pythia 6.2 “tunes” for run iirfield/cdf/cdfjoint_11-15-02.pdf · 11/15/2002  · rick field...

29
CDF Joint Physics Group November 15, 2002 Rick Field Page 1 PYTHIA 6.2 “Tunes” PYTHIA 6.2 “Tunes” for Run II for Run II ! “Min-Bias” Generators Proton AntiProton PT(hard) Outgoing Parton Outgoing Parton Underlying Event Underlying Event Initial-State Radiation Final-State Radiation Outline of Talk Hadron Hadron “Min-Bias” Collisions ! The “Underlying Event in Hard Scattering Processes ! Initial-State Radiation and b-bbar Correlations Proton AntiProton “Flavor Creation” b-quark b-quark Underlying Event Underlying Event Initial-State Radiation

Upload: others

Post on 23-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 1

PYTHIA 6.2 “Tunes”PYTHIA 6.2 “Tunes”for Run IIfor Run II

! “Min-Bias” Generators

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

Outline of Talk

Hadron Hadron

“Min-Bias” Collisions

! The “Underlying Event in Hard Scattering Processes

! Initial-State Radiation and b-bbar Correlations

Proton AntiProton

“Flavor Creation” b-quark

b-quark

Underlying Event Underlying Event Initial-State Radiation

Page 2: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 2

“Min“Min--Bias” & “Underlying Event”Bias” & “Underlying Event”

! What happens when a high energy proton and an antiproton collide? Proton AntiProton

“Soft” Collision (no hard scattering)

Proton AntiProton

“Hard” Scattering

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event Initial-State Radiation

Final-State Radiation

! Most of the time the proton and antiproton ooze through each other and fall apart (i.e. no hard scattering). The outgoing particles continue in roughly the same direction as initial proton and antiproton. A “Min-Bias” collision.

! Occasionally there will be a “hard”parton-parton collision resulting in large transverse momentum outgoing partons. Also a “Min-Bias” collision.

Proton AntiProton

“Underlying Event”

Beam-Beam Remnants Beam-Beam Remnants Initial-State Radiation

! The “underlying event” is everything except the two outgoing hard scattered “jets”. It is an unavoidable backgroundto many collider observables.

“Min-Bias”

“underlying event” has initial-state radiation!

Page 3: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 3

CDF “MinCDF “Min--Bias” DataBias” DataCharged Particle DensityCharged Particle Density

! Shows CDF “Min-Bias” data on the number of charged particles per unit pseudo-rapidity at 630 and 1,800 GeV. There are about 4.2 charged particles per unit ηηηη in “Min-Bias” collisions at 1.8 TeV (|ηηηη| < 1, all PT).

Charged Particle Pseudo-Rapidity Distribution: dN/dηηηη

0

1

2

3

4

5

6

7

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηη

CDF Min-Bias 1.8 TeVCDF Min-Bias 630 GeV all PT

CDF Published

<dNchg/dηηηη> = 4.2

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

CDF Min-Bias 630 GeVCDF Min-Bias 1.8 TeV all PT

CDF Published

<dNchg/dηηηηdφφφφ> = 0.67

! Convert to charged particle density, dNchg/dηηηηdφφφφ,,,, by dividing by 2ππππ. There are about 0.67 charged particles per unit ηηηη-φφφφ in “Min-Bias” collisions at 1.8 TeV (|ηηηη| < 1, all PT).

Page 4: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 4

CDF “MinCDF “Min--Bias” DataBias” DataPPTT DependenceDependence

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 2 4 6 8 10 12 14

PT (GeV/c)C

harg

ed D

ensi

ty d

N/d η ηηη

d φ φφφdP

T (1

/GeV

/c)

|ηηηη|<1CDF Preliminary

CDF Min-Bias Data at 1.8 TeV

HW "Soft" Min-Biasat 630 GeV, 1.8 TeV, and 14 TeV

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-6 -4 -2 0 2 4 6

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

630 GeV1.8 TeV

Herwig "Soft" Min-Bias 14 TeV

all PT

! Shows the PT dependence of the charged particle density, dNchg/dηηηηdφφφφdPT, for “Min-Bias” collisions at 1.8 TeV collisions compared with HERWIG “Soft” Min-Bias.

! HERWIG “Soft” Min-Bias does not describe the “Min-Bias” data! The “Min-Bias” data contains a lot of “hard” parton-parton collisions which results in many more particles at large PT than are produces by any “soft” model.

! Shows the energy dependence of the charged particle density, dNchg/dηηηηdφφφφ,,,, for “Min-Bias” collisions compared with HERWIG “Soft” Min-Bias.

Lots of “hard” scattering in “Min-Bias”!

Page 5: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 5

CDF “MinCDF “Min--Bias” DataBias” DataPPTT DependenceDependence

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-6 -4 -2 0 2 4 6

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

630 GeV1.8 TeV

Herwig "Soft" Min-Bias 14 TeV

all PT

! Shows the PT dependence of the charged particle density, dNchg/dηηηηdφφφφdPT, for “Min-Bias” collisions at 1.8 TeV collisions compared with HERWIG “Soft” Min-Bias and MBR.

! Although MBR has a harder PT distribution it is a “soft” model and has no hard scattering. MBR does nt describe the correlation in the “min-bias” data (i.e. the data have “jets”) and MBR does not.

! Shows the energy dependence of the charged particle density, dNchg/dηηηηdφφφφ,,,, for “Min-Bias” collisions compared with HERWIG “Soft” Min-Bias.

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT (GeV/c)Ch

arge

d De

nsity

dN/

d η ηηηd φ φφφ

dPT

(1/G

eV/c

)

HW "Soft" Min-Biasat 1.8 TeV

|ηηηη|<1CDF Preliminary

CDF Min-Bias Data at 1.8 TeV

MBR "Soft" Min-Biasat 1.8 TeV

Page 6: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 6

MinMin--Bias: CombiningBias: Combining“Hard” and “Soft” Collisions“Hard” and “Soft” Collisions

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

CDF Min-Bias Data Herwig Jet3 Herwig Min-Bias

1.8 TeV all PTHW "Soft" Min-Bias

HW PT(hard) > 3 GeV/c

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 2 4 6 8 10 12 14

PT (GeV/c)Ch

arge

d D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

Herwig Jet3Herwig Min-BiasCDF Min-Bias Data

1.8 TeV |ηηηη|<1

CDF Preliminary

HW PT(hard) > 3 GeV/c

HW "Soft" Min-Bias

! HERWIG “hard” QCD with PT(hard) > 3 GeV/c describes well the high PT tail but produces too many charged particles overall. Not all of the “Min-Bias” collisions have a hard scattering with PT(hard) > 3 GeV/c!

! One cannot run the HERWIG “hard” QCD Monte-Carlo with PT(hard) < 3 GeV/c because the perturbative 2-to-2 cross-sections diverge like 1/PT(hard)4?

HERWIG “soft” Min-Bias does not fit the “Min-Bias” data!

Page 7: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 7

MinMin--Bias: CombiningBias: Combining“Hard” and “Soft” Collisions“Hard” and “Soft” Collisions

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

CDF Min-Bias Data Herwig Jet3 Herwig Min-Bias

1.8 TeV all PTHW "Soft" Min-Bias

HW PT(hard) > 3 GeV/c

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 2 4 6 8 10 12 14

PT (GeV/c)Ch

arge

d D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

Herwig Jet3Herwig Min-BiasCDF Min-Bias Data

1.8 TeV |ηηηη|<1

CDF Preliminary

HW PT(hard) > 3 GeV/c

HW "Soft" Min-Bias

! HERWIG “hard” QCD with PT(hard) > 3 GeV/c describes well the high PT tail but produces too many charged particles overall. Not all of the “Min-Bias” collisions have a hard scattering with PT(hard) > 3 GeV/c!

! One cannot run the HERWIG “hard” QCD Monte-Carlo with PT(hard) < 3 GeV/c because the perturbative 2-to-2 cross-sections diverge like 1/PT(hard)4?

HERWIG “soft” Min-Bias does not fit the “Min-Bias” data!

Hard-Scattering Cross-Section

0.01

0.10

1.00

10.00

100.00

0 2 4 6 8 10 12 14 16 18 20Hard-Scattering Cut-Off PTmin

Cros

s-Se

ctio

n (m

illib

arns

)

PYTHIAHERWIG

CTEQ5L1.8 TeV

σσσσHC

HERWIG diverges!

PYTHIA cuts off the divergence.

Can run PT(hard)>0!

Page 8: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 8

PYTHIA MinPYTHIA Min--BiasBias“Soft” + ”Hard”“Soft” + ”Hard”

Charged Particle Density: dN/dηηηηdφφφφ

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity ηηηη

dN/d

η ηηηdφ φφφ

Pythia 6.206 Set ACDF Min-Bias 1.8 TeV 1.8 TeV all PT

CDF Published

! PYTHIA regulates the perturbative 2-to-2 parton-parton cross sections with cut-off parameters which allows one to run with PT(hard) > 0. One can simulate both “hard” and “soft” collisions in one program.

! The relative amount of “hard” versus “soft” depends on the cut-off and can be tuned.

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)Ch

arge

d De

nsity

dN/

d η ηηηd φ φφφ

dPT

(1/G

eV/c

)

Pythia 6.206 Set ACDF Min-Bias Data

CDF Preliminary

1.8 TeV |ηηηη|<1

PT(hard) > 0 GeV/c

Tuned to fit the “underlying event”!

12% of “Min-Bias” events have PT(hard) > 5 GeV/c!

1% of “Min-Bias” events have PT(hard) > 10 GeV/c!

! This PYTHIA fit predicts that 12% of all “Min-Bias” events are a result of a hard 2-to-2 parton-parton scattering with PT(hard) > 5 GeV/c (1% with PT(hard) > 10 GeV/c)!

Lots of “hard” scattering in “Min-Bias”!

Page 9: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 9

Evolution of Charged JetsEvolution of Charged Jets“Underlying Event”“Underlying Event”

�����������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

�����������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

������������������������������������������������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

���������������������������������������

Charged Jet #1Direction

∆φ∆φ∆φ∆φ

“Transverse” “Transverse”

“Toward”

“Away”

“Toward-Side” Jet

“Away-Side” Jet

! Look at charged particle correlations in the azimuthal angle ∆φ ∆φ ∆φ ∆φ relative to the leading charged particle jet.

! Define |∆φ∆φ∆φ∆φ| < 60o as “Toward”, 60o < |∆φ∆φ∆φ∆φ| < 120o as “Transverse”, and |∆φ∆φ∆φ∆φ| > 120o as “Away”.! All three regions have the same size in ηηηη-φφφφ space, ∆η∆η∆η∆ηx∆φ∆φ∆φ∆φ= 2x120o = 4ππππ/3.

Charged Jet #1Direction

∆φ∆φ∆φ∆φ

“Toward”

“Transverse” “Transverse”

“Away”

-1 +1

φφφφ

2ππππ

0 ηηηη

Leading Jet

Toward Region

Transverse Region

Transverse Region

Away Region

Away Region

Charged Particle ∆φ∆φ∆φ∆φCorrelations PT > 0.5 GeV/c |ηηηη| < 1

Toward-side “jet”(always)

Away-side “jet”(sometimes)

Perpendicular to the plane of the 2-to-2 hard scattering

“Transverse” region is very sensitive to the “underlying event”!

Look at the charged particle density in the “transverse” region!

Page 10: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 10

Charged Particle DensityCharged Particle Density“Transverse” P“Transverse” PTT DistributionDistribution

! Compares the average “transverse” charge particle density with the average “Min-Bias” charge particle density (|ηηηη|<1, PT>0.5 GeV). Shows how the “transverse” charge particle density and the Min-Bias charge particle density is distributed in PT.

CDF “Min-Bias” data<dNchg/dηηηηdφφφφ> = 0.25

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

1.25

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

CDF Min-BiasCDF JET20

CDF Preliminarydata uncorrected

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

PT(charged jet#1) > 30 GeV/c“Transverse” <dNchg/dηηηηdφφφφ> = 0.56

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)C

harg

ed D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Preliminarydata uncorrected

1.8 TeV |ηηηη|<1 PT>0.5 GeV/c

Min-Bias

"Transverse"PT(chgjet#1) > 5 GeV/c

"Transverse"PT(chgjet#1) > 30 GeV/c

Factor of 2!

“Min-Bias”

Page 11: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 11

HERWIG 6.4HERWIG 6.4“Transverse” P“Transverse” PTT DistributionDistribution

"Transverse" Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)C

harg

ed D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Datadata uncorrectedtheory corrected

1.8 TeV |ηηηη|<1 PT>0.5 GeV/c

PT(chgjet#1) > 5 GeV/c

PT(chgjet#1) > 30 GeV/c

Herwig 6.4 CTEQ5L

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

CDF Datadata uncorrectedtheory corrected

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

Herwig 6.4 CTEQ5LPT(hard) > 3 GeV/c

Total "Hard"

"Remnants"

! Compares the average “transverse” charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the “transverse” density, dNchg/dηηηηdφφφφdPT with the QCD hard scattering predictions of HERWIG 6.4 (default parameters with PT(hard)>3 GeV/c. Shows how the “transverse” charge particle density is distributed in PT.

HERWIG has the too steep of a PTdependence of the “beam-beam remnant”

component of the “underlying event”!

Page 12: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 12

PYTHIA: Multiple PartonPYTHIA: Multiple PartonInteraction ParametersInteraction Parameters

Pythia uses multiple partoninteractions to enhancethe underlying event.

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a double Gaussian matter distribution (governed by PARP(83) and PARP(84)), with a smooth turn-off PT0=PARP(82)

4

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a single Gaussian matter distribution, with a smooth turn-off PT0=PARP(82)

3

Multiple interactions assuming the same probability, with an abrupt cut-off PTmin=PARP(81)

1MSTP(82)

Multiple-Parton Scattering on1

Multiple-Parton Scattering off0MSTP(81)

DescriptionValue Parameter

Hard Core

Multiple partoninteraction more likely in a hard

(central) collision!

and now HERWIG!

Jimmy: MPIJ. M. Butterworth

J. R. ForshawM. H. Seymour

Proton AntiProton

Multiple Parton InteractionsPT(hard)

Outgoing Parton

Outgoing Parton

Underlying EventUnderlying Event

Same parameter that cuts-off the hard 2-to-2 parton cross sections!

Page 13: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 13

PYTHIA: Multiple PartonPYTHIA: Multiple PartonInteraction ParametersInteraction Parameters

Pythia uses multiple partoninteractions to enhancethe underlying event.

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a double Gaussian matter distribution (governed by PARP(83) and PARP(84)), with a smooth turn-off PT0=PARP(82)

4

Multiple interactions assuming a varying impact parameter and a hadronic matter overlap consistent with a single Gaussian matter distribution, with a smooth turn-off PT0=PARP(82)

3

Multiple interactions assuming the same probability, with an abrupt cut-off PTmin=PARP(81)

1MSTP(82)

Multiple-Parton Scattering on1

Multiple-Parton Scattering off0MSTP(81)

DescriptionValue Parameter

Hard Core

Multiple partoninteraction more likely in a hard

(central) collision!

and now HERWIG!

Jimmy: MPIJ. M. Butterworth

J. R. ForshawM. H. Seymour

Proton AntiProton

Multiple Parton InteractionsPT(hard)

Outgoing Parton

Outgoing Parton

Underlying EventUnderlying Event

Same parameter that cuts-off the hard 2-to-2 parton cross sections!

Note that since the same cut-off parameters govern both the primary

hard scattering and the secondary MPI interaction, changing the amount of MPIalso changes the amount of hard primary scattering in PYTHIA Min-Bias events!

Page 14: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 14

PYTHIA: Multiple PartonPYTHIA: Multiple PartonInteraction ParametersInteraction Parameters

A scale factor that determines the maximum parton virtuality for space-like showers. The larger the value of PARP(67) the more initial-state radiation.

1.0PARP(67)

Determines the energy dependence of the cut-offPT0 as follows PT0(Ecm) = PT0(Ecm/E0)εεεε with εεεε = PARP(90)

0.16PARP(90)

Double-Gaussian: Fraction of the overall hadronradius containing the fraction PARP(83) of the total hadronic matter.

0.2PARP(84)

Determines the reference energy E0.1 TeVPARP(89)

Probability that the MPI produces two gluons either as described by PARP(85) or as a closed gluon loop. The remaining fraction consists of quark-antiquark pairs.

0.66PARP(86)

Probability that the MPI produces two gluons with color connections to the “nearest neighbors.

0.33PARP(85)

Double-Gaussian: Fraction of total hadronicmatter within PARP(84)

0.5PARP(83)

DescriptionDefault Parameter

Hard Core

Multiple Parton Interaction

Color String

Color String

Multiple Parton Interaction

Color String

Hard-Scattering Cut-Off PT0

1

2

3

4

5

100 1,000 10,000 100,000CM Energy W (GeV)

PT0

(GeV

/c)

PYTHIA 6.206

εεεε = 0.16 (default)

εεεε = 0.25 (Set A))

Take E0 = 1.8 TeV

Reference pointat 1.8 TeV

Page 15: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 15

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)"T

rans

vers

e" C

harg

ed D

ensi

ty

CTEQ3L CTEQ4L CTEQ5L CDF Min-Bias CDF JET20

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

Pythia 6.206 (default)MSTP(82)=1

PARP(81) = 1.9 GeV/c

CDF Datadata uncorrectedtheory corrected

Default parameters give very poor description of the “underlying event”!

Note ChangePARP(67) = 4.0 (< 6.138)PARP(67) = 1.0 (> 6.138)

0.160.160.16PARP(90)

1,0001,0001,000PARP(89)

4.0

2.1

1.9

1

1

6.125

1.0

2.1

1.9

1

1

6.158

1.04.0PARP(67)

1.91.55PARP(82)

1.91.4PARP(81)

11MSTP(82)

11MSTP(81)

6.2066.115Parameter

PYTHIA 6.206 DefaultsPYTHIA 6.206 Defaults

! Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of PYTHIA 6.206 (PT(hard) > 0) using the defaultparameters for multiple parton interactions and CTEQ3L, CTEQ4L, and CTEQ5L.

PYTHIA default parameters

MPI constantprobabilityscattering

Page 16: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 16

All three sources are important at the Tevatron!

bb--Quark Production atQuark Production atthe the TevatronTevatron

! The QCD leading-log Monte-Carlo models do a fairly good job in describing b-quark data at the Tevatron. The QCD Monte-Carlo models do a much better job fitting the b data than most people realize!

! Clearly all three sources are important at the Tevatron.! “Nothing is goofy” (Rick Field, CDF B Group Talk, March 9, 2001).! Next step is to study in detail b-bbar correlations and the compare the predictions of

HERWIG, ISAJET, and PYTHIA in order to understand how reliable the estimates are.! Want to know what the leading-log QCD Monte-Carlo Models predict, how stable the

estimates are, and how they compare with data. Also, if it is possible we would like to tune the Monte-Carlo models to fit the data.

Proton AntiProton

“Flavor Excitation” b-quark

gluon, quark, or antiquark

Underlying Event Underlying Event

Initial-State Radiation

b-quark

Proton AntiProton

“Parton Shower/Fragmentation”

b-quark

Underlying Event Underlying Event

Initial-State Radiation

b-quark

Proton AntiProton

“Flavor Creation” b-quark

b-quark

Underlying Event Underlying Event Initial-State Radiation

Page 17: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 17

Inclusive bInclusive b--quark Cross Sectionquark Cross Section

Integrated b-quark Cross Section for PT > PTmin

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 5 10 15 20 25 30 35 40

PTmin (GeV/c)

Cro

ss S

ectio

n ( µ µµµ

b)

PY 6.206 (67=1) TotalFlavor CreationFlavor ExcitationShower/FragmentationD0 DataCDF Data

1.8 TeV|y| < 1

PYTHIA 6.206CTEQ5L PARP(67)=1

Integrated b-quark Cross Section for PT > PTmin

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 5 10 15 20 25 30 35 40

PTmin (GeV/c)C

ross

Sec

tion

( µ µµµb)

PY 6.206 (67=4) TotalFlavor CreationFlavor ExcitationShower/FragmentationD0 DataCDF Data

1.8 TeV|y| < 1

PYTHIA 6.206CTEQ5L PARP(67)=4

Changed at version 6.138!

! Data on the integrated b-quark total cross section (PT > PTmin, |y| < 1) for proton-antiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default). The four curves correspond to the contribution from flavor creation, flavor excitation, shower/fragmentation, and the resulting total. PARP(67) is a scale factor that governs the amount of large angle initial-state radiation. Larger values of PARP(67) results in more large angle initial-state radiation!

Page 18: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 18

AzimuthalAzimuthal CorrelationsCorrelations

! Predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) for the azimuthalangle, ∆φ∆φ∆φ∆φ, between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to dσσσσ/d∆φ∆φ∆φ∆φ (µµµµb/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total.

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

PY62 (67=1) Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

PYTHIA 6.206 CTEQ5L PARP(67)=1

"Away""Toward"

b-quark direction

∆φ∆φ∆φ∆φ

“Toward”

“Away”

bbar-quark

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

PY62 (67=4) Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

PYTHIA 6.206 CTEQ5L PARP(67)=4

"Away""Toward"

New PYTHIA default(less initial-state radiation)

Old PYTHIA default(more initial-state radiation)

Page 19: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 19

AzimuthalAzimuthal CorrelationsCorrelations

! Predictions of HERWIG 6.4 (CTEQ5L) for the azimuthal angle, ∆φ∆φ∆φ∆φ, between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to dσσσσ/d∆φ∆φ∆φ∆φ (µµµµb/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total.

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00001

0.00010

0.00100

0.01000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

HW64 Total Flavor Creation Flavor Excitation Shower/Fragmentation

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

HERWIG 6.4 CTEQ5L

"Away""Toward"

b-quark direction

∆φ∆φ∆φ∆φ

“Toward”

“Away”

bbar-quark

b-quark Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.000001

0.000010

0.000100

0.001000

0.010000

0 30 60 90 120 150 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

d σ σσσ/d

φ φφφ ( µ µµµ

b/de

g)

1.8 TeVPT1 > 15 GeV/cPT2 > 10 GeV/c|y1| < 1 |y2| < 1

"Flavor Creation" CTEQ5L

"Away""Toward"

HERWIG 6.4

PYTHIA 6.206PARP(67)=1

PYTHIA 6.206PARP(67)=4

“Flavor Creation”

New PYTHIA default(less initial-state radiation)

Old PYTHIA default(more initial-state radiation)

Page 20: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 20

CDF Run I AnalysisCDF Run I AnalysisAzimuthalAzimuthal CorrelationsCorrelations

! Kevin Lannon preliminary unblessed CDF Run I analysisof the azimuthal angle, ∆φ∆φ∆φ∆φ, between a b-quark |y1| < 1 and bbar-quark |y2|<1 in proton-antiproton collisions at 1.8 TeV.

b-quark direction

∆φ∆φ∆φ∆φ

“Toward”

“Away”

bbar-quark

PARP(67) = 1 maybe too narrow?

PARP(67) = 4 maybe too broad?

Page 21: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 21

DiPhotonDiPhoton CorrelationsCorrelations

! Predictions of PYTHIA 6.158 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) for diphoton system PT and the azimuthal angle, ∆φ∆φ∆φ∆φ, between a photon with PT1 > 12 GeV/c, |y1| < 0.9 and photon with PT2 > 12 GeV/c, |y2|< 0.9 in proton-antiproton collisions at 1.8 TeV compared with CDF data.

DiPhoton Correlations: Azimuthal ∆φ∆φ∆φ∆φ Distribution

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

90 105 120 135 150 165 180

|∆φ||∆φ||∆φ||∆φ| (degrees)

1/σ σσσ

d σ σσσ/d

φ φφφ (1

/deg

)

PYC5 DiPhoton PARP(67)=4PYC5 DiPhoton PARP(67)=1CDF DiPhoton Data

1.8 TeV PT > 12 GeV |ηηηη| < 0.9

New Pythia

Old Pythia

Diphoton System Transverse Momentum

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16 18

Diphoton System PT (GeV/c)

1/σ σσσ

d σ σσσ/d

PT (1

/GeV

/c)

PYC5 DiPhoton PARP(67)=1PYC5 DiPhoton PARP(67)=4CDF DiPhoton Data

1.8 TeV PT > 12 GeV |ηηηη| < 0.9New Pythia

Old Pythia

Photon direction

∆φ∆φ∆φ∆φ

“Toward”

“Away”

Photon

Page 22: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 22

Old PYTHIA default(more initial-state radiation)

New PYTHIA default(less initial-state radiation)

0.250.25PARP(90)

1.01.0PARP(86)

1.8 TeV1.8 TeVPARP(89)

4.0

1.0

1.7 GeV

3

1

Tune C

1.0PARP(67)

1.0PARP(85)

1.6 GeVPARP(82)

3MSTP(82)

1MSTP(81)

Tune DParameter

Old PYTHIA default(more initial-state radiation)

New PYTHIA default(less initial-state radiation)

Tuned PYTHIA 6.206Tuned PYTHIA 6.206

! Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206(CTEQ5L, Set D (PARP(67)=1) and Set C (PARP(67)=4)).

PYTHIA 6.206 CTEQ5L "Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set C)PARP(67)=4

PYTHIA 6.206 (Set D)PARP(67)=1

Single Gaussian

Page 23: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 23

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

0.50.5PARP(83)

0.40.4PARP(84)

0.250.25PARP(90)

0.951.0PARP(86)

1.8 TeV1.8 TeVPARP(89)

4.0

0.9

2.0 GeV

4

1

Tune A

1.0PARP(67)

1.0PARP(85)

1.9 GeVPARP(82)

4MSTP(82)

1MSTP(81)

Tune BParameter

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

Tuned PYTHIA 6.206Tuned PYTHIA 6.206

! Plot shows the “Transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) andSet A (PARP(67)=4)).

PYTHIA 6.206 CTEQ5L"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

Double Gaussian

Page 24: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 24

Tuned PYTHIA 6.206 Tuned PYTHIA 6.206 vsvs HERWIG 6.4HERWIG 6.4

“Transverse” Densities“Transverse” Densities

! Plots shows CDF data on the charge particle density and the charged PTsumdensity in the “transverse” region.

! The data are compared with the QCD Monte-Carlo predictions of HERWIG 6.4 (CTEQ5L, PT(hard) > 3 GeV/c) and two tuned versions of PYTHIA 6.206 (PT(hard) > 0).

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

HERWIG 6.4

Charged ParticleDensity

Charged PTsumDensity

Charged Jet #1Direction

∆φ∆φ∆φ∆φ

“Toward”

“Transverse” “Transverse”

“Away”

"Transverse" Charged PTsum Density: dPTsum/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

PTs

um D

ensi

ty (G

eV)

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5LPYTHIA 6.206 (Set B)

PARP(67)=1

PYTHIA 6.206 (Set A)PARP(67)=4

HERWIG 6.4

Page 25: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 25

Tuned PYTHIA 6.206Tuned PYTHIA 6.206“Transverse” P“Transverse” PTT DistributionDistribution

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

PARP(67)=4.0 (old default) is favored over PARP(67)=1.0 (new default)!

"Transverse" Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)Ch

arge

d D

ensi

ty d

N/d

η ηηηdφ φφφd

PT (1

/GeV

/c)

CDF Datadata uncorrectedtheory corrected

1.8 TeV |ηηηη|<1 PT>0.5 GeV/c

PT(chgjet#1) > 5 GeV/c

PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set APARP(67)=4

PYTHIA 6.206 Set BPARP(67)=1

! Compares the average “transverse” charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the “transverse” density, dNchg/dηηηηdφφφφdPT with the QCD Monte-Carlo predictions of two tuned versions of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

Page 26: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 26

Tuned PYTHIA 6.206Tuned PYTHIA 6.206Set ASet A

Charged Particle Density

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)Ch

arge

d De

nsity

dN/

d η ηηηd φ φφφ

dPT

(1/G

eV/c

)

CDF Preliminarydata uncorrectedtheory corrected

1.8 TeV |ηηηη|<1 PT>0.5 GeV/c

CDF Min-Bias

"Transverse"PT(chgjet#1) > 5 GeV/c

"Transverse"PT(chgjet#1) > 30 GeV/c

PYTHIA 6.206 Set A

CTEQ5L

"Transverse" Charged Particle Density: dN/dηηηηdφφφφ

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsve

rse"

Cha

rged

Den

sity

1.8 TeV |ηηηη|<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 Set A

! Compares the average “transverse” charge particle density (|ηηηη|<1, PT>0.5 GeV) versus PT(charged jet#1) and the PT distribution of the “transverse” and “Min-Bias” densities with the QCD Monte-Carlo predictions of a tuned version of PYTHIA 6.206 (PT(hard) > 0, CTEQ5L, Set A).

Set A Min-Bias<dNchg/dηηηηdφφφφ> = 0.24

Describes “Min-Bias” collisions! Describes the “underlying event”!

Describes the rise from “Min-Bias” to “underlying event”!

“Min-Bias”

Set A PT(charged jet#1) > 30 GeV/c“Transverse” <dNchg/dηηηηdφφφφ> = 0.60

Page 27: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 27

SummarySummary“Min-Bias” and

the “Underlying Event”

! PYTHIA (tune “A” and “B”) does a good job of describing both “min-bias” collisions and the “underlying event” in hard scattering processes in the Run I data.

! PYTHIA (tune “A” or “B”) is the only “min-bias” generator that includes both “soft” and “hard” scattering.

! Both ISAJET and HERWIG have the too steep of a PT dependence of the “beam-beam remnant” component of the “underlying event” and hence do not have enough beam-beam remnants with PT > 0.5 GeV/c.

! PYTHIA tune “A” is slightly favored over tune “B”, but eventually the best fit may be somewhere in between. The initial-state radiation in tune “A” with PARP(67) = 4 (used in all Run I simulations) looks more like HERWIG’s initial-state radiation.

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

Page 28: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 28

RecommendationsRecommendationsRun II Monte-Carlo

Simulations! I suggest the tune set “A” be used as the

default for PYTHIA for the first round of Run II simulations.

! Although PYTHIA set “A” does a better job on the “underlying event” that HERWIG I suggest that you continue to run both HERWIG and PYTHIA.

! PYTHIA set “B” can be compared with set “A” to determine how sensitive a given analysis is to the initial-state radiation.

! In addition to MBR one should use PYTHIA (set “A” or “B”) to generate “min-bias” collisions.

! As we study the Run II data I will update and improve the PYTHIA tunes.

! See my “tunes” WEBsite at http://www.phys.ufl.edu/~rfield/cdf/tunes/rdf_tunes.html

• The “underlying-event” is only part of the overall event.• It is very important to compare at least two Monte-carlo estimates..

• In Run I the systematic error due to initial-state radiation was overestimated.

Page 29: PYTHIA 6.2 “Tunes” for Run IIrfield/cdf/CDFjoint_11-15-02.pdf · 11/15/2002  · Rick Field Page 1 PYTHIA 6.2 “Tunes” for Run II! “Min-Bias” Generators Proton AntiProton

CDF Joint Physics Group November 15, 2002

Rick Field Page 29

RecommendationsRecommendationsRun II Monte-Carlo

Simulations! I suggest the tune set “A” be used as the

default for PYTHIA for the first round of Run II simulations.

• I know what tune “A” is doing.• PARP(67) = 4 was used in Run I.

! Although PYTHIA set “A” does a better job on the “underlying event” that HERWIG I suggest that you continue to run both HERWIG and PYTHIA.

! PYTHIA set “B” can be compared with set “A” to determine how sensitive a given analysis is to the initial-state radiation.

! In addition to MBR one should use PYTHIA (set “A” or “B”) to generate “min-bias” collisions.

! As we study the Run II data I will update and improve the PYTHIA tunes.

! See my “tunes” WEBsite at http://www.phys.ufl.edu/~rfield/cdf/tunes/rdf_tunes.html

• The “underlying-event” is only part of the overall event.• It is very important to compare at least two Monte-carlo estimates..

• In Run I the systematic error due to initial-state radiation was overestimated.

Warning! Some of thepreliminary comparisons of

PYTHIA (set “A”) with Run II dataindicate that there is not enough sumET in the “underlying event”.

I do not understand this!