w o - e l e m e n t s e t s i n E a r e c a l l e d edges, a n d t h e o n e -e l e me n t s e t s i n E a r e c a l l e d loops. T h e s e t s i n E m a y b e r e p e a t e d , a n d ar e p e a t e d p a i r o f e d g e s is ca l l e d a biedge. T h e degree o f a v e r t e x is t h e n u m -b e r o f e d g e s c o n t a i n i n g ( o r i n c i d e n t t o ) i t. A s f a r a s t h e d e g r e e is c o n c e r -n e d , a l o o p i s c o n s i d e r e d t o b e t w o e d g e s i n c i d e n t t o a v e r t e x . T h u s , e a c hl o o p i n c i d e n t t o a v e r t e x a d d s t w o t o i t s d e g r e e .

    S u p p o s e t h a t V = { v j : j ~ J } a n d t h a t t h e e d g es c o n t a i n i n g v j a r ed e n o t e d b y e j k , k ~ K ( j ) . I f {vr , vs} ~ E , we w r i te vr 2_ vs an d say th a t v r , v~a r e adjacent (r m a y e q u a l s ) . T h e phase space on G i s t he s e t

    S = { ( v j , ej~): j ~ J , k ~ K ( j ) } ~ V x EI f q = (vj , e jk) , q ' = (vj, , e j,k ,) e S , an d vj 2_ v / w e w ri te q 2_ q ' . F o r n E ~ , ann-path i s a s e q ue n c e o f no t ne c e s sa r i l y d i s t i nc t e l e m e n t s q0 ,..., q , ~ S w i thqj 2_ qj+ 1, J = 9 . .. .. n + 1. W e ca ll q0, q , th e initial and fina l e l e m e n t s o f t h en - p a t h , r e s p e c t iv e l y . D e n o t e t h e s e t o f n - p a t h s w i t h i n i t i al e l e m e n t q o a n df i n a l e l e m e n t q b y ~ , ( q o , q ) .W e i n t e r p r e t V a s a se t o f d i s c r e t e p o s i t i o n c o o r d i n a t e s f o r a p a r t i c l ea n d a d j a c e n t v e r t ic e s c o r r e s p o n d t o " n e a r e s t n e i g h b o r " p o s it i o n s . A n ed g ec o r r e s p o n d s t o a d i r e c t i o n t h a t a p a r t i c l e c a n m o v e , s o i t r e p r e s e n t s a d i r e c -t io n o f m o m e n t u m . I f e = { v l, v 2 } ~ E , t h e n a p a r t i c l e l o c a t e d a t V l c a nm o v e a l o n g e t o v2 i n o n e t i m e s t ep . A n n - p a t h p ~ ~ n ( q 0, q ) is a p o s s i b l et r a j e c t o r y f o r a p a r t i c l e m o v i n g i n a d i s c r e te p h a s e s p a c e f r o m q o t o q in nt ime s t e ps .

    A f u n c t i o n A : S S ~ C is a transition amplitude i f A ( q , q ' ) = O i fq J_ q ' a nd f o r e ve r y q l , q2 ~ S we ha ve

    A(q l , q ) A( q2 , q ) = ~ a(q, qv) A(q, q2) = ( ~ q l q 2 (1 )q q

    w h e r e . ~ d e n o t e s t h e c o m p l e x c o n j u g a t e o f A . I f p = { qo ,..., q , } ~ ~ , ( q o , q ),t h e amplitude of p i s

    A (p )= A(qo, q~) A(q~, q2) . . . A (q , 1, q,)F o r qo , q ~ S , t he n-ste p transition amp litude fro m qo to q is

    A,(qo, q ) = Z { A ( p ) : P ~ , ( q o , q )}a n d b y c o n v e n t i o n A o (q o , q ) = ( ~ q o q " T h e n-step transition probability fr o mqo to q is P,,(qo, q ) = [ A n (q o , q )j 2.

    825/18/7-5

  • 7/28/2019 QM Graphic Dynamics

    4/26

    754 Gudder

    W e c a n m o t i v a t e o u r d e f i n i t io n o f a t r a n s i t i o n a m p l i t u d e p h y s i ca l ly .F i r s t , w e i n t e r p r e t A ( q , q ' ) a s t h e p r o b a b i l i t y a m p l i t u d e t h a t a p a r t i c l em o v e s f r o m q t o q ' i n o n e t i m e s t ep a n d w e i n t e r p r e t A ( q , q ' ) a s t h ep r o b a b i l it y a m p l i t u d e t h a t a p a r t ic l e m o v e s f r o m q ' t o q i n m i n u s o n e t i m es teps . Al te rna t ive ly , i f a p ar t i c le i s a t q ' a t t im e t , the n .,/ (q , q ' ) i s thep r o b a b i li ty a m p l i t u d e th a t i t w a s a t q a t ti m e t - 1 . T h e n A ( q, q ' ) = 0 ifq l _ q ' m e a n s t h a t a p a r t i c l e c a n o n l y m o v e t o a d j a c e n t v e r t i c e s i n o n e t i m es t e p . M o r e o v e r , w e t h e n i n t e r p r e t A ( q l , q ) A ( q 2 , q ) a s t h e p r o b a b i l it ya m p l i t u d e t h a t a p a r t i c l e m o v e s f r o m q l t o q 2 v i a q i n z e r o t i m e s t e p s . I tf o l l o w s t h a t Z q A ( q l , q ) A ( q 2 , q ) i s t h e t o t a l p r o b a b i l i t y a m p l i t u d e t h a t apa r t i c l e moves f rom q~ t o q2 i n ze ro t ime s t eps . I t i s c l ea r t ha t t h i s shou lde q u a l 6q~q2. S i m i l a r r e a s o n i n g a p p l i e s t o t h e o t h e r e q u a l i t y i n E q . ( 1 ) .

    T h e f o l l o w i n g r e s u l t i s a s l ig h t g e n e r a l i z a t i o n o f a t h e o r e m p r o v e d i nR e f. 5 . I t s t a t e s t h a t p r o b a b i l i t y is c o n s e r v e d a n d t h a t a n a m p l i t u d eC h a p m a n - K o l m o g o r o v e q u a l i t y h o l d s .

    T h e o r e m 1 . ( a ) ~q IA , (qo , q )l 2 = Z q [A~(q , qo )12= 1 , n ~ ~ . (b ) I fm , n ~ ~ , m ~< n, th en

    A n ( q o , q ) : ~ Am(qo,q ' ) An m(q ' , q )q 'Le t 12 (S ) be t h e H i lbe r t space o f fun c t i on s { f : S ~ C : 52q I f (q ) ] 2 < oo }

    w i th i nn e r p r o d u c t ( f , g ) = ~ f ( q ) g ( q ) . A n o r t h o n o r m a l b a sis f o r / 2 ( S ) i s{ 6 q : q s S } , w h e r e 6 q ( q ' ) = 6 q q , . I t f ol lo w s f ro m T h e o r e m l ( a ) t h a tA , ( q o , . ) , A , ( . , q o ) a r e u n i t v e c t o r s i n / 2 ( 8 ) . L e t T , U b e l i n e a r o p e r a t o r s o n/2(8) d e f i e d b y( T f ) ( q ) = ~ A ( q , q ' ) f ( q ' ) ,q ' ( U f ) ( q ) = ~ A ( q ', q ) f ( q ' )q '

    W e c a l l T a n d U p r o p a g a t o rs fo r A . The nex t r e su l t s l i gh t l y genera l i zes at h e o r e m i n R e f . 5 .

    T h e o r e m 2 . ( a ) T a n d U a r e u n i t a r y o p e r a t o r s a n d U = T * . ( b)A n ( q o , q ) = ( T"3q, ( ~ q o ) = ( ( ~ q , U n b q o ) .F i x q o ~ S a n d l e t S n ( q ) = A n( qo , q ) b e t h e w a v e f u n c t i o n . W e h a v e

    a l r e a d y n o t e d t h a t ~ n i s a u n i t v e c t o r i n I2(S). A p p l y i n g T h e o r e m l ( b ) , w eo b t a i n

    ~P~+ ( q ) = ~ A n ( q o , q ' ) A ( q ' , q ) = ~ A ( q ' , q ) t~ , ( q ' ) (2 )q' q 'W e s h a l l l a t e r s h o w t h a t t h e d i f fe r e n c e e q u a t i o n ( 2 ) is a d is c r e te a n a l o g o ft h e D i r a c e q u a t i o n . W e c a l l E q . ( 2 ) t h e d i s cr e t e wa ve eq u a t io n .

  • 7/28/2019 QM Graphic Dynamics

    5/26

  • 7/28/2019 QM Graphic Dynamics

    6/26

    756 Gudder

    o f M w i t h m u l t i p li c i ty m a n d t h e f o ll o w i n g a r e c o r r e s p o n d i n g o r t h o n o r m a te i g e n v e c t o r s :

    ( 0 2 , 0 . . . . . 0 ) / , , / L . . , ( 0 , 0 , . . . , 0 , 0 2 ) / , / 2M o r e o v e r , a + b e ~ + 2(m - 1 ) c e ~ is a n o n d e g e n e r a t e e ig e n v a l u e o f M w i t hc o r r e s p o n d i n g n o r m a l i z e d e i g e n v e c t o r

    ( 0 1 , 0 1 .. .. .F i n a l l y , a + b e ~ - 2 c e ~ is a n e i g e n v a l u e w i t h m u l t i p l i c i t y m - 1, a n d t h ef o l lo w i n g a r e c o r r e s p o n d i n g o r t h o n o r m a l e i g e n v e ct o rs :

    ( 0 1 , - 0 1 , 0 ..... 0 ) / 2( 0 1 , 0 1 , - 2 0 1 , 0 ..... 0 ) / x / J 2

    ( 0 1 , 0 1 ..... 0 1 , - ( r n - 1 ) 0 1 ) / , J 2 ( m - 1 )mTheorem 4 . T h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t :( a ) A is a t r a n s i t i o n a m p l i t u d e .(b ) l a - bei l = la + b e ~ - 2ceeOl -= la + be i + 2(m - 1) ce~O = 1.( c ) M is a u n i t a r y m a t r i x .P r o o f T h a t ( a ) im p l i es ( b ) f o l lo w s f r o m e x p a n d i n g t h e s q u a r e s o f t h e

    e x p r e s s i o n s i n ( b ) a n d a p p l y i n g T h e o r e m 3. I f (b ) h o l d s , t h e n M is an o r m a l m a t r i x w i t h e i g e n v a lu e s o f m o d u l u s o n e . I t f o ll o w s f r o m t h es p e c t r a l t h e o r e m t h a t M i s u n i t a r y a n d h e n c e ( c ) h o l d s .

    N o w s u p p o s e M is u n i t a r y , a n d d e n o t e i ts e n t ri e s b y M i k , j ,k = 1, .. ., 2m . T h e n ~.k M~k-Myk= ~jj. , j , j ' = 1 ,..., 2m. I f j = j ' , we ob ta in

    1 = ~ I M j k l 2 = a 2 + b 2 + 2 ( m - 1 ) c 2k

    a n d h e n c e C o n d i t i o n ( a ) o f T h e o r e m 3 h o l d s . I f j C j ' , t h e r e a r e t w o c a se s .In t he f i r s t case , I J - J ' l = 1 a n d m i n ( j , f ) is o d d . F o r t h i s c a se , w e h a v e

    0 = E M )e~ / i J ' k = 2ab cos 0 + 2 (m - 1 )c 2k

    a n d h e n c e ( b ) o f T h e o r e m 3 h o l ds . O t h e r w i s e , w e h a v e t h e s e c o n d c a s ew h i c h g i v e s

    0 = ~ m j k M j ,k = 2 a c cos + 2 b c cos (0 - - ~b) + 2(m - 2) c 2k

  • 7/28/2019 QM Graphic Dynamics

    7/26

    Quantum Graphic Dynamics 757I f c 0 a n d m ~> 2 , w e o b t a i n ( c ) o f T h e o r e m 3 . O t h e r w i s e , c = 0 a n d m = l ,s o t h i s c o n d i t i o n is v a c u o u s . |

    W e n o w c o n s i d e r t h e d is c r e te w a v e e q u a t i o n i n t h i s c o n te x t . A s s u m e Ai s a t r a n s i t i o n a m p l i t u d e a n d w r i t e E q . ( 2 ) a s f o l l o w s :

    2m~n+ l(J for)= 2 A((J--fC s'~s)'(J ' fCr))~ tn(J--ks' fCs) ( 3 )S=lI f we use th e n o ta t io n ~S(n , j ) = ~ , , ( j , /~ , ) , s = 1 ,.. ., 2m, w e ca n w ri te (3) inm a t r i x f o r m :

    " = M " ( 4 ),,j)j [/2m(n,j-k2m)where M is the unitary matrix considered above. In a rough sense, Eq. (4)is a discrete analog of Dirac's equation since the left-hand side has theposition variable j fixed and the time variable n is incremented, while theright-hand side has the time variable n fixed and the position variable j isi n c r e m e n t e d .

    F o r s i m p l i c i ty , e t u s c o n s i d e r t h e o n e - d i m e n s i o n a l c a s e, m = 1. I n t h i sc a s e , t h e p a r a m e t e r s c a n d ~ d o n o t a p p e a r a n d t h e c o n d i t i o n s f o r u n i t a r i t yi n T h e o r e m 3 be c o m e : a 2 + b 2 = 1 , a b c o s 0 = 0 . I t f o ll o w s t h a t b = ( 1 - a Z ) 1/2a n d 0 = ~ / 2 o r 3 r r/2 . F o r c o n c r e t e n e s s , s u p p o s e 0 = r e/2 . W e t h u s h a v e o n l yo n e f i'e e p a r a m e t e r 0 < a < 1. I n t h i s c as e , E q . ( 4 ) i s e q u i v a l e n t t o t h ef o l l o w i n g t w o e q u a t i o n s , w h e r e j s Z :

    O ~ (n + 1 , j ) = a O l ( n , j - 1 ) + i b O 2 (n , j + 1) (5)02 (n + 1 , j ) = i b O ' ( n , j - 1 ) + a~ ,2 ( n, j + 1) (6)

    F r o m E q . ( 5 ) w e o b t a i ni ia~ tZ (n, j ) = - ~ ~ l ( n + l , j - 1 ) + ~ - ~ l ( n , j - 2 ) ( 7)

    S u b s t i t u t i n g ( 7 ) in t o ( 6 ) a n d s i m p l i f y in g g i ve s0 1 ( n + l , j ) + ~ k l ( n - l , j ) = a [ ~ t ( n , j + l ) + ~ l ( n , j - 1 ) ] (8 )

    A s i m i la r p r o c e d u r e s h o w s t h a t E q . ( 8 ) a ls o h o l d s f o r ~ 2 ( n , j ) . N o t i c e t h a tE q . ( 8) is a d i s c re t e a n a l o g o f th e K l e i n - G o r d o n e q u a t i o n .

    T h e s o l u t i o n o f (4 ) i n c l o s e d f o r m a p p e a r s t o b e q u i t e d i ff ic u l t. T h i sh a s b e e n s o l v e d f o r m = 1 i n R e f . 5. A l t h o u g h t h e m e t h o d e m p l o y e d t h e r e

  • 7/28/2019 QM Graphic Dynamics

    8/26

    758 Gudder

    c a n b e e x t e n d e d t o h i g h e r d i m e n s i o n s , t h e w o r k i n v o l v e d i s v e r y t e d i o u s .H o w e v e r , a r e l a t e d p r o b l e m w h i c h i s p h y s i c a l l y r e l e v a n t c a n b e e a s i l ys o l v e d . W e c a l l t h i s t h e m o m e n t u m p r o b l e m . L e t

    O n ( s ) = ~ t pS ( n, j ) = ~ A n ( q o , ( j , ~ s ) )J /

    W e c a l l ~ b . ( s ) t h e m o m e n t u m w a v e f u n c t i o n a n d n o t e t h a t i t g i v e s t h ep r o b a b i l i t y a m p l i t u d e t h a t a p a r t ic l e m o v e s in t h e /~ . d i r e c t i o n a t t i m e ng i v e n t h a t i t b e g a n a t q o a t t i m e 0 .

    I f w e s u m E q . (4 ) o v e r j , w e o b t a i n

    ~ + 1 ( 2 m ) L ~ b n ( 2 m ) ]= M ~ + l (9 )l + o ( i )

    S i nc e ~ bo(S i s c l e a r l y a u n i t ve c t o r i n C 2m a n d M i s un i t a r y , i t f o l l ow s t ha t~bn(s) i s a un i t ve c t or in C 2m.

    S i n c e w e k n o w t h e e i g e n p a i r s f o r M ( t h e s e w e r e l i s t e d r i g h t b e f o r eT h e o r e m 4 ), w e c a n d i a g o n a li z e M a n d s ol ve th e m o m e n t u m p r o b le m . T of a c i l it a t e t h i s, d e f i n e t h e 2 x 2 m a t r i c e s - - I ' 1 ' d ,T h e n t h e p r o j e c t i o n s P1, P2, P3 o n t o t h e e i g e n s p a c e s f o r t h e e i g e n v a l u e s21 = a - be i, 22 = a + b d + 2 ( m - 1 ) e g , 23 = a + b e ~ - 2 c d ~ , r e s p e c t i v e l y ,b e c o m e

    i i o . . . l 10 E . - . 1 D D . . . De l = ~ , P 2 = ~m m0 . . . D D D"1( m - 1 )D - D . . . . /

    1 [ _ ~ ( m - - 1 ) D . . . . _ D

    o 13 =~mm " - -

    - - O . . - ( m 1)a n d f r o m t h e s p e c t r a l t h e o r e m w e h a v e

    M = 2 1 P ~ + 2 2 P 2 + )~3P3 (10)

  • 7/28/2019 QM Graphic Dynamics

    9/26

    Quantum Graphic Dynam ics 759

    S u p p o s e t h e i n i t ia l m o m e n t u m is i n t h e / ~ r d i r e c t i o n . T h e n ~ bo (S )= 6 ,r a n d ,by Eq . (9 ) , q~ , ( s )= ( M ~ o ) ( s ) . A p p l y i n g E q . ( 1 0 ) g i v e s t h e f o l l o w i n g e x p l i c its o l u t i o n t o t h e m o m e n t u m p r o b l e m :

    ~ ( s ) = ( a - - b e i ) ~ ( P l ). ,. r + [ a + b e i + 2(m - 1) c e i ~ ] " ( P 2 ) s r+ ( a + b e i - 2 c e i ) n ( P 3 ) , r

    T h e c u b i c la t t ic e s j u s t c o n s i d e r e d d o n o t g i v e a v e r y r e a l is t ic m o d e ls in c e t h e d i r e c t i o n s o f m o t i o n a r e q u i t e l i m i te d . F o r e x a m p l e , i n t h e t h r e e -d i m e n s i o n a l c a s e , a p a r t i c l e c a n o n l y m o v e i n s i x d i r e c t i o n s . H o w e v e r , w ec a n u s e s o m e o f o u r p r e v i o u s r e s u l ts i n th e n e x t m o d e l . I n t h is m o d e l a p a r -t ic l e c a n m o v e i n a n a r b i t r a r y f i n it e n u m b e r o f d i r e c t io n s . W e s h a l l,h o w e v e r , r e s t r i c t o u r a t t e n t i o n t o t h e t w o - a n d t h r e e - d i m e n s i o n a l c a s e s .

    W e b e g i n i n t w o d i m e n s i o n s . L e t /~ 1 b e a u n i t v e c t o r i n R 2 w h i c h w et a k e f o r c o n c r e t e n e s s t o b e i n t h e h o r i z o n t a l d i r e c t i o n . L e t n e N , a n d l e tc~rr/n b e a n a n g l e . F o r m t h e u n i t v e c t o r s ~ 1 , -. ., /~ 2 ~ , w h e r e / ~ j - / ~ l =c o s ( j - 1 )~ , j = 2 , . . . , 2 n. T h u s , t h e /~s a r e u n i t v e c t o rs a n d e a c h f o r m s a na n g l e ~ w i t h i t s p r e d e c e s s o r . W e c a l l a p o i n t x ~ ~ 2 a c c e s s i b l e i f i t has t hef o r m x = ~ k s , k j~ {/~1 .... /~2~}. L et V be the se t o f access ib le po in t s an d ,for x , y ~ V, def ine x _1_ y i f x - y e { /c~,...,/~2 ,} . Le t G = (V, E ) b e the g ra phi n w h i c h t h e e d g e s a r e r e p r e s e n t e d b y t h e s t r a i g h t l i n e s b e t w e e n a d j a c e n tv e r t i c e s . T h e p h a s e s p a c e S c a n b e r e p r e s e n t e d a s f o l l o w s :

    s = { ( x , k ) : v ,W e n o w d e f in e a f u n c t i o n A : S x S ~ C a s f o l lo w s :

    A ( ( x , k ) , ( x + k , k , ) ) = { a i f k ' = kb e ~ i f k ' kw h e r e a , b > 0 , 0 ~ [ 0, 2 re ) a n d A ( ( x , k ) , ( x ' , k ' ) ) = 0 o th e rw i s e. P h y s ic a l ly ,t h is m a y b e i n t e r p r e t e d a s f o l lo w s . I f a p a r t i c l e i s m o v i n g i n d i r e c t i o n k ,t h e n a t t h e n e x t t i m e s t e p i t c o n t i n u e s i n t h i s d i r e c t i o n w i t h a m p l i t u d e aa n d c h a n g e s t o o n e o f t h e o t h e r p o s s ib l e d i re c t io n s w i t h a m p l i t u d e b e ~. I tis e a s y t o c h e c k t h a t A is a t r a n s i t i o n a m p l i t u d e i f a n d o n l y i f i t s a ti sf ie s

    a 2 + ( 2 n - - 1 ) b 2 = 1 ( 1 1)a c o s 0 + ( n - 1 ) b = 0 ( t2 )

    H e n c e , t h e r e i s o n l y o n e f r e e p a r a m e t e r w h i c h w e t a k e t o b e a . S o l v i n g ( 1 1 )an d (12 ) in t e rm s o f a g ives

    { 1 - a 2 ~ 1 / ' 2b = ( 1 3 )c o s 0 = (1 - n ) ( 1 - - a 2 ) "] i/2a \ 2 - ~ ~ - - ] ( 1 4 )

  • 7/28/2019 QM Graphic Dynamics

    10/26

    760 Gudder

    B e c a u s e o f E q . ( 1 4 ) , a c a n n o t h a v e a r b i t r a r y v a l u e s in t h e i n t e r v a l ( 0, 1 )b u t m u s t s a t i s f y

    ( n - - 1 ) / n < . a < 1I n th e l im i t ing c a se a = ( n - 1 ) /n , we ob ta i n

    (15)

    b = 1 / n , 0 = g ( 1 6 )I n t h i s m o d e l , t h e d i s c r e t e w a v e e q u a t i o n is s i m i l a r t o E q . ( 4 ) e x c e p t

    t h a t t h e m a t r i x M is re p l a c e d b y t h e 2 n x 2 n m a t r i x M ' w i t h a ' s o n t h em a i n d i a g o n a l a n d be i e l s e w h e r e . T h e s o l u t i o n t o t h e m o m e n t u m p r o b l e mi s s i m i l a r t o o u r p r e v i o u s w o r k . I n f a c t , a l l w e h a v e t o d o i s r e p l a c e ce ~ b ybe ~ w h e n e v e r i t a p p e a r s .

    T h e e x t e n s i o n o f t h e a b o v e t o t h r e e d i m e n s i o n s is s t r a i g h t f o r w a r d . F o rn ~ N we a ga in l e t ~ = rein. F o r m a s p h e r i c a l c o o r d i n a t e s y s t e m a n d l e t / ~ 1b e a u n i t v e c t o r i n t h e v e r t i c al d i r e c ti o n . W e n o w h a v e n p o l a r a n g l es ,~ , 2~,.. ., n~ , an d for ea ch of the n - 1 p o l a r ang les ~ , 2~,.. ., (n - t )~ w e ha ve2 n a z i m u t h a l a n g l e s 0, c~ .... ( 2 n - 1 )~ . C o n s t r u c t a u n i t v e c t o r ~ i n e a c h o ft h e s e 2 n ( n - 1 ) d i r e ct i o n s . I n c l u d i n g t h e u n i t v e c t o rs ~ i , ~ r = - k l , w e n o wh a v e r = 2n(n - 1 ) + 2 un i t ve c to r s /~ t ,..-, ~ r . W e no w de f ine G = ( V , E ) a n dA : S x S - ~ C i n a s i m i l a r w a y a s w e d i d i n t w o d i m e n s i o n s . T h e u n i t a r i t yc o n d i t i o n s n o w b e c o m e

    a 2 q - [ n 2 + ( n - 1 ) 2 ] b 2 = 1a c o s O + n ( n - - 1 ) b = O

    ( 1 7 )( t 8 )

    S o l v i n g ( 1 7 ) a n d ( 1 8 ) i n t e r m s o f a g iv e sb = I 1 - a 2 ] 1/2n2+ -l?J

    c o s = a n 2 + ~ - 1 ) zA g a i n b e c a u s e o f E q . ( 2 0 ) w e m u s t h a v e

    [ ( n - t ) 2 + n - 2 + l ] - 1 ~ < a < l

    ( 19 )( 20 )

    I n t h e l i m i t i n g c a s e w e o b t a i nb = I n 2 + ( n - 1)2 + n 2 ( n - 1 ) 2 ] - 1 , 0 = r e

  • 7/28/2019 QM Graphic Dynamics

    11/26

    Quantum Graphic Dyna mics 761

    4. P A R T I C L E M O D E L SI n t h is s e c ti o n w e a p p l y t h e t h e o r y o f Q G D t o c o n s t r u c t m o d e l s f o r

    t h e i n t e r n a l d y n a m i c s o f p a r ti c le s . B y a " p a r t i c l e " w e m e a n a m a s s i v e l ep -t o n o r a h a d r o n . W e b e g i n b y r e p r e se n t i n g e a c h p a r t i c le b y a m u l t ig r a p h .T h e v e rt ic e s o f t h e m u l t i g r a p h r e p r e s e n t q u a r k t i k e c o n s t i tu t e n t s o f th e p a r -t i c l e , a n d e d g e s r e p r e s e n t i n t e r a c t i o n p a t h s f o r g l u o n s w h i c h a r e e m i t t e d o ra b s o r b e d b y t h e v e r t i c e s . W e a s s u m e t h a t t h e v e r t i c e s a r e r e l a t i v e l ys t a t io n a r y a n d t h a t t h e d y n a m i c s is d e s cr ib e d b y t h e Q G D t h e o r y o f t h eg l u o n s .

    T h e e l e c t r o n is r e p r e s e n t e d b y a m u l t i g r a p h c o n s i s t i n g o f a s i n g lev e r t e x a n d a l o o p . T h e m o r e m a s s i v e l e p t o n s a r e f o r m e d b y a d j o i n i n g a no d d n u m b e r o f l o o p s to t h e e l e c tr o n m u l t i g r a p h . T h u s , th e m u o n h a s t w oloops , t he t au has fou r l oops , e t c . These a re i l l u s t r a t ed i n F ig . 1 .

    I n F i g . 1, w e h a v e d e n o t e d t h e s in g l e v e r t e x b y a 1 a n d h a v e n u m b e r e dt h e e d g e s . U s i n g t h i s n u m b e r i n g s c h e m e w e c a n r e p r e s e n t t h e i r p h a s espaces as fo l l ows :

    S~= {(1, 1) , (1, 2)}S~ = {(1, 1), (1, 2), (1, 3), (1, 4) }St = {(1, t), (1, 2) . . . . (1, 8)}

    T h e p i o n is r e p r e s e n t e d b y a m u l t i g r a p h c o n s i s ti n g o f t w o v e rt ic e s a n da b ie d ge . M o r e m a s si ve m e s o n s a re f o r m e d b y a d j o i n i n g a n o d d n u m b e r o fl o o p s t o o n e o r b o t h o f th e v e r t ic e s . A f e w m e s o n s a r e i l l u s t r a t e d i n F i g . 2 .

    A l t h o u g h w e s h a ll n o t h a v e m u c h n e e d f o r i t h e re , t h e m e m b e r s o f am u l t i p l e t c a n b e d i s t i n g u i s h e d b y l a b e l i n g t h e v e r t i c e s a c c o r d i n g t o t h e i re le c tr ic c h a rg e . W e c a n f o l l o w th e u s u a l q u a r k c o n v e n t i o n o f a s s ig n i n gc h a r g e s o f + 1 /3 a n d + 2 / 3 t o t h e v er ti c es . M o r e o v e r , t h e v a r i o u s s p i ns t a te s c a n b e d i s t i n g u i s h e d b y l a b e l i n g e a c h v e r t e x w i t h a s p i n u p (1 ") o r a

    1 4

    2 3

    Ix

    8

    3 '

    'r

    7

    1 4

    Figure 1

  • 7/28/2019 QM Graphic Dynamics

    12/26

    76 2 Gadder2 1 2 1 4

    1 2 ] 2 3zr K

    3 2 1 4

    4 1 2 3T I ,

    Figure 2

    s p i n d o w n ( $ ). T h e p h a s e s p a c e s f or t h e m u l t i g r a p h s i n F i g . 2 c a n b er e pr e se nt e d a s f o l l o ws :

    S . = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) }S ~ = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 2 , 4 ) }

    S , , = { ( 1 , t ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 2 , 4 ) }F i na l l y , t he nuc l e o n i s r e pr e se nt e d by a m ul t i g r a ph wi t h t hr e e v e r t i c e s

    a n d t h r e e b i e d g e s . M o r e m a s s i v e b a r y o n s a r e f o r m e d b y a d j o i n i n g a n o d dn u m b e r o f l o o p s t o o n e o r m o r e o f th e v er tic es . A f e w b a r y o n s a r ei l l u s t r a t e d i n F i g . 3 . Ag a i n , t he m e m be r s o f a m ul t i p l e t c a n be d i s t i ng u i she dby labe l ing the ver t i ces wi th an e l ec tr i c charge and a spin .

    T h e ph a se sp a c e s f o r t he m ul t i g r a ph s i n F i g . 3 c a n be r e pr e se nte d a sf o l l o ws :

    3

    4 1

    1 4

    N

    31 4 1 ~4 1 4 1

    61 ~ 2 1 _ .t 4

    Figure 3

  • 7/28/2019 QM Graphic Dynamics

    13/26

    Quantum Graphic Dynam ics 763SN= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1),

    (3, 2), (3, 3), (3, 4)}S z = {(1, 1) , (1 , 2) , (1 , 3) , (1 , 4) , (2 , 1) , (2 , 2) , (2 , 3) , (2 , 4) , (3 , 1 ) . .. . (3 , 6)}S z = {(1, 1) , (1 , 2) , (1 , 3) , (1 , 4) , (2 , 1) ,. .. , (2 , 6) , (3 , t ) , . .. , (3 , 6) }

    I t w i l t b e c o n v e n i e n t t o h a v e a n o t a t i o n d e s c r i b i n g t h e m u l t i g r a p h su n d e r c o n s i d e r a t i o n . W e d o t h is b y g iv i n g t h e n u m b e r o f l o o p s a t e a c hv e r t e x i n t h e o r d e r o f t h e l a b e ls o n t h e v e r t ic e s a n d c a ll t h is t h e type o fm u l t i g r a p h . T h e m u l t i g r a p h s i n F ig s . 1 , 2 , a n d 3 h a v e t h e fo l l o w i n g ty p e s :

    e = (1 ), / t = (2 ), ~ = ( 4 )re = (0 , 0 ) , ~c= (0 , 1 ) , r / '= (1 , 1 )

    N = ( 0, 0 , 0 ), Z = ( 0, 0 , 1 ), ~ = ( 0 , 1, l )N o t i c e t h a t i n t h i s s c h e m e t h e r e i s n o n e e d t o p o s t u l a t e v a r i o u s

    g e n e r a t i o n s o f q u a r k s . A l l w e n e e d i s t h e f ir st g e n e r a t i o n c o n s i s t in g o f av e r te x w i th c h a r g e _ + 1 / 3 a n d a v e r te x w i th c h a r g e + 2 / 3 . T h e l a te rg e n e r a t i o n s a r e a u t o m a t i c a l l y d e s c r ib e d b y t h e n u m b e r o f l o o ps . A s w es h a ll se e, o n e l o o p c o r r e s p o n d s t o s t ra n g e , t h r e e t o c h a r m , fi v e t o b o t t o m ,s e v e n t o t o p , e t c . T h e r e m a y b e p h y s i c a l r e a s o n s f o r t h i s s e q u e n c e t ot e r m i n a t e , b u t t h e r e i s n o m a t h e m a t i c a l r e a s o n .

    A l t h o u g h w e s h a l l n o t c o n s i d e r e x c i t e d s t a t e s h e r e , w e p r o p o s e , f o rl a t e r in v e s t i g a t io n , t h a t t h e s e a r e f o r m e d b y a d j o i n i n g p a i r s o f v e r t ic e s t ob i e d g e s . T w o e x c i t e d s ta t e s a r e i l l u s t r a t e d i n F i g . 4 .

    W e n o w d e s c r i b e t h e g l u o n d y n a m i c s . O n c e t h e m u l t i g r a p h i s g i v e n ,t h e d y n a m i c s i s d e t e r m i n e d b y t h e t r a n s i t i o n a m p l i t u d e s o r e q u i v a l e n t l y b yt h e p r o p a g a t o r o r t r a n s i t i o n m a t r i x T . W e s h a l l a s s u m e t h a t t h e t r a n s i t i o na m p l i t u d e s h a v e t h e s i m p l e s t n o n t r i v i a l v a l u e s . F i r s t n o t i c e t h a t t h e v e r t i c e so f t h e m u l t i g r a p h s u n d e r c o n s i d e r a t i o n a l l h a v e e v e n d e g r e e . I n f a ct , t h ep o s s ib l e d e g r e e s f o r a l e p t o n o r m e s o n a r e 2 , 4 ,..., 4 n , a n d f o r a b a r y o n t h e yar e 4 , 6 . .. .. (4n - 2 ) . W e ca l l a ve r t e x basic i f i t h a s d e g r e e 2 in a l e p t o n o r

    < 2 >Figure 4

  • 7/28/2019 QM Graphic Dynamics

    14/26

    7 6 4 Gudder

    m e s o n o r d e g r e e 4 i n a b a r y o n . L e t v 1, v2 b e a d j a c e n t v e r ti c es , l e t e l b ei n c i d e n t t o v l a n d v 2, a n d l e t e 2 b e i n c i d e n t t o v 2. F o r b r e v i t y , le t A ( I , 2 ) =A ( ( ~ ) I , e l ) , ( v 2 , e 2 ) ) . I f v2 i s ba s i c , w e de f ine A ( 1 , 2 ) -- - 612 f o r a l e p ton a n df o r a h a d r o n A ( 1 , 2 ) - - 1 i f e l , e 2 a r e d i f f e r e n t e d g e s o f t h e s a m e b i e d g e a n dA ( 1 , 2 ) = 0 o t h e r w i s e . N o w s u p p o s e v 2 i s n o t b a s i c a n d h a s d e g r e e n . F o r al e p t o n , d e f in e A ( 1 , 2 ) = ( 2 - n ) / n i f e l , e 2 a r e " d i f f e r e n t " e d g e s o f t h e s a m el o o p a n d A ( 1 , 2 ) = 2 /n o t h e rw i s e . F o r a h a d r o n , d e f in e A ( 1, 2 ) = ( 2 - n) / n i fe l = e2 a n d A ( t , 2 ) = 2 in o t h e r w i s e . I n a l l o t h e r c a s e s , w e d e f i n e A ( ( v l , e l ) ,( v 2 , e 2 ) ) = 0 . N o t i c e t h a t t h e s e v a l u e s c o r r e s p o n d t o t h e l i m i t i n g c a s e i nE q . ( 1 6 ). I t i s e a s y t o s h o w t h a t A i s i n d e e d a t r a n s i t i o n a m p l i t u d e .M o r e o v e r , i t i s t h e u n i q u e t r a n s i t i o n a m p l i t u d e i n w h i c h t h e " f o r w a r d "a m p l i t u d e s a r e e q u a l a n d h a v e m a x i m a l v a lu e .

    I n F i g . 5 w e i l l u s t r a t e t h e t r a n s i t i o n a m p l i t u d e s f o r v a r i o u s c a se s . I nt h i s f i g u r e w e l a b e l t h e i n i t i a l e d g e w i t h a d o u b l e a r r o w a n d l a b e l a d j a c e n te l e m e n t s w i t h s i n g l e a r r o w s t o g e t h e r w i t h t h e i r t r a n s i t i o n a m p l i t u d e s .

    I f t h e e l e m e n t s o f t h e p h a s e s p a c e a r e e n u m e r a t e d 1 , 2 ..... m , t h e n t h em a t r i x T w i t h e n t r i e s T o = A (j , i ) , i , j = 1, 2, . .. , m , i s c a l e d the t rans i t ionm a t r i x . T h i s i s a u n i t a r y m a t r i x w h i c h d e s cr i b e s th e e v o l u t i o n o f a g l u o n . I nf a c t , i f a g luo n is in i t i a l l y i n a s t a t e ~ 0 , t he n a f t e r n t ime s t e ps i t w i l l be i nt h e s t a t e T " O o . W e n o w c o n s t r u c t t h e t r a n s i t i o n m ~ itric es f o r t h e m u l -t i g r a p h s r e p r e s e n t i n g l e p t o n s a n d h a d r o n s . I n d o i n g t h i s w e a s s u m e t h a tt h e e l e m e n t s o f t h e p h a s e s p a c e a r e o r d e r e d a s w e h a v e d o n e p r e v i o u s ly . Itw i ll f ir s t b e c o n v e n i e n t t o d e f i n e t h e 2 x 2 m a t r i c e sE j nA n = ( 1 - n ) / n , n = l , 2 ....

    ~

    1

    o

    1

    F i g u r e 5

  • 7/28/2019 QM Graphic Dynamics

    15/26

    Quantum G r a p h i c D y n a m i c s 7 6 5

    Also, we let I = A 1 and B.= (1 In ) I , n = 2 , 3 .... It turns o ut that T can berepresented in terms of these matrices. Wh en a mult igraph has type (i,...),we write the corresponding transition matrix as T(i,...). The number ofrows (and columns) in a matrix is placed at its right-hand corner and whenan A , (and hence Bn's) appear, the numbe r of such matrices in that columnor row is always n.

    The leptons have the following transition matrices: T (1 )= I

    T ( n ) B . A . B .= . , n = 2, 4, 6,,..n B , , A n 2n

    The mesons have the following transition matrices:

    T ( 0, 0 ) = 0 4

    T(O, n) =

    0 I 0 .. . 0A , + I 0 B~+1 ... B, +IB,+ 1 0 A,+ I . . . B, +IB , + I 0 B ~ + 1 " '" B , + I

    B . + I 0 B . + 1 . . . A . + 2(n + 2)

    n=1,3,5 . . . .

    T ( m , n ) =

    0 B m + l " " B m + l A , . + l 00 A m + l " " B , . + l B , . + l 00 B,~+I " " B m + I B m + I 00 B i n + t . . . A m + t B i n + 1 0

    A . + I 0 . . . 0 0 B . + IB~+I 0 ... 0 0 A.+IB,+I 0 ... 0 0 B,+IB,+I 0 ... 0 0 B,+i

    . . 000

    0B n + 1O n + tB n + 1

    A n + l ~ ( r n+ n + 2)m ,n = 1,3,5 ....

    825/18/7-6

  • 7/28/2019 QM Graphic Dynamics

    16/26

    I

    I 0.

    + + C~

    + 4 P + +

    +++

    ~~O~

    .~

    ~

    ~~

    +

    ++

    +

    ++

    +

    ++

    .

    .

    ,

    P I

    + ~

    +

    t~

    +

    +++

    +

    +++

    ~

    .

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    +

    +++

    +

    '

    '

    '

    +

    +

    +

    ~

    ~

    .

    I

    11

    I

    !

    ~

    0

    0

    0

    ~

    i

    j

    q, 0 0

  • 7/28/2019 QM Graphic Dynamics

    17/26

    Quan tum Graphic Dynam ics 767

    ~ l , m , n ) =0 0 B t + 2 " ' B I + 2 0 Al+2 0 .." 0 B t + 2 0 0 ' . - 00 0 B I+ z. . . BI + 2 0 BI+ 2 0 -." 0 A + 2 0 0 , - - 00 0 AI +2 .' .B I+ 2 0 Bl+2 0 . . , 0 B l + 2 0 0 . - - 0

    0 0 B~ +2 "" At +~ 0 BI+2 0 .. . 0 B l + 2 0 0 - . . 0Bm+2 0 0 . . . 0 0 0 B~ +2 .. .B m+ 2 0 A , , + 2 0 - - . 0A m + 2 0 0 . . . 0 0 0 B m + 2 " " B , , + 2 0 Bin+ 2 0 ,. . 0Bin+2 0 0 . ., 0 0 0 A m +2 . .. B m + 2 0 Bin+ 2 0 .. . 0

    Bin+ 2 0 0 .. . 0 0 0 B m+ 2 . .. A m+ 2 0 Bin+ 2 0 ... 00 A n + 2 0 . - , 0 B n + 2 0 0 - - - 0 0 0 B ~ + z ' " B , , + 20 B ~ + 2 0 " " 0 A ~ + 2 0 0 - . . 0 0 0 B # + 2 . . . B , + 20 Bn+ 2 0 "" 0 Bn+2 0 0 "" 0 0 0 A, ~+ z' ,. Bn +2

    0 Bn+ 2 0 ," 0 B,+2 0 0 . . , 0 0 0 Bn +2 "- An +2 2(rn+,~+[+61l , m , n = l , 3 , 5 , . . .

    5 . G L U O N D Y N A M I C SI n S e c t i o n 4 w e c o n s t r u c t e d t h e t r a n s i t i o n m a t r ix T fo r a m a s s i v e l e p -

    t o n o r h a d r o n . T o d e s c r ib e t h e g l u o n d y n a m i c s w e n e e d t o f in d T ", n e N .E s s e n t i a ll y t h e o n l y w a y t h is c a n b e d o n e i s b y d i a g o n a l i z i n g T or ,e q u i v a l e n t ly , f in d i n g t h e e ig e n p a i r s o f T . W e d e v o t e t h e p r e s e n t s e c t i o n t oa c c o m p l i s h i n g t h i s .

    N o t i c e t h a t w e w i s h t o d i a g o n a l i z e a 2 m x 2 m m a t r i x T w h o s e e n t r ie sm a y b e t h o u g h t o f a s 2 x 2 m a t r i c e s w h i c h h a v e t h e s p e c ia l f o r m

    O u r n e x t r e s u lt s s h o w t h a t b e c a u s e o f t h is s p e ci a l fo r m w e c a n r e d u c e o u rw o r k t o d i a g o n a l i z i n g t w o m x m m a t r ic e s . F i rs t d e f in e t h e m a t r i c e s

    L e m m a 5 . L e t A = ( A ij ), i , j = 1 , 2 , b e a 2 x 2 c o m p l e x m a t r i x . T h e n

  • 7/28/2019 QM Graphic Dynamics

    18/26

    768 Gudder

    t h e f o l l o w i n g s t a t e m e n t s a r e e q u i v a l e n t . ( a ) A c o m m u t e s w i t h K . ( b ) Ac o m m u t e s w i t h L . ( c ) A H = A 2 2, A 12 = A z l .

    P r o o f S t r a i g h t f o r w a r d . iD e f i n e t h e v e c t o r s ~ = (1 , 1 ), ~ 2 = ( 1 , - 1 ) a n d d e f in e t h e f o l lo w i n gv e c t o r s i n C 2 " :

    = 0 . . . . . 0 ) , . . . , = ( 0 , 0 , . . . , 0 ,~ 1 : ( 0 2 , 0 , . . . , 0 ) , . . . , ( ~ r n ( 0 , 0 , . . . , 0 , 0 2 )

    L e m m a 6 . L e t M b e a 2 m x 2 m m a t r ix o f t h e f o r mM = [ A ( t , 1 ) .: . .. A ( 1 . , m ) ]

    k A (m , 1) A(m , rn) Jw h e r e t h e 2 x 2 m a t r i c e s A(i , j ) h a v e t h e f o r m

    [ a i j b i j ]A ( i , j ) = b ~ a ~ j A

    T h e n M is n o r m a l a n d i ts e i g e n v e c t o r s h a v e t h e fo r m Z e i ~ o r Z cq q~ ,cci~C, i= l ,. .. ,m.P r o o f L e t J / a n d ~ b e t h e s u b s p a c e s o f C 2m g e n e r a t e d b y ~ 1 ..... ~

    a n d q ~ ..... ~ m , r e s p e c ti v e l y . N o t i c e t h a t J / a n d Y a r e m u t u a l l y o r t h o g o n a ls u b sp a c es a n d c 2 m = j / @ J V ". L e t K m, L ~ b e t h e f o ll ow i n g 2 m x 2 mm a t r i c e s :

    K m = d i a g ( K , . . . , K ) , L , , = d i a g ( L , . .. , L )I t is e a s y t o c h e c k t h a t t h e p r o j e c t i o n s o n t o J g a n d ~ /" a r e Kin~2 a n d L m / 2 ,r e s p e c t iv e l y . M o r e o v e r , i t i s n o t h a r d t o v e r if y t h a t M i s n o r m a l a n d t h u sh a s a c o m p l e t e s e t o f e i g e n v e ct o r s. B y L e m m a 5 , M c o m m u t e s w i t h K m a n dLm, a n d h e n c e t h e e i g e n v e c t o r s o f M li e e i th e r in J / t o ~ . T h e r e s u l t n o wf o l l o w s . I

    T h e o r e m 7 . L e t M b e a 2 m x 2 m m a t r i x w i t h th e p r o p e r t i e s g i v e n i nL e m m a 6 . L e t h ~ , N~ b e t h e m x m m a t r i c e s w i t h e n t r i e s ~ 0 = a o + b ~ j, .~T . =a ~ - b i ~ . T h e n t h e e i g e n v a lu e s o f M a r e p re c i se l y t h e u n i o n o f t h e ei g e n-v a l u e s o f . ~ a n d N . M o r e o v e r , i f 2 ( 2 ' ) i s a n e i g e n v a l u e o f 2 14 (N ) w i t hc o r r e s p o n d i n g e i g e n v e c t o r ( e l , . . . , e ,~ ) ( (/ ~l ... .. / ~m ) ), t h e n 2 ( 2 ' ) i s a n e i g e n -v a l u e o f M w i t h c o r r e s p o n d i n g e i g e n v e c t o r ~2 c q ~ ( Z Piq~i).

  • 7/28/2019 QM Graphic Dynamics

    19/26

    Quantum Graphic Dynamics 769P r o o f A p p l y i n g L e m m a 6 , t h e e i g e n v e c to r s o f M h a v e t h e f o r m

    5 2 e ~ i o r ~ ]e iq ~i- S u p p o s e 5 2 ~ i ~ is a n e i g e n v e c t o r o f M w i t hc o r r e s p o n d i n g e i g e n v a l u e 2 . I f f o l lo w s f r o m t h e e q u a t i o n M ( 5 2 c ~ i t ~ ) =) ~ ( Z O~i~l ) t h a t

    ~ . A ( i , j ) c ~ j ( k j = 2 c q O , , i , j = 1 , .. ., mJ

    H e n c ec~j(a~ + 1 0) = 2c q, i, j = 1 .... m

    J

    I t fo l l ows t ha t M (a l ..... c~ m )= 2( ~ ..... am). T he con ver se i s eas i l y ve r i f ied .S im i l a r r ea son ing app l i e s t o t he e igenv ec to r s o f t he fo rm 52 a i~i. |

    W e a r e n o w r e a d y t o e v a l u a t e t h e e i g e n p a i r s f o r t h e t r a n s i t i o nm a t r i c e s c o n s t r u c t e d i n S e c t i o n 4 . W e b e g i n w i t h t h e m s s iv e l e p to n s . T h e2 x 2 m a t r i x T ( 1 ) = I h a s d e g e n e r a t e e i g e n a l u e 1 a n d w e t a k e , b y c o n v e n -t i o n , i ts e i g e n v e c t o r s to b e 0 ~ , 0 2 . N e x t c o n s i d e r t h e 2 n x 2 n m a t r i c e s T ( n ) ,n = 2 , 4 , 6 .... A p p l y i n g T h e o r e m 7, t h e p r o b l e m r e d u c e s t o f i n d i n g t h ee i g e n p a i r s f o r t h e n x n m a t r i c e s M , N , w h e r eF 2 2 2 ] I 1 017 /= 1 2 - n 2 ~ = 0 1 . .

    t/2 - .. 2 - n 0 0 . .

    01

    N o w N h a s t h e n - f o l d d e g e n e r a t e e i g e n v a l u e 1 . W e t a k e t h eco rre sp on di ng e ige nv ecto rs to be (1 , 0 ,..., 0 ) . .. .. (0, 0 .... . 0 , i ) . N ex t M ha st h e n o n d e g e n e r a t e e i g e n v a l u e 1 w i t h c o r r e s p o n d i n g e i g e n v e c t o r ( 1, 1,... , 1 ).F i n a l ly , f / h a s t h e ( n - 1 )- fo ld d e g e n e r a t e e i g e n v a lu e - 1 a n d w e t a k e t h eco rr es po nd in g eig en ve cto rs to be (1, - 1 , 0 , 0 . .. . 0) , (1, 0 , - 1 , 0 ,. .. , 0) . .. ..(1 , 0 , 0 , . . . , 0 , - 1 ) . N o t e t h a t t h e se l a t t e r e i g e n v e c t o rs a r e n o t m u t u a l l yo r t h o g o n a l . H o w e v e r , t h e y a r e l i n e a r ly i n d e p e n d e n t , t h e y h a v e t h e s i m p l e s tf o r m , a n d a s s h a l l l a t e r s ee , th e y h a v e p h y s i c a l si g n if ic a n c e . M o r e o v e r , w eh a v e n o t b o t h e r e d t o n o r m a l i z e t h e se e i g e n v e c t o r s s in c e th i s w il l n o t b en e c e s s a r y f o r o u r p u r p o s e s . A g a i n , a p p l y i n g T h e o r e m 7, t h e e i g e n p a ir s f o rT ( n ) a r e g i v e n i n T a b l e I .

    W e n e x t c o n s i d e r t h e m e s o n s . T h e e i g e n p a i rs f o r t h e 4 x 4 m a t r i xT ( 0, 0 ) a r e e a s i ly c o m p u t e d a n d a r e s h o w n i n T a b l e II .

  • 7/28/2019 QM Graphic Dynamics

    20/26

    770 Gudder

    Ta ble I . Eigenpairs for T(n)Eigenvectors Eigenvector(s)

    W e n o w c o m e t o t h e 2 ( n + 2 ) x 2 ( n + 2 ) m a t r i c e s T ( 0 , n ) , n = 1 , 3 , 5 .. ...T h e ( n + 2 ) x ( n + 2 ) m a t r i c e s ~ / , )V a r e g i v e n b y

    1M = n + l

    0 n + l 0 . . . 01 - n 0 2 . . . 2

    2 0 1 - n . . . 22 0 2 . . . 2

    2 0 2 . . . 1 - n

    , N =

    - 0 1 0 . . . 0 -1 0 0 . - - 00 0 1 - - . 00 0 0 - - . 0." ~

    _ 0 0 0 . . . 1F o r N , th e ( n + l ) - f o l d d e g e e r a t e e i g e n v a l u e 1 h a s e i g e n v e c t o r s( 1 , 1 , 0 , .. ., 0 ) , ( 0 , 0 , 1 , 0 , .. ., 0 ), .. ., ( 0 , 0 ..... 0 , 1 ) w h i l e t h e n o n d e g e n e r a t e e i g e n -v a l u e - 1 h a s e i g e n v e c t o r ( 1 , - 1 , 0 ,, .. , 0 ) . T o f i n d t h e e i g e n p a i r s f o r 3 7 /, l e t( e l ..... ~ , + 2 ) b e a n e i g e n v e c t o r s w i t h c o r r e s p o n d i n g e i g e n v a l u e 2 , W e t h e no b t a i n t h e e q u a t i o n s

    ~2 = )~0~t( 1 - - n ) c~1 + 2c% + 2 0~ 4 - t - " ' " q - 2 % + 2 = ( n + 1 ) 20~ 22 ~ 1 + ( t - - n ) 0 % + 2 ~ 4 + . - . + 2 0 t , + 2 = ( n + l ) 2 ~ 32 cq + 2 c % + 2 c ~ 4 + - - - + ( 1 --n)o:,,+2=(n+ 1 ) 2 c ~ , + 2

    Tab le I I . Eigenpairs fo r T(O, 0)Eigenvalue Eigenvector

    - 1 , 6 t - 6 2, i

  • 7/28/2019 QM Graphic Dynamics

    21/26

    Qua ntum Gra phic D y na mics 7 7 !

    S up pos e e~ = 1 an d henc e c~2 = 2. F r o m t h e s e c o n d a n d t h i r d e q u a t i o n s , w eo b ta in ~ 3 = ( 1 + 2 2 ) / ( 1 + 2 ) (n ot ic e t h a t 2 - 1 ) . I n a s im i la r w a y w eob t a in e j= (1 + 22 ) /(1 + 2 ), j = 4 ,..., n + 2 . S u bs t i t u t i ng t hese va lues i n to t hes e c o n d e q u a t i o n g i v e s

    ( 1 - n ) + 2 n (1 + 2 2 ) = ( n + 1)221 + 2H e n c e ,

    ( n + 1 )2 3+ ( 1 - n ) 2 2 - ( 1 - n ) 2 - ( n + 1 ) = 0T h e r o o t s o f t h is e q u a t i o n a r e 1 a n d

    - 1 +_ i [ n ( n + 2)] ~/2n + l

    N o w s u p p o s e n > 1, cq = 7 2 = 0 , a n d l et ~ 3 = 1. I t f o ll o w s f r o m t h e s e c o n dtwo eq ua t i on s t ha t 2 = -1 . I f we le t ~4 = -1 , an d ~s = 0 , j = 5 .... n + 2 , t he na l l t he e qu a t i o ns a re s a t is f ied . In a s im i l a r wa y w e can l e t c~5 = -1 , an de s = 0 , j = 4 , 6 , 7 ,..., n + 2 , e tc . T h u s 2 = - 1 is a n ( n - 1 ) - f o l d d e g e n e r a t ee i g e n v a l u e . L e t t i n g

    1 + I , t y ) =/L+= 1 + 2 ~we l i s t t he e igenpa i r s fo r T (0 , n ) i n Tab l e I I I .

    F in al l y , w e h av e th e 2 ( m + n + 2 ) 2 ( m + n + 2 ) m a t r ix T ( m , n ) , m , n =1 , 3 , 5 .... W e sha l l no t d i s p l a y M an d N s ince t he i r co ns t ru c t i o n i s s imi l a rt o t hose do ne p rev ious ly . F o r ~" t he (m + n + 1 ) - fo ld degene ra t e e i genva lue 1h as ei ge nv ec to rs (1, 0,. .. , 0, I , 0, .. ., 0), (0, 1, 0, .. ., 0) . .. .. (0, 0 . .. .. 0, 1) w he re th es e c o n d 1 i n t h e fi rs t v e c t o r is a t t h e ( m + 2 ) - e n t r y . T h e n o n d e g e n e r a t ee i g e n v a l u e - 1 h a s e i g e n v e c t o r ( 1, 0 ,..., 0 , - 1 , 0 ..... 0 ) w h e r e t h e - 1 is a tt h e ( m + 2 ) - e n t r y .

    Table III. Eigenpairs or T(0, n)Eigenvalue Eigenvector(s)

    1- 11

    - I ( if n> 1)i i i i i i i i i i i i i i i

    (' 1+(' 2+ "'" +('~+2

    '3- ('4, ~' 3- ~ ..... ~3-( ,+~

  • 7/28/2019 QM Graphic Dynamics

    22/26

    772 GudderT o f i n d t h e e i g e n p a i r s f o r 3 ~ r, l e t (c q . . . . . 0 ~ m + n + 2 ) b e a n e i g e n v e c t o r

    w i t h c o r r e s p o n d i n g e i g e n v a l u e L W e t h e n o b t a i n t h e e q u a t i o n s2 ~ 2 + . . . + 2 ~ m + l + ( 1 - - m ) C ~ m + 2 = ( m + l ) 2 ~ q( 1 - - m ) C ~ z q - . . . + 2 0 ~ m + l + 2 0 ~ m + 2 = ( m + l ) ~ , ~ 22C~2 + " ' " + (1 - - m ) e,~ + 1 + 2 ~ m + Z = ( m --1 - 1 ) ,~ 0~m + 1( 1 - - n ) c q + 20~m+ 3 q - " " nt" 2 0 ~ m + n + 2 = ( n + 1 ) J . 0 ~ m + 22~1 + ( 1 - n ) 0~m+ 3 -t" " " q - 2 ~ m + n + 2 = (/7 q - 1 ) ~ ' ~m+ 3

    2Cq + 2~ m + 3 q- '- 1- (1 --n)O~m+n+ 2 = (n-t- 1 ) 2 ~ m + n + 2S u p p o s e cq = 1. F r o m t h e fi rs t t w o e q u a t i o n s w e h a v e ( a s s u m i n g 2 ~ - 1 )

    2 1

    I n a s i m i l a r w a y , a j , j = 3 .... m + 1 , h a v e t h i s s a m e v a l u e . ' S u b s t i t u t i n g t h e s ev a l u e s i n t o t h e f i rs t e q u a t i o n g i v e s

    W e t h e n o b t a i n

    2 [ ( m + 1 ) 2 + (1 - m ) ]a m + 2 = ( l - m ) 2 + ( m + 1 )

    2 2c ~ J - ( 1 - m ) 2 + ( m + 1 ) ' j = 2 , 3 ..... m + l

    F r o m t h e f o u r t h a n d f i f t h e q u a t i o n s w e h a v e( m + 1 ) 2 2 - 2 m 2 + (m + t )

    e r a + 3 = ( 1 - m ) 2 + ( m + l )I n a s i m i l a r w a y , e j , j = m + 4 ,. . . , m + m + 2 , h a v e t h i s s a m e v a l u e . S u b -s t i t u t in g t h e s e v a l u e s in t o t h e f o u r t h e q u a t i o n g i v e s

    ( n + 1 ) ( m + 1 ) 2 3 - (3m n + m + n - 1 ) 2 2 + ( 3 m n + m + n - 1 ) 2- ( n + 1 ) ( m + 1 ) = 0

    T h e r o o t s o f t h is e q u a t i o n a r e 1 a n d( m n - 1 ) _ + i [ ( n + 1 ) 2 ( m + 1 ) z - ( I - r a n ) 2 ] m+2 t i n ' " ) - - ( n + 1 ) ( m + 1 )

  • 7/28/2019 QM Graphic Dynamics

    23/26

    Quantum Graphic Dyn amics 773

    Table IV. Eigenpairs for T(m, n)Eigenvalue Eigenvector(s)

    1- 1

    1

    - t

    +

    + 7 ( m , n ) m + 3 + " ' " " ~ " 7 (r n , n ) ~ . . . . + 2

    N o w l e t 2 = - 1 a n d ~ 1 = ~ , . + 2 = 1. T h e n a ll t h e e q u a t i o n s a r e s a t i s fi e d i fw e l e t ~ 2 = ~ + 3 = - 1 a n d t h e o t h e r ccs 's e q u a l to 0 . I n a s i m i l a r w a y w ec a n ~ et ~ 2 = ~ m + 4 = - -1 , .. ., ~ 2 = ~ m + . + 2 = - - 1 , a n d t h e o t h e r ~ j 's e q u a l t o 0 .F i n a l l y , w e c a n l e t ~ 3 = ~ m + 3 = - - 1 ..... ~ m + l = ~ m + 3 = - -1 a n d t h e o t h e r ~ j 'se q u a l t o 0. T h u s , - 1 is a n ( m + n - 1 ) - f o ld d e g e n e r a t e e i g e n v a l u e . I f w ed e f i n e

    +2 2 ~ , n )c o L ' " ) = ( 1 - m ) 2 i ~ , , . ) + ( m + I )

    + +f l (~ , . ) = 2 6 . , . ) [ ( m + 1 ) 2 6 ~ , . ) + ( 1 - - m ) ](1 - m ) 2 ( . ~ ,~ ) + ( m + 1 )

    + 2 +( m + 1 ) [ 2 & . . ) ] - 2 m 2 ~ , . ) + ( m + i )- m ) 2 ~ , m + ( m + 1 )

    t h e n t h e e i g e n p a i r s f o r T(rn, n) a r e l i s te d i n T a b l e I V .W e f in a l l y c o n s i d e r t h e b a r y o n s . T h e e i g e n p a i r s f o r th e 1 2 1 2 m a t r i x

    T ( 0 , 43, 0 ) a r e s h o w n i n T a b l e V .Table V. Eigenpairs for T (0, 0, 0)

    Eigenvalue Eigenvector(s)

    -1 ,-,, ~-~, ~-o

  • 7/28/2019 QM Graphic Dynamics

    24/26

    7 7 4 G u d d e r

    T a b l e VI. Eige npairs for T (0, 0, n)E i g e n v a l u e E i g e n v e c t o r ( s )

    - 1 ~ - &, ~ - ~ , , & - &

    . - @ 2 - { - @ 3 " } - ] . / ; @ S ~ - t ~ - ~ 6 - ' } - / ~ ; @ 7 - t - - - - - l - /~ Z @ n + 6i ( I 2 - - ~ , + i ( t , - - i ( t 6,i i

    W e ne x t ha v e the 2 ( n + 6 ) x 2 ( n + 6 ) m a t r i x T ( 0 , 0 , n ) , n = 1 , 3 , 5 ....T h e c o m p u t a t i o n o f t h e e i g e n p a i rs i s s i m i la r t o t h a t f o r 7 ( 0 , n ). L e t t i n g

    2 ++_ [ n ( n -t- 4 )] 1/2 1 + (2 +) 2/~ '~ = n + 2 ' f l+ = 1 + 2 , {

    w e l is t t h e e i g e n p a i r s f o r T ( 0 , 0 , n ) i n T a b l e V I .T h e e i g e n p a i r p r o b l e m f o r t h e n e x t t r a n s i t i o n m a t r i x T ( O , m , n ) ,

    m, n = 1 , 3 , 5 ,..., i s m u c h m o r e d i f fi c u l t. E xc e p t f o r s om e spe c ia l c a se s , i ta p p e a r s t h a t i t c a n o n l y b e s o l v e d n u m e r i c al l y . A s u s u al , d i a g o n a t i z i n g ? ~ iss t r a i g h t f o r w a r d . H o w e v e r , s i x o f t h e e i g e n v a l u e s o f h~r t u r n o u t t o t h e r o o t so f t h e f o l l o w i n g e q u a t i o n :

    ( m + 2 ) ( n + 2 ) ) ; 6 - ( 2 r a n - 8) 25 + ( 3 r a n + 2 m + 2 n + 8 ) ) . 4 - ( 4 m n - 8 ) 2 3+ ( 3 m n + 2 m + 2 n + 8 ) 2 2 - ( 2 m n - 8 ) 2 + ( m + 2 ) ( n + 2 ) = O ( 2 1 )

    W e l i st t h e e i g e n p a i r s f o r T ( 0 , m , n ) i n T a b l e V I I . W e c a l l th e r o o t s o f ( 2 1 )( w h i c h w e h a v e n o t e v a l u a t e d ) 2~ ..... 2 6. O f c o u r s e , t h e c o r r e s p o n d i n g

    Eigenvalue1

    - 112 1 ,..., ),6--1

    Table V II. Eigenpairs for T(O,m, n)I I I I I I I I I I I I I I I I I I I I I I I

    Eigenvector(s)

    ~ 1+ " ' " + ~ . . . . 6~ 1 3 " } - ~ l m + 6 - - ~ l S - - ~ l m + 7 , . . , , 3 3 - ~ ~ m + 6 - - ~ l S - - ~ l m + n + 6 ,

    .,. ,u,,,,,,,, .,,., m......,,,

  • 7/28/2019 QM Graphic Dynamics

    25/26

    Q u a n t u m G r a p h i c D y n a m i c s 7 7 5

    e i g e n v e c t o r s c a n b e c o n s t r u c t e d o n c e t h e se e i g e n v a lu e s a r e e v a lu a t e d . F o r2 ~ { 2 ~ , . . . , 2 6 } , t h e c o r r e s p o n d i n g e i g e n v e c t o r is ( e l ,- - . , e m + ~ + 6 ) , w h e r e~ 1 = 1 , g 4 = 2 , a n d 1 + 2 2

    ~ 5 = e 6 . . . . = 0 ~ m + 4 = 1 + 2( m + 2)(J~ 4 + 1 ) - - 2m 2( 22 - ,~ + 1 )

    ~ 2 = 2 2 ( 1 + 2 2 )m 2 3 + m ~ . 2 - - ( m - - 2 ) 2 + ( m + 2 )

    ~ 3 = - 22 (1 + 2)~ m + 5 = " ~ 2

    ( m + 2 ) i t 3 + (2 - m ) 2 2 + m ) . - mO~m+6= 2 ( 1 + R )

    ( I + )})~20 ~ m + 7 = 0 ( m + 8 . . . . -~" 0 [r n + n + 6 l + J .W e c a n s o l v e ( 2 1 ) i n t h e s p e c i a l c a s e m = n = 1 . I n t h i s c a s e ( 2 t ) h a s

    t h e f a c t o r i z a t i o n( 3 2 4 + 2 )~ : + 3 ) ( 3 2 2 + 2 2 + 3 ) = 0

    T a b l e V I I I . E i g e n p a i r s f o r T ( 1 , 1 , 1 )

    E i g e n v a l u e E i g e n v e c t o r ( s )1

    - - 11

    - - 1

    - - i

    2 ~1 + ~3 + 2 ~4 + t~6 + 2 ~7 + t~9- ~ , + ~ - ~ + ~ - ~ + ~ ,- ~ + ~ + ~ . - ~ - ~ + ~ ,~ 1 - - ~ 2 - - 3 ~ 4 + ~ 5 -}- 2 ~ 6 - - ~ 7 - - 3 ~ 8 + 4 ~ 9

    - ,e ( 1 + i ) r ( i + 3 ) ~ .~ ( 1 + 3 i ) ~(I - , ~v ,, - - 7 - - w + ~ , - - - - ~ ~ , - ,v , e + - - - 5 - - q , ~(1 + i )- 5 - - ~ 8 + ( i - 1 )~9

    i ~ 1 - - i ~ 2 + (1 - -i) q~ 4 + ~ 5 + (1 + i ) ~ 6 - - ~ 7 + ( i + 1 ) ~ 8 - (1 + i ) ~ 9

    + ~ 8 - - ( 1 + i ) ~ 9it ~l -}- i ~ 2 + ( 1 + i ) ~ 4 + ~ 5 + ( 1 - - i ) ~ 6 - - ~ 7 q - ( 1 - - i ) ~ 8 + ( i - 1 ) ~ 9

  • 7/28/2019 QM Graphic Dynamics

    26/26

    776 Gudder

    We then obtain the six eigenvalues given by2 = - ~ i2 ,,f23 2 2 = - ~ + i2x/~3

    As the reader would expect , the eigenvatue problem for T ( l , m , n ) ism uch m ore invo lved then i t was for T(0 , m, n) . Fo r th i s reason, we sha llon ly cons ide r the spcial case T(1 , 1, 1) an d this is given in T able V III .

    R E F E R E N C E S1. D. B ohm, "A p roposed topo log ica l fo rmu la t ion o f quan tum theory ," in T h e S c i e n t i s t

    S p e c u l a t e s , I . J . Go od , ed. (Basic B ooks, N ew Y ork, 1962), pp. 302-314.2. A. Das, J . M a t h . P h y s . 7, 52 (1966).3 . D. Finkleste in , P h y s . R e v . D 9, 2219 (1974).4 . R. Friedberg and T. D. Lee, N u e l . P h y s . B 225, 1 (1983).5 . S. Gud der , " Disc re te quan tum mechan ics ," J . M a t h . P h y s . 27, 178 2 (1986).6 . S . Gudder and V. Narod i t sky , I n t . J . T h e o r . P h y s . 20, 619 (1981).7 . R. Jagan na tha n an d F . San thanam , I n t . J . T h e o r . P h y s . 20, 755 (1981).8 . M. Lorente , I n t . J . T h e o r . P h y s . 11, 213 (1974).9. D. Shale, F o u n d . P h y s . t2, 661 (1982).

    Printed in Belgium