pushing the limits of ir …an update of new possibilities in cls spectroscopy ferenc borondics cap...

20
Pushing the limits of IR …an update of new possibilities in CLS spectroscopy Ferenc Borondics CAP Meeting 2011, St. John’s, NL

Post on 20-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Pushing the limits of IR

…an update of new possibilities in CLS

spectroscopy

Ferenc Borondics

CAP Meeting 2011, St. John’s, NL

The Canadian Light Source

Location, location, location...

The Mid IR beamline

The Mid IR beamline

Source Bending Magnet

Energy range

~200 – 8000 cm-1 (0.025 – 1 eV)

Resolution ~0.1 – 16 cm-1

Spot size Diffraction limited

Synchrotron advantage for Mid IR

Globar(black body)

Synchrotron

Microscopy…

X-ray microscope

Big objective

Oil immersion objectiveN

A =

0.6

5

Diffraction limited resolution.

Not possible with regular sources.

2.46 μm

3000 cm-

1

2000 cm-1

1500 cm-1

2000 cm-1

Synchrotron Radiation GlobarVisible

Microscopy

SR FPA imaging

Reflectionsetup

Time resolved measurements

4ns time resolution, Step/Scan bench

TransmissionReflectionGrazing IncidenceATR

64x64 element FPA, Hyperion 3000

Micro-PAS

Low temperature

…recent developments

PEM for polarizationNIR detection

Microscopy…plans for the future

FIR microscopy extension – bolometer attachmentIn situ pressure measurement for high-pressure

experiments

Breaking the diffraction limit

Microscopy…plans for the future

New beamline

Users – various fields

Usage: 68% oversubscribed

Biology: seeds, tissue sections, plant sciences, paleontology, environmental science

60%

Chemistry: electrochemistry, fundamental food science, diamonds15%

Physics: solid state physics, geophysics, high-pressure superconductivity15%

CE WE

RE

Flow Through Holes

Kinetics: decrease RC time constant

Small electrode size

Need for SR

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

q /

μC

time / s

-0.4 -0.2 0.0 0.2 0.4 0.6

-0.10

-0.05

0.00

0.05

0.10

0.15

i / μ

A

E vs Ag wire

0 30 32 34 36 38

-0.2

0.0

0.2

0.4

0.6

E /

V v

s A

g

time / s

Rosendahl SM; Borondics F; May T; Pedersen T; Burgess I, Anal. Chem. 83 (10), 3632-3639, 2011.

potentiostat

Apply Erest

DAQComputer

FTIRMicroscope

e-chem cell

Apply Eref

Get ready…

Let’s roll!

Apply Estep

SpectraDirect detector signal

Ecell/I

Rosendahl SM; Borondics F; May T; Pedersen T; Burgess I, Anal. Chem. 83 (10), 3632-3639, 2011.

Results

1900 2000 2100 2200 2300

-0.01

0.00

0.01

0.02

0.03

0.04

S/S

Wavenumber / cm-1

0 1 2 3 4 5 6 7

-12

-10

-8

-6

-4

-2

0

2

ab

s) x

100

0

time / s

0 1 2 3-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

Co

nce

ntr

atio

n (

mM

)

time / s

Fe(CN)64- = Fe(CN)6

3- + e-

Fe(CN)64-

Fe(CN)63-

loss

creation

Rosendahl SM; Borondics F; May T; Pedersen T; Burgess I, Anal. Chem. 83 (10), 3632-3639, 2011.

http://www.physics.utoronto.ca/~kburch/

20μm

42nm160nm 110nm

100nm10μm

20μm

13nm

L.J. Sandilands et al., PRB 82, 064503 (2010)

Bi2Sr2Ca1-xDyxCu2O8+δ

x=0.3,0.4

Exfoliated superconductors

Topological insulators

NbSe2

Bi-2212 MoS2

Graphene1mm

Exfoliation (Scotch tape-ing)

…another example (ALS)

Bilayer graphene

Thank you!

Mid IR beamlineCanadian Light Source

http://midir.lightsource.ca