protein and amino acids in sports nutrition advanced level 1

55
Protein and Amino Acids in Sports Nutrition Advanced Level 1

Upload: sherilyn-shaw

Post on 23-Dec-2015

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein and Amino Acids in Sports Nutrition

Advanced Level

1

Page 2: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Module II

Evaluating Protein QualityDetermining Protein Recommendations for Athletes

Page 3: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Evaluating Protein Quality

3

Page 4: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Quality

Complete protein– Contains all the essential AAs in amounts that meet what is required by

humans to prevent deficiency• Animal proteins (except gelatin)• Dairy proteins• Soy protein

Incomplete protein– Too low in one or more of the essential AAs to support human growth and

maintenance • Cannot serve as a sole source of protein in the diet without deficiency developing• Limiting AA (LAA) is the essential AA present in the lowest quantity in the food• Most plant proteins are incomplete proteins (except soy)

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007.4

Page 5: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Quality: Complementary Proteins Complementary proteins

– Combinations of incomplete proteins that, when added together, result in a complete protein (eg, beans and rice)• Legumes: methionine, lysine• Grains: methionine, lysine

– Combining a complete protein with an incomplete protein is also considered complementary• Exceptions are milk and legumes

– Although milk has a greater amount of sulfur-containing AAs (ie, methionine and cysteine) per gram compared with legumes, not enough sulfur-containing AAs are present for an ideal AA profile when the 2 foods are consumed together

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007.5

Page 6: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Quality: Complementary Proteins (Cont’d) Complementary proteins

– Combining complementary proteins at each meal for vegetarians is not necessary• What matters is the total intake of complementary proteins over the

course of a day• May be more crucial for individuals wishing to optimize meal-stimulated

protein synthesis in muscle– Requires full complement of essential AAs as well as relatively high

leucine content to maximally stimulate mTOR pathway

McDonald L, et al. The Protein Book A Complete Guide for the Coach and Athlete. 1st ed. Salt Lake City, UT: Lyle McDonald Publishing; 2007.6

Page 7: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Evaluation of Protein Quality Two important aspects of evaluating protein quality

– Amino acid profile (compared to “ideal” pattern)– Digestibility of the protein

• Plant proteins are often contained within cell walls that are resistant to human digestion, limiting digestibility

• Some legumes have antinutritional factors such as trypsin that also limit digestibility

Abbreviations: FAO, Food and Agriculture Organization; WHO, World Health Organization.Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, Protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 683-689.Report of the Joint FAO/WHO Expert Consultation. Protein quality evaluation. FAO Food and Nutrition Paper No 51. 1991.

Source True Digestibility, %

Egg 97

Milk / cheese 95

Meat / fish 94

Soy flour 86

Whole wheat 85

Corn, whole 87

Oatmeal 86

Beans 78

American mixed diet 96

7

Page 8: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Digestibility Corrected Amino Acid Score

Protein digestibility corrected amino acid score (PDCAAS) is the current “gold” standard by FAO/WHO for assessing protein quality

– DF = (NI – NFΔ) / NI where

• NI = nitrogen intake (g protein/6.25)

• NFΔ = fecal nitrogen on a diet containing the protein minus fecal nitrogen on a protein-free diet (corrects for endogenous nitrogen)

Complete proteins can often have PDCAAS values of ≥ 1.00– Standard practice is to truncate values exceeding 1.00 to simply 1.00

PDCAAS (%) True fecal digestibility (DF; %)

Abbreviations: FAO, Food and agriculture Organization; WHO, world Health Organization.Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 683-689. Schaafsma G. J Nutr. 2000;130(7):1865S-1867S.

8

mg of limiting AA in 1 g test protein

mg of same AA in 1 g of reference or

“ideal” protein

Page 9: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Example of PDCAAS Calculation

Amino Acid

mg / g Protein

RatioWhole Wheat

FlourFNB/IOM Standard

Histidine 22 18 1.22

Isoleucine 40 25 1.6

Leucine 63 55 1.15

Lysine 26 51 0.51 (LAA)

Met + Cys 35 25 1.4

Phe + Tyr 81 47 1.72

Threonine 27 27 1.00

Tryptophan 11 7 1.57

Valine 43 32 1.34FNB, Food and Nutrition Board; IOM, Institute of Medicine.

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, protein, and Amino Acids. Washington, DC: National Academies Press, 2005, p. 686-689.

Identify the limiting AA (LAA) in a protein source

9

Page 10: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Example of PDCAAS Calculation (Cont’d) PDCAAS of whole wheat = ratio for lysine (LAA) x digestibility

– 0.51 × 0.85 = 0.433– Therefore, whole wheat is an incomplete protein and not suitable as a

sole protein source in the diet

For the percent daily value (% DV) of protein on food labels, the total protein content is first corrected using PDCAAS before a % DV value is listed– % DV = amount of nutrient in 1 serving (corrected) ⁄ DV for nutrient (50 g for

protein in adults)

US Food and Drug Administration. Food Labeling Guide Section 7. October 2009. Available at: http://www.fda.gov/Food/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/FoodLabelingNutrition/FoodLabelingGuide/ucm064894.htm. Accessed July 20, 2011. 10

Page 11: Protein and Amino Acids in Sports Nutrition Advanced Level 1

PDCAAS of Protein Sources

Protein Source PDCAAS

Egg 1.0

Milk 1.0

Beef 0.92

Soy protein 1.0

Wheat 0.42

Whey protein 1.0

Casein 1.0

Peanuts 0.52

Black beans 0.75

Hoffman JR and Falvo MJ. J Sports Sci Med. 2004;3:118–130. Schaafsma G. J Nutr. 2000;130(7):1865S-1867S.

11

Page 12: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Limitations of PDCAAS for Athletes

Values above 1.0 are truncated– FAO/WHO definition is concerned only with meeting maintenance

requirements– Does not account for protein intake or outcomes beyond maintenance

requirements Does not account for relative AA differences among proteins with

PDCAAS of 1.0– For example, soy isolate and whey isolate both have PDCAAS of 1.0, yet soy

has 50% the threonine (an essential AA) of whey Ileal digestibility may vary among protein sources

– AAs not absorbed by the distal intestine can subsequently be consumed by bacteria in the colon; therefore, fecal digestibility may not accurately reflect AA uptake from a protein source

FAO, Food and agriculture Organization; WHO, world Health Organization.Millward DJ, et al. Am J Clin Nutr. 2008;87:1576S-1581S.

12

Page 13: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Efficiency Ratio for Protein Quality

Protein efficiency ratio (PER)– Assesses weight gain of growing animals on a particular

protein source (eg, rats, chicks) • Diet containing about 10% protein is fed for ~10 days

– PER = weight gain (g)/protein consumed (g)– Not suitable as an index for human consumption

• Human metabolism often varies substantially from animals

Ferreira Costa Leite CD, et al. Nutr Hosp. 2011;26(2):415-420.13

Page 14: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Nitrogen Balance for Protein Quality

Nitrogen intake (from protein) minus nitrogen excretion equals nitrogen balance– Nitrogen balance: Nitrogen intake = nitrogen losses– Negative nitrogen status: Nitrogen intake < nitrogen losses– Positive nitrogen status: Nitrogen intake > nitrogen losses

Nitrogen balance is a whole body concept– Does not give specific information on flux of protein/AA pool within

individual tissues/organs FAO/WHO has set protein requirements based on nitrogen

balance experiments

Rand WM, et al. Am J Clin Nutr. 2003;77:109-127.14

Page 15: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Nitrogen Balance in Clinical Studies

Typically, healthy individuals were on 2 diets– Diet with protein of interest versus protein-free diet– Test diets were above, below, and near predicted protein

requirement– Nitrogen losses in feces and urine measured

• Other losses (eg, skin) often estimated

Irwin MI and Hegsted DM. J Nutr. 1971;101(4):539-566.15

Page 16: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Calculating Nitrogen Balance

General nitrogen-status formula

Nitrogen status = NI – [(U - UE) + (F – FE) + S]− Where

• NI is nitrogen intake• U and F are urinary and fecal nitrogen losses, respectively• UE and FE are endogenous urinary and fecal nitrogen losses during a

nitrogen-free diet• S is nitrogen loss from sloughed skin cells, sweat, bodily secretions

Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 237-238.

16

Page 17: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Calculating Nitrogen Balance (Cont’d) Clinical nitrogen-status formula

Nitrogen status = (g protein intake/6.25) – (UUN + 4)− Where

• Nitrogen intake is estimated; divide protein intake by 6.25• UUN is 24-hour urinary urea nitrogen loss

− Added to 4, which estimates other nitrogenous urea compounds and non-urea nitrogen losses)

Example – Individual with protein intake of 85 g, UUN of 9.9 mg/mL, and 24-hour

urine volume of 1,000 mL• Nitrogen intake: 85 g/6.25 = 13.6 g• UUN: 9.9 mg/mL × 1,000 mL = 9,900 mg OR 9.9 g• Nitrogen balance: 13.6 – (9.9 + 4) = − 0.3

− Negative nitrogen balance indicates state of protein loss

Lee, RD and Nieman, DC. Nutritional Assessment. 4th ed. New York, NY: McGraw Hill; 2006. p 323.17

Page 18: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Considerations for Nitrogen Balance Measurements are difficult and often imprecise

Urine and fecal collections must fully account for 24-hr period– Difficult in practice

Poor estimates of true nitrogen loss often result in an overestimation of nitrogen retention

Non-protein energy intake can influence results– Carbohydrate and fat are protein-sparing– If energy is inadequate, AAs will be used for oxidation (fuel) instead of for

synthesis of new proteins, thus nitrogen retention is reduced

18

Page 19: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Biological Value for Protein Quality Biological value (BV) measures how much nitrogen is retained in the body Similar to nitrogen balance concept

– 2 diets (one with protein, the other protein-free) that are fed to either humans or animals for 7 to 10 days

– Urinary and fecal collections are assessed Calculation

– Where• NI is nitrogen intake• U and F are urinary and fecal nitrogen losses, respectively• UE and FE are endogenous urinary and fecal nitrogen losses during a nitrogen-free diet

– Maximum biological value = 100 (indicates all nitrogen absorbed is retained) Similar limitations for nitrogen balance apply to biological value

– Meaningful for whole diets, but not individual components of mixed diets since limiting AAs can differ between sources

BV =NI – (U – UE) – (F – FE)

NI – (F – FE)X 100 =

Nitrogen retained

Nitrogen absorbedX 100

Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 239.

19

Page 20: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Biological Value of Selected Foods

Food and Agriculture Organization of the United Nations. Amino Acid Content of Foods and Biological Data on Proteins. Nutritional Study 24. Rome, Italy; 1981. Available at: http://www.fao.org/DOCREP/005/AC854T/AC854T74.htm#chII.I.7. Accessed; July 20, 2011.

Protein Source Biological Value

Egg, whole 93.7

Milk 84.5

Fish 76.0

Beef 74.3

Soybeans 72.8

Rice, polished 64.0

Wheat, whole 64.0

Corn 60.0

Beans, dry 58.0

20

Page 21: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Net Protein Utilization for Protein Quality Net protein utilization is similar to nitrogen balance and biological

value concepts– 2 diets (one with protein, the other protein-free) that are fed to either

humans or animals for 7 to 10 days• Total carcass nitrogen (TCN) is often measured in animal studies

NPU = (TCN on test protein – TCN on protein-free diet) / N intake– Urinary and fecal collections are assessed

Calculation

– Where• NI is nitrogen intake• U and F are urinary and fecal nitrogen losses, respectively• UE and FE are endogenous urinary and fecal nitrogen losses during a

nitrogen-free diet

NPU =NI – (U – UE) – (F – FE)

NI

X 100 = Nitrogen retained

Nitrogen intakeX 100

Gropper SS, et al. Chapter 6 Protein in Advanced Nutrition and Human Metabolism. 5th ed. Belmont, CA: Wadsworth, CENGAGE Learning.; 2009. p 239.

21

Page 22: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Leucine Content as an Additional Indicator of Protein Quality A recent animal study has shown that the leucine content of a meal

determines its capacity to maximally stimulate muscle protein synthesis1

– Whey protein (higher leucine) activates protein synthesis more than wheat protein (lower leucine)

Human studies have shown that leucine-rich protein sources such as whey are better at stimulating muscle growth than sources with less leucine, such as soy2,3

– For example, compared with soy protein, whey promoted more muscle protein synthesis • By 18% at rest (P = .067)• By 31% following resistance exercise (P < .05)

1. Norton LE, et al. J Nutr. 2009;139(6):1103-1109.2. Hartman JW, et al. Am J Clin Nutr. 2007;86(2):373-381.3. Tang JE, et al. J Appl Physiol. 2009;107(3):987-992.

22

Page 23: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Leucine Content of Selected Protein Sources

Source Leucine, g/100 g Total Essential AAs, g/100 g

Soy protein isolate 8.2 36.0

Egg protein 8.4 42.3

Casein 8.9 40.7

Milk protein isolate 10.3 42.7

Whey protein isolate 12.2 49.2

Whey protein hydrolysate 14.2 49.8

Hulmi JJ, et al. Nutr Metab (Lond). 2010;7:51.23

Page 24: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Considerations for Protein Sources, Quality, and Turnover Casein, whey, and egg are all high-quality proteins capable of

supporting muscle growth Whey protein supplementation appears to be particularly good at

stimulating muscle protein synthesis – Leucine content highest (in addition to speed of digestion)

Casein may reduce muscle protein breakdown (slow digesting, high quality source ideal before bedtime)

Soy is also high quality according to the standard definition, but may be less ideal due to lower leucine content

Combination of protein sources are ideal to get wide range of effects

Hulmi JJ, et al. Nutr Metab (Lond). 2010;7:51.24

Page 25: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Quality Summary PDCAAS is the “Gold Standard” for protein quality

– Accounts for digestibility as well as amount of essential AAs• Animal, dairy, and soy are of highest quality by this definition

Nitrogen balance– Used to determine protein requirements to prevent deficiency in humans (RDA)– Does not account for different AA compositions among protein sources– Potentially flawed due to measurement errors

PER, BV, and NPU are not as robust in determining true protein quality– More often used in agriculture

Leucine content of a protein source may determine the protein source’s ability to stimulate protein synthesis in muscle

Abbreviations: PDCAAS, protein digestibility corrected amino acid score; PER, protein efficiency ratio; BV, biological value; NPU, net protein utilization; RDA, recommended dietary allowance.

25

Page 26: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Determining Protein Recommendationsfor Athletes

26

Page 27: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Recommended Daily Requirement for Protein

Current RDA for protein is 0.8 g/kg body weight per day– ~65 g/day for a 180 lb (82 kg) individual– ~47 g/day for a 130 lb (59 kg) individual

The RDA was calculated using nitrogen balance studies– Defines amount of protein required to maintain nitrogen balance in a

healthy adult• Consume just enough protein to not be deficient

Most Americans appear to consume adequate protein by this definition– Median protein intake for all adult age and gender groups ranged from 55

to 101 g/day– Adequate intake does not necessarily = optimal for health or performance

USDA National Agricultural Library Food and Nutrition Information Center. Available at: http://fnic.nal.usda.gov/nal_display/index.php?info_center=4&tax_level=3&tax_subject=256&topic_id=1342&level3_id=5140U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group (Beltsville, MD). Continuing Survey of Food Intakes by Individuals 1994-96, 1998 and Diet and Health Knowledge Survey 1994-96.

27

Page 28: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Requirements

The current RDA for protein may be too low– Nitrogen balance studies often overestimate nitrogen retention

• Therefore, the nitrogen (protein) requirement may be underestimated– Reanalysis of existing nitrogen balance studies suggests that the

population requirement is ~1.0 g/kg body weight per day• Calculations using a new method (Indicator Amino Acid Oxidation) suggest

that the population requirement is ~1.2 g/kg body weight per day– These results are not official recommendations, but they suggest that

the current guideline may not be perfect and merits continuous reevaluation

Abbreviation: RDA, recommended dietary allowance.

Elango R, et al. Curr Opin Clin Nutr Metab Care. 2010;13(1):52-57. 28

Page 29: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Preventing Protein Deficiency Versus Optimal Outcome The RDA for protein is set to prevent protein deficiency

(maintenance) in healthy adults

The RDA for protein does not consider potential benefits that might be obtained from consumption beyond that needed simply to maintain nitrogen balance– What is the optimal protein intake for

• Skeletal muscle function?• Bone health?• Athletic performance?

Abbreviation: RDA, recommended dietary allowance.29

Page 30: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Intake Recommendations for Athletes

American College of Sports Medicine (ACSM)/American Dietetic Association (ADA) – Endurance athletes, 1.2 to 1.4 g/kg per day

• Based on nitrogen balance studies– Increased protein oxidation during endurance exercise

– Strength athletes, 1.2 to 1.7 g/kg per day• Essential AAs are needed to support muscle growth, particularly during early

phase of training when most significant gains in muscle occur and protein utilization is less efficient

– Despite increased recommendations, ACSM does not state that protein supplementation has a positive impact on athletic performance

ACSM and ADA. Med Sci Sports Exerc. 2009;41(3):709-731.30

Page 31: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Nitrogen Balance and Athletes (1 of 3) The RDA for protein (0.8 g/kg) is probably insufficient for maintaining

nitrogen balance in either strength or endurance athletes– 0.97 to 1.37 g/kg per day for endurance athletes– 0.82 to 1.43 g/kg per day for strength athletes (experienced, novice)

Endurance athletes may require more protein than strength athletes to maintain nitrogen balance– Higher energy requirements dictate greater protein needs– Contracting skeletal muscles oxidize BCAAs for energy production– Adequate caloric intake to match physical demands is key in order to spare AAs

for muscle protein synthesis

Abbreviations: RDA, recommended dietary allowance; BCAA, branched-chain amino acids.

Tarnopolsky MA, et al. J Appl Physiol. 1988;64(1):187-193.31

Nit

rog

en b

alan

ce, g

/kg

/day

Activity type

Page 32: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Nitrogen Balance and Athletes (2 of 3) Experienced weight lifters require less protein intake per kg of lean body

mass than that of novices Less potential expansion of muscle mass to be added in experienced weight

lifters– In the first month of training, 1.4 g protein/kg versus 2.4 g protein/kg for novices

• Calculated 1.43 g/kg per day for nitrogen balance

– Nitrogen balance no longer had significant relationship with protein intake above 2.0 g protein/kg

– Increased AA oxidation generally seen above 2.0 g/kg• Generally indicates no further metabolic benefit, at which point additional protein is used

purely as a substrate for energy production/storage

– No apparent effect of >2.0 g protein/kg on strength

Tarnopolsky MA, et al. J Appl Physiol. 1988;64(1):187-193.Lemon PW, et al. J Appl Physiol. 1992;73(2):767-775.

32

Page 33: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Nitrogen Balance and Athletes (3 of 3) Additional protein intake can account for individual variability

(1-2 standard deviations) and for promoting positive nitrogen status rather than nitrogen balance– 1.5 to 1.8 g/kg for strength athletes

• This range should be adequate for endurance athletes as well– ~2.0 g/kg appears to be upper limit before protein intake has no additional

benefit– Energy intake is an important influence (male vs female)

• Requirement may go beyond 2.0 g/kg if energy intake is inadequate

Tipton KD and Wolfe RR. J Sports Sci. 2004;22(1):65-79.33

Page 34: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Vegetarian Diets Most vegetarian athletes meet the RDA for protein intake (0.8 g/kg per day)

– Like non-vegetarian athletes, the protein requirement for supporting muscle growth and function is probably higher than the RDA

Protein quality of non-animal/dairy sources is reduced– Vegetable/legume proteins may be limited in the essential AAs lysine, threonine,

tryptophan, or methionine – Vegetable/legume proteins are more poorly digested

ACSM/ADA recommends 1.3 to 1.8 g/kg of protein per day for vegetarian athletes– Vegetarian protein needs are likely higher than omnivore protein needs at all

activity levels

Abbreviations: RDA, recommended dietary allowance; ACSM, American College of Sports Medicine; ADA, American Dietetic Association.

Tipton KD and Witard OC. Clin Sports Med. 2007;26(1):17-36. ACSM and ADA. Med Sci Sports Exerc. 2009;41(3):709-731.34

Page 35: Protein and Amino Acids in Sports Nutrition Advanced Level 1

How Much Protein Are Athletes Eating?

Many athletes may already meet or exceed protein recommendations

Strength athletes in particular may believe that much larger protein intakes are necessary for increasing muscle mass– Intakes at 4 to 6 g/kg range are not uncommon– It is possible that this much protein intake could adversely affect the nutrient

quality of the overall diet

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214.

Protein intake of 0.8 to 2 g/kg per day is safe in healthy individuals

Protein intake above 2 g/kg per day is not recommended due to lack of benefit and potential for adverse health effects

35

Page 36: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Potential Downside to “High Protein” Diets (1 of 2) Hydration status

– Eating protein beyond requirements can result in• Increased protein use for energy• Increased fat storage

– The body must excrete the nitrogen from protein in urine (as urea)– Increased urinary output increases the likelihood of dehydration

Diets very high in protein may lack appropriate amounts of carbohydrate, fiber, and some vitamins/minerals– Could impair exercise performance– Could increase long-term risk of diseases such as colon cancer

• Possibly due to lack of fiber or increased intake of red meat

Excessively fatty protein sources could increase risk of cardiovascular disease– Make sure protein sources chosen are mostly lean

• For example, salmon is more desirable than a rib-eye steak

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214. 36

Page 37: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Potential Downside to “High Protein” Diets (2 of 2) Kidney disease

– No good evidence of damage in individuals with healthy kidneys– Protein-rich diets are high in phosphorus, which can be detrimental to

individuals with kidney disease • Primarily a concern with elderly or sick individuals, as opposed to healthy athletes

Bone health– Higher protein diets may increase calcium loss in urine

• However, gut absorption of calcium is likely improved, so there may be no net difference

– Elevated protein diets appear to have either no or a slightly beneficial effect on skeletal health

Tipton KD. Proc Nutr Soc. 2011;70(2):205-214. 37

Page 38: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Summary of Protein Recommendations Daily Recommended Intake is 0.8 g/kg per day (2002)

– No recommendation for increase in athletes

American College of Sports Medicine– Endurance: 1.2 to 1.4 g/kg per day – Strength athletes: 1.2 to 1.7 g/kg per day

Vegetarians may have higher dietary supplementation protein needs than omnivores

Protein intakes up to 2.0 g/kg per day are generally safe in healthy adults and may be beneficial– Many athletes may already unconsciously eat this amount of protein

Few convincing data show that > 2 g/kg per day is helpful– May actually increase risk of adverse events

A particular protein intake goal is difficult to establish– Influenced by energy intake and factors such as adaptation and desire to increase

lean body mass versus maintenance38

Page 39: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Amino Acid Intake Recommendations

Amino Acid RDA (mg/kg/day)a

Histidine 18

Isoleucine 23

Leucine 49

Lysine 48

Methionine + cysteine 23

Phenylalanine + tyrosine 48

Threonine 28

Tryptophan 8

Valine 32Abbreviations: RDA, recommended dietary allowance.a Based on maintenance protein requirement and determined by multiplying total protein maintenance needs in adults by amino acid content of whole body protein.

Omnivorous diets are likely to meet AA requirements as long as protein requirements are met

Vegetarians should be cognizant of complementary protein sources throughout the day to prevent deficiency of particular AAs

Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Fiber, Protein, and Amino Acids. Washington, DC; National Academies Press, 2005, p. 687.

39

Page 40: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Potential Risks of AA Supplementation (1 of 2)

Taking large doses of a single AA can affect the absorption of other AAs– Certain AAs may utilize the same system for transport/absorption

• High levels of one AA can inhibit the absorption of other AAs dependent on the same system

– In chicks, excessive doses of lysine caused increased plasma lysine levels while plasma arginine levels decreased (and vice versa)

– Branched-chain AAs leucine, isoleucine, and valine are often ingested in a naturally occuring 2:1:1 ratio to ensure that none of the 3 are depleted by the others

Large single doses of AAs may be poorly absorbed and lead to diarrhea

Bröer S. Physiol Rev. 2008;88(1):249-286.Jones JD, et al. J Nutr. 1967;93(1):103-116.

40

Page 41: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Potential Risks of AA Supplementation (2 of 2)

Free AAs in food products often create bitter flavors– AA pills don’t have this issue, but dose of AA in pills is often small

In 1989, there were many cases of a painful and sometimes fatal disease (eosinophilia myalgia syndrome) linked to tryptophan supplements– Likely due to contamination

• Always good to know source and quality of nutritional supplements

Adibi SA. J Clin Invest. 1971;50(11):2266-2275.Ney KH. Bitterness of Peptides: Amino Acid Composition and Chain Length in Food Taste Chemistry. Washington, DC; American Chemical Society; 1979. p 149-173.Philen RM, et al. Am J Epidemiol. 1993;138(3):154-159.

41

Page 42: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Sports Nutrition Claims for AAs and Derivatives (1 of 4)

The scientific basis for the support of these claims can be found in the ergogenic aids modules on the EAS Academy website

Arginine and citrulline (precursor of arginine)– Increased nitric oxide for improved blood flow to muscle – Improved clearance of ammonia via urea cycle– Improved exercise performance – Citrulline decreases muscle soreness

Arginine, ornithine, lysine– Stimulation of growth hormone release

Cynober L. J Nutr. 2007;137:1646S-1649S.Chromiak JA and Antonio J. Nutrition. 2002;18(7-8):657-661.

42

Page 43: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Sports Nutrition Claims for AAs and Derivatives (2 of 4) Beta-alanine

– Forms the dipeptide carnosine when bonded to histidine• Buffers muscle pH to improve endurance

– Not actually incorporated into structural body proteins like alanine

Creatine– Increased anaerobic performance – Increased strength and muscle mass

Glutamine and its precursor alpha-ketoglutarate (AKG)– Boost immune function– Fuel for intestinal cells– Transport of nitrogen groups in plasma– Possible anabolic effects

Artioli GG, et al. Med Sci Sports Exerc. 2010;42(6):1162-1173.Juhn M. Sports Med. 2003;33(12):921-939.Newsholme P, et al. Braz J Med Biol Res. 2003;36(2):153-163.

43

Page 44: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Sports Nutrition Claims for AAs and Derivatives (3 of 4)

Leucine/Branched-Chain AAs (BCAAs)– Leucine stimulates muscle protein synthesis– BCAAs can serve as an energy source during activity – Prevention of fatigue– Reducing muscle soreness– BCAAs are popular as a supplement among athletes– BCAA doses of ~2 to 60 g/day have been used in research

studies– Doses of ≥ 30 g/day are impractically high compared to

amounts found in typical commercial supplements• 1 tablet typically contains 100 mg leucine, 100 mg valine, and

50 mg isoleucine

Gleeson M. J Nutr. 2005;135:1591S-1595S. Negro M, et al. J Sports Med Phys Fitness. 2008;48(3):347-351.Gijsman HJ, et al. Psychopharmacology (Berl). 2002;160(2):192-197. Koba T, et al. J Sports Med Phys Fitness. 2007;47(3):316-322.Coombes JS and McNaughton LR. J Sports Med Phys Fitness. 2000;40(3):240-246. Gualano AB, et al. J Sports Med Phys Fitness. 2011;51(1):82-88.

44

Page 45: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Sports Nutrition Claims for AAs and Derivatives (4 of 4)

Leucine breakdown products – Beta-hydroxy-beta-methylbutyrate (HMB) and

alpha-ketoisocaproate (alpha-KIC)• Decreased muscle protein breakdown • Increased muscle mass and strength

Taurine– Antioxidant effects– Improved heart functions– Insulin actions

Zanchi NE, et al. Amino Acids. 2011;40(4):1015-1025. Franconi F, et al. Curr Opin Clin Nutr Metab Care. 2006;9(1):32-36. Schaffer SW, et al. J Biomed Sci. 2010;17(suppl 1):S2.

45

Page 46: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Example: Quantity of Amino Acids in Food

1 cup of low fat cottage cheese (2%) has 31 g protein– This translates to 31,000 mg of amino acids– The branched-chain amino acid content of the cottage cheese (leucine +

isoleucine + valine) is 6,942 mg (6.9 g) Whole protein sources are best (may be less expensive)

46

Pennington JAT, et al. Bowes and Church’s Food Values of Portions Commonly Used. 17th ed. Philadelphia PA: Lippincott, Williams, & Wilkins; 1998. p 30 and 318.

Page 47: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Is Protein Used for Energy in Athletes?

In general, the body prefers to spare its endogenous protein stores (skeletal muscle, etc) from oxidation for energy production– Only in conditions of starvation, extreme energy requirements (eg,

ultramarathons), or wasting conditions such as cancer will the body break down muscle for energy

Consider fight or flight response– Difficult to avoid danger (eg, run from a bear) or obtain food (eg, catch

a fish) if muscle protein is sacrificed as fuel for energy

However, exogenous (dietary) protein is commonly used as fuel under certain conditions (eg, during endurance exercise, which can deplete carbohydrate stores in muscle)

Berg JM, et al. Biochemistry. 5th ed. New York, NY: WH Freeman & Co.; 2002.Wagenmakers AJ. Exerc Sport Sci Rev. 1998;26:287-314.

47

Page 48: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Is Protein Used for Energy in Athletes? (Cont’d) 6 AAs are metabolized in resting muscle (leucine, isoleucine,

valine, asparagine, glutamate, and aspartate)– Leucine and isoleucine can be converted to acetyl CoA, which can

yield energy for muscle through the TCA cycle– Carbon skeletons from the other AAs can enter the TCA cycle and

have various outcomes• Energy production by running through TCA cycle• From pyruvate, muscle can generate alanine, which is released into the

circulation and can be taken up by liver– Liver can utilize alanine to make glucose (via gluconeogenesis), which can be

released back into the circulation or stored as liver glycogen• Alternatively, muscle can generate glutamine, which is released into the

circulation and can be taken up by the small intestine and other rapidly dividing tissues for energy

Abbreviation: TCA, tricarboxylic acid cycle.

Berg JM, et al. Biochemistry. 5th ed. New York, NY: WH Freeman & Co.; 2002.Wagenmakers AJ. Exerc Sport Sci Rev. 1998;26:287-314.

48

Page 49: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Timing of Ingestion and Macronutrient Content of Meals There is increasing agreement that immediate post-exercise ingestion of

protein and/or carbohydrate has beneficial effects on– Muscle glycogen replenishment (particularly carbohydrate, protein may

provide additional benefit)– Muscle protein synthesis (particularly protein, carbohydrate may have

permissive effect due to insulin release)

A combination of both protein and carbohydrate seems to work better than either carbohydrate or protein alone– Proportions of carbohydrate/protein vary based on individual needs

• Endurance athletes prioritize carbohydrate intake for glycogen replenishment

• Bodybuilders prioritize protein intake for muscle growth

Zawadzki KM, et al. J Appl Physiol. 1992;72(5):1854-1859.Ivy JL, et al. J Appl Physiol. 2002;93(4):1337-1344.

49

Page 50: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein and Glycogen Replenishment Rapid post-exercise consumption of carbohydrate and protein in a

3:1 or 2:1 ratio appears to replenish muscle glycogen to a greater extent than carbohydrate alone– Unclear if this effect enables better performance in a subsequent

bout of exercise within ~6 hours

Protein supplementation may exert a stronger replenishment effect when lower post-exercise carbohydrate is provided (<1.0 g/kg/hr)– A lesser effect may occur when adequate carbohydrate is provided

(>1.2 g/kg/hr)

Ivy JL, et al. J Appl Physiol. 2002;93(4):1337-1344. Berardi et al. Med Sci Sports Exerc. 2006;38(6):1106-1113.

Ferguson-Stegall L, et al. J Strength Cond Res. 2011;25(5):1210-1224. Beelen M,et al. Int J Sport Nutr Exerc Metab. 2010;20(6):515-532.

Preoccupation with protein intake may be at expense of adequate carbohydrate consumption, resulting in poor glycogen recovery

and potential for subsequent performance decrements

50

Page 51: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Putting a Meal Plan Together Example: 70-kg athlete requiring 4,000 kcal/day exercising 120 min/day,

4 to 6 times/week Macronutrient Target Recommendations

– Grams/kg body weight/day• Carbohydrate 7-10 g/kg (490-700 g/day)• Protein 1.5-2.0 g/kg (105-140 g/day)• Fat Typically use percentage of energy

– Percentage of energy• Carbohydrate 55-65% of energy (550-650 g/day)• Protein 10-15% of energy (100-150 g/day)• Fat 20-30% of energy (88-133 g/day)

Target recommendations for this athlete• Carbohydrate 600 g/day (60% of energy)• Protein 130 g/day (13% of energy)• Fat 120 g/day (27% of energy)

51

Page 52: Protein and Amino Acids in Sports Nutrition Advanced Level 1

A Potential Distribution of Macronutrients Over the Course of 6 Meals/Day

Meal Time Carbohydrate, g Protein, g Fat, g

Breakfast 7:00 AM 90 15 15

Mid-morning snack 10:00 AM 25 10 5

Lunch Noon 75 20 20

Pre-exercise meal 1:30 - 2:00 PM 90 10 5

During exercise 3:00 - 5:00 PM 100 0 0

Post-exercise meal 5:00 PM 75 30 25

Dinner 6:30 PM 120 30 35

Evening snack 9:00 PM 25 15 15

TOTALS 600 130 120

52

Page 53: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Protein Content of Various Foods

Pennington JAT, et al. Bowes and Church’s Food Values of Portions Commonly Used. 17th ed. Philadelphia, PA: Lipppincott Williams & Wilkins; 1998.

Protein Content, g1 egg, 2 egg whites, or ¼ cup egg substitute 6-71 cup of milk 8-10¼ cup cottage cheese 71 cup of yogurt 81 oz. of chicken, fish, pork, or beefa 71 oz. of cheese (except cream cheese) 71 slice of bread or ½ bagel 31 cup of cereal 3-62 Tablespoons peanut butter 71/2 to 2/3 cup of dried beans or lentils 81 cup miso 84 oz. raw, firm tofu 9½ cup peas or corn 3½ cup of non-starchy vegetables 28 oz. soy milk 5-6Protein drinks and powders/serving 10-45a3-ounce portion (21 g protein) is the size of the deck of cards.

53

Page 54: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Summary

Adequate protein intake is critical for athletic performance and good health

For most athletes, protein intakes of 1.5 to 1.8 g/kg/day (0.68-0.81 g/lb/day) will meet protein requirements

High quality protein sources (eg, dairy products, meats, fish, chicken, soy, eggs) should be included in the diet

Eating a combination of carbohydrate and protein soon after exercise can help with muscle recovery and building

54

Page 55: Protein and Amino Acids in Sports Nutrition Advanced Level 1

Summary (Cont’d)

Research is emerging on potential benefits of certain amino acids or amino acid metabolites for athletes– First rule is to get appropriate amount of high quality protein from diet

There are several disadvantages of excessive protein intake (ie, well above 2 g/kg/day)– In general, no additional benefit for strength or muscle building– Increased water loss from the body due to disposal of excess nitrogen

in urine, which may lead to dehydration– May replace carbohydrates and other vital nutrients for athletic

performance and good health

55