pv inverter high humidity

Upload: leonardo-bellincanta-de-souza

Post on 06-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 PV Inverter High Humidity

    1/17

    © 2015 SunPower Corporation

    PV Inverter Accelerated Testing for High

    Humidity Environments

    T Paul Parker and Sander Caldwell | February 25, 2015

    PV Inverter Reliability Workshop

  • 8/17/2019 PV Inverter High Humidity

    2/17

    ©

    Introduction 

    • What standards are available for accelerated reliabilitytesting of PV inverters?

    •  Are PV module humidity test standards applicable toinverters?

    • Should we borrow from humidity test standards used inother industries?

    What failure mechanisms are we targeting?• How do we model acceleration factors?

    • How does the product react to the test environment?

    • What next?

  • 8/17/2019 PV Inverter High Humidity

    3/17

    ©

    Industry standards for PV inverters

    • IEC 62093 (draft) – Damp Heat

    • Powered, monitored, light load to reduceinternal heating

    • 85C / 85% RH, 1000 hours (42 days)

     – Humidity Freeze

    • Powered, monitored, light load

    • 85C / 85% RH, 10 hours; followed by -40C, 2

    hours• 20 cycles (10 days)

    •  ANSI TUV-R 71830 (DOE PREDICTS draft)

     – Microinverters / DC-DC converters

     – Similar to IEC 62093 DH / HF stress levels,duration TBD

  • 8/17/2019 PV Inverter High Humidity

    4/17

    ©

    Other standards

    • PV Module Standards

     –Damp Heat (IEC 61215)• 85C / 85% RH, 1000 hours

     –Hum idity Freeze (UL 1703 / IEC 61215)

    • 85C/85%, 20 hrs ; -40C, 4 hrs; 10 cycles

    • Telecom Power Supplies (IPC 9592)

     –Temperature, Humidity and Bias (THB) *

    • 85C / 85% RH, 1000 hours

    Reference: UL 1703

    * Similar to IEC 60068-2-67

  • 8/17/2019 PV Inverter High Humidity

    5/17

    ©

    Other IEC standards

    • General Industry

     –Damp Heat (IEC 60068-2-78)• 40C / 93%; 1 to 56 days

     –Damp Heat, cyclic (IEC 60068-2-30)

    • Variant 1:

     – 40C / 93%; 12 hr to 25C/97% 12 hr (24 hour

    cycle) ; – 2 to 56 cycles (days)

    • Variant 2:

     – 55C / 93%; 12 hr to 25C /97% 12 hr;

     – 1 to 6 cycles (days)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

         T     i    m    e

         1    :     0     0

         2    :     1     5

         3    :     3     0

         4    :     4     5

         6    :     0     0

         7    :     1     5

         8    :     3     0

         9    :     4     5

         1     1    :     0     0

         1     2    :     1     5

         1     3    :     3     0

         1     4    :     4     5

       T   e   m   p   e   r   a   t   u   r   e    (   D   e

       g   C    )

    Time (Hours)

    IEC 60068-2-30 Cyclic DampTemp R

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90100

         T     i    m    e

         1    :     0     0

         2    :     1     5

         3    :     3     0

         4    :     4     5

         6    :     0     0

         7    :     1     5

         8    :     3     0

         9    :     4     5

         1     1    :     0     0

         1     2    :     1     5

         1     3    :     3     0

         1     4    :     4     5

       T   e   m   p   e   r   a   t   u   r   e    (   D   e   g   C    )

    Time (Hours)

    IEC 60068-2-30 Cyclic DampTemp R

  • 8/17/2019 PV Inverter High Humidity

    6/17

    ©

    Other IEC standards

    • General Industry

     –Damp Heat, cyclic (IEC 60068-2-38)

    • Sub-cycle 1:

     – 65C / 93% to 25C / 93% - 8 hour cycle

     – 2 cycles

     – 25C / 93% - 8 hours

    • Sub-cycle 2

     – 65C / 93% to 25C / 93% - 8 hour cycle

     – 2 cycles

     – 25C / 93% to -10C / uncontrolled RH – 8 hourcycle

    • Each sub-cycle repeated 5 times

    • Test durat ion – 10 days-20

    0

    20

    40

    60

    80

    100

         T     i    m    e

         1    :     0     0

         2    :     1     5

         3    :     3     0

         4    :     4     5

         6    :     0     0

         7    :     1     5

         8    :     3     0

         9    :     4     5

         1     1    :     0     0

         1     2    :     1     5

         1     3    :     3     0

         1     4    :     4     5

         1     6    :     0     0

       1   7    1   5

       T   e   m   p   e   r   a   t   u   r   e    (   D   e   g   C    )

    Time (Hours)

    IEC 60068-2-38 Cyclic Damp HeaTemp RH RH

    0

    20

    40

    60

    80

    100

         T     i    m    e

         1    :     0     0

         2    :     1     5

         3    :     3     0

         4    :     4     5

         6    :     0     0

         7    :     1     5

         8    :     3     0

         9    :     4     5

         1     1    :     0     0

         1     2    :     1     5

         1     3    :     3     0

         1     4    :     4     5

         1     6    :     0     0

       1   7    1   5

       T   e   m   p   e   r   a   t   u   r   e    (   D

       e   g   C    )

    Time (Hours)

    IEC 60068-2-38 Cyclic Damp HeaTemp RH

  • 8/17/2019 PV Inverter High Humidity

    7/17

    ©

    Moisture Assisted Failure Mechanisms

    • Electrochemical Migration (ECM) – Dendrite*

     – Metallic ions migrate from anode to cathode, forming treelike

    structure growing back toward anode

    • Dissolut ion of Sn, Cu, Ag in the presence of mo isture / contaminates

    • Requires Power (Voltage), typ ically > 1V/mi

     – Typically occurs at PCB surface between 2 conductors joined by an

    electrolyte medium such as adsorbed moisture

     – Can be highly intermit tent , diff icult to d iagnose, especially in potted

    assemblies

     – Dependent on available power, evidence can be destroyed

     – Mit igated by cleaning, conformal coating or pot ting

     – Challenge to model due to hard to predict variables:

    •  Amount o f moisture adhered to sur face of PCB

    • Nature and chemical activity of contaminates, especially flux

    ECM

    Char

    *Refere nce s 1-3

  • 8/17/2019 PV Inverter High Humidity

    8/17

    ©

    Failure Mechanisms (cont.)

    • ECM –Conductive Anodic Filament (CAF) *

     – PCB inner layer only

     – Requires path between points of different potential – Path typically provided by glass fiber to resin separation

     – Higher risk in Pb-Free assemblies

     – Similar to dendr ite, Cu++ dissolut ion at anode, migratesalong path toward cathode.

     – Can be highly intermit tent , often leads to PCB therm aldamage

     – Mitigated by proper selection of laminate material,conservative in ternal spacings

     – Challenge to model due to hard to predict variables:

    • Moisture content of PCB before and after reflow

    • Quality of laminate

    • Process variant: PCB hole dril l quali ty, PCBA ref low p rof ile

    * References 4-6

  • 8/17/2019 PV Inverter High Humidity

    9/17 ©

    Failure Mechanisms (cont.)

    • Film Capacitor corrosion *

     – Corrosion reaction attacking thin metal electrode

     – ZnAl electrodes react with oxygen and water to form non

    conducting area, reducing capacitance

     – Highly accelerated by temperature / RH / voltage

     – Mit igated by with appropr iate selection of capacitor case

    material / pottant

     – Empirical models available from capacitor m anufacturers

    Before* References 7-8

  • 8/17/2019 PV Inverter High Humidity

    10/17 ©

    Modeling – AF: Accelerated Test vs Field Use Condi

    • Identify a region you for which you wish to predict AF

     – Miam i Average use environment : 24C / 73% RH (Refer ence 9)

    • Ide nt ify accelerate d te st con dition :

     –  85C / 8 5% RH

     –  65C / 8 5% RH

    • Select m od el: ex: Peck Mod el (Refer ence 1 )

     –  AT (EA = 0.7) = 106

     –  AT (EA = 0.9) = 400

    • For 25 yea r life, 50% on time (109.5 khr)

     –  Req ’d. tes t time for 85 C/85% = 183 – 691 hou rs

     –  Req ’d te st time for 65C/85%= 1026 – 2647 h ou rs

    Peck M

     –  AH = (85/ 24)2.66 = 1.5

     –  AF = ATH

     = 158 – 6 x 

  • 8/17/2019 PV Inverter High Humidity

    11/17©

    Design Response to T/RH Conditions

    • Unsealed, unpotted assemblies track

    environment closely

     – For cyclic humidity testing, condensation duringtemperature ramp up

     – Potent ial for significant Insulat ion Resistance (IR)

    drop

    • Sealed, unpotted assemblies vulnerable to

    “pumping” or “water diode” phenomena

    • Potted and conformally coated assembliesmay be at r isk

     – poor adhesion

     – High moisture content

     – Fast vapor diffusion rate

    Refer ence 11

  • 8/17/2019 PV Inverter High Humidity

    12/17©

    Real Time Monitoring of Leakage Current / Insulation Re

  • 8/17/2019 PV Inverter High Humidity

    13/17©

    Next Steps

    • Survey PV inverter manufacturers for existing humidity

    test best practices

    • Differentiate requirements of Test standard

     – Qualification Test – Pass requirement, no failures allowed

     – Accelerated Life Test– Test to fai l, model based on fai lure mechanism

    • Support standards effor ts

     – IEC – 62093 needs to be resurrected

     – ANSI TUV-R 71830 (PREDICTS) – See Jack Flicker

  • 8/17/2019 PV Inverter High Humidity

    14/17©

    References

    • ECM: Dendrites

     – (1) C. Hillman, “Contam inat ion and Cleanliness – Developing Practical Responses to a Challen

    IMAPS – Nordic, June, 2010

     – (2) E Bumiller , et.al , “ A Review of Models for Time-to-Failure due to Metallic Migration Mecha

    Solutions

     – (3) X. He, et.al, “Evaluation of Electrochemical Migration on Printed Circuit Boards with Lead-F

    Lead solder ”, Jour nal of Electronic Materials” June, 2011

    ECM: CAF – (4) L Zou, et.al,” How to Avoid Conductive Anodic Filam ent (CAF), National Physical Lab, Janua

    Technical Webinar, www.npl.co.uk/ei 

     – (5) W.J. Ready and L.J. Turbini , “ Conductive Anodic Filam ent Formation: A Materials Perspecti

    Proceedings of the 3rd Pacific Rim International Conference on Advanced Materials and Proce

     – (6) L. J. Turbin i, “Electrochemical Migrat ion and Conductive Anodic Filament (CAF) Formation”

    SMTA, October, 2013

    http://www.npl.co.uk/eihttp://www.npl.co.uk/ei

  • 8/17/2019 PV Inverter High Humidity

    15/17©

    References

    • Film Capacitor Corrosion

     – (7) M. Michelazzi, et.al, “RFI X2 Capacitors for High Humidity Environments”, 2014 CARTS Inte

     – (8) HJC White Paper, “Accelerated Lifetim e Test for Metallized Film Capacitor s”,

    http://www.hjc.com.tw/cap/pv.pdf  

    • Modeling

     – (9) NREL “Solar Radiat ion Data Manual for Flat-Plate and Concent rat ing Collectors” – Data co

    239 weather stations from 1961 to 1990. Miami, p 57.

     – (10) D.S Peck, “Comprehensive Model for Humidity Testing Correlat ion, IRPS, 1986.

    http://www.hjc.com.tw/cap/pv.pdfhttp://www.hjc.com.tw/cap/pv.pdf

  • 8/17/2019 PV Inverter High Humidity

    16/17©

    References

    • Humidity Technical Discussion

     – (11) A.B. Kentved, “Humidit y Testing of Electronics and Mechanics – How to Select the Right T

    Delta Electronic White Paper, Delta SPM-176, 2008. http://spm-erfa.dk/ 

    http://spm-erfa.dk/http://spm-erfa.dk/

  • 8/17/2019 PV Inverter High Humidity

    17/17

    Thank You 

    Let’s change the way our wor ld is powered.

    © 2015 SunPower Corpor atio n. All Rights Reserved. SUNPOWER and th e SUNPOWER logo are tr ademarks or

    i t d t d k f S P C ti i th U S d th t i ll