qgp physics − from fixed target to lhcreygers/... · k. reygers, k. schweda | qgp physics ss2013...

21
K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 1 QGP Physics − from Fixed Target to LHC 2. Kinematic Variables Klaus Reygers, Kai Schweda Physikalisches Institut, Universität Heidelberg SS 2013

Upload: others

Post on 22-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 1

QGP Physics − from Fixed Target to LHC

2. Kinematic Variables

Klaus Reygers, Kai SchwedaPhysikalisches Institut, Universität HeidelbergSS 2013

Page 2: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 2

Notations and Conventions

Space-time coordinates(contravariant vector):

Natural units:

4-momentum vector:

Scalar product of two 4-vectors a and b:

Relation between energy and momentum:

Relativistic energy and momentum:

also:

useful:

Page 3: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 3

Center-of-Momentum System (CMS)

Consider a collision of two particles. The CMS is defined by

The Mandelstam variable s is defined as

The center-of-mass energy √s is the total energy available in the CMS

Page 4: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 4

√s for Fixed-Target und Collider Experiments (I)

Target

Fixed-target experiment:

total energy(kin. + rest mass)

Example: Anti proton production (fixed-target experiment):

Minimum energy required to produce an anti-proton:In CMS, all particles at rest after the reaction, i.e., √s = 4 mp , hence:

Page 5: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 5

√s for Fixed-Target und Collider Experiments (II)

Collider:

For heavy-ion collisions one usually states the center-of-momentum energy per Nucleon-nucleon pair:

Beam energy per nucleon(LHC Pb beam in 2010/11):

Page 6: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 6

Rapidity

beam axis

The rapidity y is a generalization of velocity βL = pL /E:

For small velocities:

With

where is called the transverse mass

we readily obtain

and

Page 7: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 7

Additivity of Rapidity under Lorentz Transformation

lab system S moving system S'(velocity βS')

Object with rapidity y' measured in S'

Lorentz transformation:

y is not Lorentz invariant, however, it has a simple transformation property:

rapidity of S' as measured in S

Page 8: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 8

Rapidity of the CMS

Consider collisions of two particles with equal mass m and rapidities ya and y

b.

The rapidity of the CMS yCM

is then given by:

In the center-of-mass frame, the rapidities of a and b are:

and

Examples:

a) fixed target experiment:

b) Collider:

Page 9: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 9

Pseudorapidity

Special case:

Analogous to the relations for the rapidity we find

Page 10: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 10

Example: Beam Rapidities

Beam momentum (GeV/c) Beam rapidity

100 5.36

158 5.81

1380 7.99

2750 8.86

3500 8.92

7000 9.61

Page 11: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 11

Quick Overview: Kinematic Variables

2

p

pT

ϑ

0

1

2

1

2

Transverse momentum

rapidity

pseudorapidity

Page 12: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 12

Example of a Pseudo-rapidity Distribution

Beam rapidity:

Average number of chargedparticles per collision:

ybeamybeamp+p at

PHOBOS, Phys.Rev. C83 (2011) 024913

Page 13: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 13

Difference between dN/dy and dN/dη in the CMS

Difference between dN/dy and dN/dηin the CMS at y = 0:

Gaussian with σ=3

Simple example: Pions distributed according to

dN/dy

dN/dη

Page 14: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 14

Total Energy and Transverse Energy

Page 15: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 15

Luminosity and Cross Sections (I)

The luminosity L of a collider is defined by:

Page 16: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 16

Luminosity and Cross Sections (II)

The luminosity can be determined by measuring the beam current:

The crossing area A is usually calculated as

The standard deviations of the beam profiles are measured by sweeping the beams transversely across each other in a so called van der Meer scan.

Integrated luminosity:

Page 17: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 17

Lorentz invariant Phase Space Element

If one is interested in the production of a particle A one could define the observable

However, the phase space density would then not be Lorentz invariant:

We thus use the Lorentz invariant phase space element

The corresponding observable is called Lorentz invariant cross section:

this is called the invariant yield

Page 18: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 18

[Lorentz invariant Phase Space Element:Proof of Invariance]

Lorentz boost along the z axis:

Jacobian:

And so we finally obtain:

Page 19: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 19

Invariant Cross Section

Example: Invariant cross sectionfor neutral pion production in p+p at √s = 200 GeV

Invariant cross section in practice:

Sometimes also measured as a function of mT:

Integral of the inv. cross section:

Average yield of particle Xper event

Page 20: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 20

Invariant Mass

Consider the decay of a particle in two daughter particles. The mass of the mother particle is given by (“invariant mass”):

Example: π0 decay:

Momentum of the π0

in the lab. systemExample: π0 peak with combinatorial background

Page 21: QGP Physics − from Fixed Target to LHCreygers/... · K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21 Points to Take Home Center-of-mass energy √s: Total

K. Reygers, K. Schweda | QGP physics SS2013 | 2. Kinematic Variables 21

Points to Take Home

Center-of-mass energy √s: Total energy in the center-of-mass (or momentum) system (rest mass of + kinetic energy)

Observables: Transverse momentum pT and rapidity y

Pseudorapidity η ≈ y for E >> m (η = y for m = 0, e.g., for photons)

Production rates of particles describes by the Lorentz invariant cross section:

Lorentz-invariant cross section: