prospectsfor deteconofgravitaonalwavetransients)...

36
Prospects for Detec,on of Gravita,onalWave Transients with Advanced LIGO and Advanced Virgo Patrick J. SuDon Cardiff University for the LIGO Scien0fic Collabora0on and the Virgo Collabora0on LIGOG1500134v1

Upload: others

Post on 25-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Prospects  for  Detec,on  of  Gravita,onal-‐Wave  Transients  with  Advanced  LIGO  and  Advanced  Virgo  

    Patrick  J.  SuDon  Cardiff  University  

    for  the  LIGO  Scien0fic  Collabora0on  and  the  Virgo  Collabora0on  

    LIGO-‐G1500134-‐v1  

  • Outline  

    •  Possible  sources  of  GW  transients  •  Advanced  GW  detector  0melines  •  Es0mated  detec0on  rates  (neutron  star  binaries)  •  Sky  localisa0on  capabili0es  for  EM  followups  •  Alert  procedure  &  plans  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   2  

  • Gravita0onal  Waves  

     •  Tidal  distor0ons  in  space  

    produced  by  0me-‐varying  quadrupole  moments  

    •  Ideal  source:  rota0ng  dumbells.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   3  

    Credit:  John  Rowe  Anima0on    

  • Neutron  Star  &  Black  Hole  Binaries  

    •  Coalescing  NS-‐NS,  NS-‐BH,  BH-‐BH  binaries  emit  GWs  in  10-‐1000  Hz  range  in  the  last  few  minutes  before  merger.  –  NS-‐NS  rates:  10-‐8  y-‐1  Mpc-‐3  to  

    10-‐5  y-‐1  Mpc-‐3  –  O(1)/yr  within  100  Mpc  –  Most  promising  source  for  

    LIGO  /  Virgo.  –  Short  GRB  associa0on;  e.g.  

    Tanvir  et  al.  2013,  Berger  et  al.  2013  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   4  

    Credit:  John  Rowe  Anima0on    

    J0737-‐3039  binary:  John  Rowe  Anima0on    

  • Galac0c  core-‐collapse  supernovae  

    •  Rate:  1/century  •  GW  emission  uncertain    

    –  Core  bounce:  1046  erg  (kpc  range),  robust  [eg  OO  CQG26  063001]  

    –  E.g.  acous0c  mechanism:  1050  erg  (Mpc  range),  specula0ve  [Burrows  et  al.  ApJ640  878]  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   5  

  • Sof  Gama  Repeaters  

    •  Rate:  1/decade    •  EM  emission:  1046  erg  •  Energy  available  for  GW  emission:  

    –  Crust-‐cracking  <  1047  –  1050  erg  –  Magne0c  rearrangement  <  1045  –  1048  erg  –  Ioka,  MNRAS  327,  639,  Corsi  &  Owen,  

    1102.3421  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   6  

  • Long  GRBs  

    •  Rate:  1/day/universe  •  Collapsars  /  magnetar  forma0on.  •  GW  emission  specula0ve,  possibly  

    strong  –  Davies  et  al.  2002;  Fryer  et  al.  2002;  

    Shibata  et  al.  2003;  Kobayashi  &  Meszaros  2003;  Piro  &  Pfahl  2007;  Corsi  &  Meszaros  2009;  Romero  et  al.  2010.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   7  

    LIGO/Virgo  conduct  dedicated  searches  for  these  &  other  GW  transients  (both  with  &  without  EM  counterparts).  

  • 13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   8  

    Advanced  LIGO  Schema0c  Harry,  CQG  27  084006  (2010)   larger,  

    beOer  mirrors  

    extra  op0cal  cavity  

  • 13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   9  

    LIGO-‐Livingston  (USA)  

    Virgo  (Italy)   KAGRA  (Japan)  

    LIGO-‐Hanford  (USA)  

  • 13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   10  

    LIGO-‐Livingston  (USA)  

    KAGRA:  first  observing  2018  

    Virgo  (Italy)   KAGRA  (Japan)  

    LIGO-‐Hanford  (USA)  

    LIGO-‐India:  proposal  to  install  LIGO  detector  in  India  seeking                                              approval  from  Indian  cabinet.  First  observing  c.2022+  

    Virgo:  installa,on  completes  late                  2015,  first  observing  2016  

    LIGO:  installa,on  complete!  First              observing  late  this  year  (Sept?)  

  • Advanced  LIGO  Evolu0on  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   11  

    Aasi  et  al.    1304.0670  

    NS-‐NS  average  range  

    maximum  range:  x2      

    BH-‐NS  binary:  x2  

  • Advanced  Virgo  Evolu0on  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   12  

    Aasi  et  al.  1304.0670  

  • Plausible  LIGO-‐Virgo  Observing  Schedule  

    Assumes  NS-‐NS  rate  between  10-‐8  Mpc-‐3  y-‐1  and  10-‐5  Mpc-‐3y-‐1.  Ranges  double  for  1.4  M¤  –  10  M¤  NS-‐BH  binary.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   13  

    Figure 5: Network sensitivity and localization accuracy for face-on BNS systems with advanceddetector networks. The ellipses show 90% confidence localization areas, and the red crosses showregions of the sky where the signal would not be confidently detected. The top two plots show thelocalization expected for a BNS system at 80 Mpc by the HLV network in the 2016–17 run (left)and 2017–18 run (right). The bottom two plots show the localization expected for a BNS systemat 160 Mpc by the HLV network in the 2019+ run (left) and by the HILV network in 2022+ withall detectors at final design sensitivity (right). The inclusion of a fourth site in India provides goodlocalization over the whole sky.

    Estimated Number % BNS LocalizedRun BNS Range (Mpc) of BNS within

    Epoch Duration LIGO Virgo Detections 5 deg2 20 deg2

    2015 3 months 40 – 80 – 0.0004 – 3 – –2016–17 6 months 80 – 120 20 – 60 0.006 – 20 2 5 – 122017–18 9 months 120 – 170 60 – 85 0.04 – 100 1 – 2 10 – 122019+ (per year) 200 65 – 130 0.2 – 200 3 – 8 8 – 28

    2022+ (India) (per year) 200 130 0.4 – 400 17 48

    16

    Aasi  et  al.  1304.0670  

    *  

  • Sky  localiza0on  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   14  

    network    baselines  

    Fairhurst,  CQG  28  105021  (2011)  

    detector  bandwidth  

    �⇥ & 1�✓

    100 Hz�f

    ◆ ✓10 ms

    d

    •  Rough  es0mate:  0me-‐of-‐arrival  triangula0on  between  detectors.  

    •  Near  the  detec0on  threshold:  

  • Sky  localiza0on  

    •  Refined  analysis  using  amplitude  phasing  between  sites:  x  4  smaller  area.      

               e.g.:  Grover  et  al.,  1310.7454  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   15  

    �⇥ & 1�✓

    100 Hz�f

    ◆ ✓10 ms

    d

    •  Rough  es0mate:  0me-‐of-‐arrival  triangula0on  between  detectors.  

    •  Near  the  detec0on  threshold:  

  • Two-‐detectors:  2015  run  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   16  

    Example  sky  posterior  for  one  simulated  NS-‐NS  merger  

       

    Berry  et  al.,  1411.6934  

  • Sky  localiza0on  c.2016-‐17  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   17  

    Schema0c  90%  error  box  areas  for  NS-‐NS  binaries.  

    Aasi  et  al.  1304.0670  

    null  sensi0vity  

  • Sky  localiza0on  c.2019+  (design)  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   18  

    Aasi  et  al.  1304.0670  

    Sample  90%  error  box  areas  for  NS-‐NS  binaries.  

  • Sky  localiza0on  c.2022+  (LIGO-‐India)  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   19  

    Aasi  et  al.  1304.0670  

    LIGO-‐KAGRA  network  qualita0vely  similar.  (Fairhurst  2011)    

  • Plausible  Observing  Schedule  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   20  

    Aasi  et  al.  1304.0670  

    Estimated Number % BNS LocalizedRun of BNS within

    Epoch Duration Detections 5 deg2 20 deg2

    2015 3 months 0.0004 – 3 – –2016–17 6 months 0.006 – 20 2 5 – 122017–18 9 months 0.04 – 100 1 – 2 10 – 122019+ (per year) 0.2 – 200 3 – 8 8 – 28

    2022+ (India) (per year) 0.4 – 400 17 48

    Estimated Number % BNS LocalizedRun BNS Range (Mpc) of BNS within

    Epoch Duration LIGO Virgo Detections 5 deg2 20 deg2

    2015 3 months 40 – 80 – 0.0004 – 3 – –2016–17 6 months 80 – 120 20 – 60 0.006 – 20 2 5 – 122017–18 9 months 120 – 170 60 – 85 0.04 – 100 1 – 2 10 – 122019+ (per year) 200 65 – 130 0.2 – 200 3 – 8 8 – 28

    2022+ (India) (per year) 200 130 0.4 – 400 17 48

    5 ConclusionsWe have presented a possible observing scenario for the Advanced LIGO and Advanced Virgonetwork of gravitational wave detectors, with emphasis on the expected sensitivities and sky local-ization accuracies. This network is expected to begin operations in 2015. Unless the most optimisticastrophysical rates hold, two or more detectors with an average range of at least 100 Mpc and witha run of several months will be required for detection.

    Electromagnetic followup of GW candidates may help confirm GW candidates that would notbe confidently identified from GW observations alone. However, such follow-ups would need todeal with large position uncertainties, with areas of many tens to thousands of square degrees.This is likely to remain the situation until late in the decade. Optimizing the EM follow-up andsource identification is an outstanding research topic. Triggering of focused searches in GW databy EM-detected events can also help in recovering otherwise hidden GW signals.

    Networks with at least 2 detectors with sensitivities of the order of 200Mpc are expected to yielddetections with a year of observation based purely on GW data even under pessimistic predictionsof signal rates. Sky localization will continue to be poor until a third detector reaches a sensitivitywithin a factor of ⇠ 2 of the others and with a broad frequency bandwidth. With a four-sitedetector network at final design sensitivity, we may expect a significant fraction of GW signals tobe localized to as well as a few square degrees by GW observations alone.

    The purpose of this document is to provide information to the astronomy community to facil-itate planning for multi-messenger astronomy with advanced gravitational-wave detectors. Whilethe scenarios described here are our best current projections, they will likely evolve as detectorinstallation and commissioning progresses. We will therefore update this document regularly.

    The authors gratefully acknowledge the support of the United States National Science Foun-dation for the construction and operation of the LIGO Laboratory, the Science and TechnologyFacilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersach-sen/Germany for support of the construction and operation of the GEO600 detector, and the ItalianIstituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique

    17

    Challenging!    But  see,  e.g.,  Singer  et  al.,  ApJL  776  L34    “Discovery  and  redshiJ  of  an  opKcal  aJerglow  in  71  square  degrees:  iPTF13BXL  and  GRB  130702A”  

    (90%  confidence  region)  

  • GW  Alerts  

    Advanced  LIGO  first  science  run:  late  2015.  •  Data  will  be  analysed  for  BNS  and  other  transient  signals  with  few-‐

    minute  latency  &  prompt  GW  alerts  will  be  released    [Abadie  et  al.  1109.3498].  

     Phase  1  (first  four  detec0ons):    •  Private:  exchange  of  GW  candidates  with  EM  partners  will  be  

    governed  by  memoranda  of  understanding  (MOUs).  –  Currently  about  60  partners.  –  Next  MOU  cycle  deadline:  Feb  15  (Sunday).  –  Workshop  for  MOU  partners:  April  23,  Cascina.  

    Phase  2  (afer  first  4  detec0ons):    •  Public  release  of  GW  candidates.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   21  

  • Alert  Mechanics  

    •  SKll  under  development  –  collaborator  input  welcomed!  •  Minutes-‐scale  latency  analysis  of  data  for  transients  (binaries,  

    generic  bursts).  –  Also  hours-‐scale  dedicated  follow-‐ups  of  GRBs,  SNEWS,  and  other  

    “external  triggers”.  •  Candidate  GW  event  released  afer  basic  vesng.  Rate:  TBD.  

    –  VOEvent  format,  distributed  via  private  GCN.  –  Updated  alerts  as  refined  sky  posi0on  informa0on  or  other  

    informa0on  becomes  available.  –  Observing  partners  able  to  annotate  GW  database  with  informa0on  

    about  follow-‐up  observa0ons  and  possible  counterparts.  •  Tools  s0ll  under  development;  aim  to  exercise  in  next  

    engineering  run  (April/May).  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   22  

  • Example  Tool:  “Skymap  Viewer”  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   23  

  • Summary  

    •  2015  –  2020  will  be  the  early  years  of  GW  astronomy  

    •  Uncertainty  in  source  rates  mean  first  detec0ons  could  be  early  or  late  in  this  period.  

    •  GW  source  localisa0on  depends  strongly  on  the  number  and  rela0ve  sensi0vity  of  detectors,  but  always  >  several  sq  deg.  –  Need  both  wide  FOV  and  deep  follow-‐up  observa0ons  across  the  EM  spectrum:  high  energy  (GRB  &  X-‐ray  satellites),  UV/visible/IR,  radio.    

    –  EM  alerts  also  need  for  triggering  deep  GW  searches  (short/long/low-‐luminosity  GRBs,  supernovae,  magnetar  flares,  etc.)  

    –  Strong  GW  –  astronomer  collabora0ons  to  tackle  needle-‐in-‐a-‐haystack  problem.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   24  

  • Supplemental  Slides  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   25  

  • Sky  localiza0on  

    •  Refined  analysis  using  amplitude  phasing  between  sites:  x  4  smaller  area.      

               e.g.:  Grover  et  al.,  1310.7454  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   26  

    network    baselines  

    Fairhurst,  CQG  28  105021  (2011)  

    detector  bandwidth  

    HV

    HL

    LVV

    S

    S

    L

    H

    LV

    HL

    HV�⇥ & 1�

    ✓100 Hz

    �f

    ◆ ✓10 ms

    d

    •  Rough  es0mate:  0me-‐of-‐arrival  triangula0on  between  detectors.  

    •  Near  the  detec0on  threshold:  

  • GWs  as  Astrophysical  Probes  

    •  GWs  trace  the  bulk  mo0on  of  their  source  –  not  scaOered  /  absorbed  –  non-‐imaging  (wavelength  larger  than  source)  

    •  GW  detectors  are  all-‐sky,  low  bandwidth.  –  archival  searches:  easy.  –  source  localiza0on:  hard.  

    •  Complementary  to  proper0es  of  photons.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   27  

  • 13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   28  

    LIGO-‐  India  

    LIGO-‐Hanford  (USA)   Virgo  

    (Italy)  KAGRA  (Japan)  

    LIGO-‐Livingston  (USA)  

    The  Global  Network  c.  2022  

  • •  PaOern  of  chirp  tells  us  chirp  mass  (≈0.01%)              

    •  May  measure  BH  spin.  •  Constrain  beaming  angle  

    from  frac0on  of  GW  detec0ons  coincident  with  SGRBs.  

    What  will  advanced  detectors  tell  us?  

    •  A  characteris0c  “chirp”  GW  coincident  with  short  GRB:  

       •  Smoking  gun  proof  for  a  

    binary  progenitor!  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)  

    e.g.,  Finn  &  Chernoff,  PRD    47,  2198  (1993)  

    t

    hHtL

    J  Read  /  YITP  

    29  

  • GWs  +  GRBs  =  cosmology  •  Binaries  are  “standard  

    sirens”  (candles)  –  GW  amplitude  gives  luminosity  distance  (≈10%)  if  GRB  observed.  

    •  Side-‐step  cosmological  distance  ladder.  –  Measure  H0  with  to  ~5%  with  15  GW-‐GRB  detec0ons.  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)  

    Schutz,  B.  F.  1986,  Nature,  323,  310  Nissanke  et  al.,  ApJ  725  496–514  (2010)  

    inclina0on-‐distance  degeneracy  from  Nissanke  et  al.  (2010)  

    30  

  • Case  study:  GW  100916,  “The  Big  Dog”  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)  

    Sky  map  reconstructed  by  online  processor  (>130  sq  deg)  

    Binary  signal  detected  in  LIGO-‐Virgo  network  on  16  Sept  2010    

    31  

  • The  Big  Dog:  EM  Follow-‐up  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)  

    Partner  telescopes  collected  images  from                    t0  +  44  min  to  t0  +  30  day.      

    No  significant  EM  transients  seen  in  preliminary  analysis.      

    March  2011:  Big  Dog  revealed  to  be  a  simulated  GW  added  to  the  data  as  a  test.    

    hOp://ligo.org/science/GW100916/  

    nearby    galaxies  

    TAROT,  ROTSE  

    SwiJ  SkyMapper  

    Zadko  

    Zadko  

    32  

  • Current  EM  Partners  

    13  Feb  2015   SuOon:  RAS  Transients  Mtg  (London)   33  

  • GW  Bursts:  Frequency  &  Dura0on  

    05  June  2013   SuOon:  GW  Bursts  (YKIS  2013)   34  

    C.  D.  OD,  LIGO-‐G1000171  

  • GW  Burst  Sources  &  Science  Payoff  

    05  June  2013   SuOon:  GW  Bursts  (YKIS  2013)   35  

    Core-‐Collapse  Supernovae  

    SGRs/AXPs  

    NS/NS,  NS/BH  merger  

    String  Cusps  

    Pulsar  Glitches  

    Long  GRBs  

    Short  GRBs  

    NS  Collapse  

    Unexpected  

    nuclear  EOS  /    par0cle  physics  

    NS  Structure  

    Structure/Dynamics    of  Space0me  

    GRB  Central  Engine(s)  

    Core-‐Collapse  Supernova  Mechanism(s)  

    Exo0c  Theories  

    SGR  Mechanism  

    Pulsar  Glitch  Mechanism  

    Unknown  Unknowns  

    C.  D.  OD,  LIGO-‐G1000171  

  • Burst  Range  (SNR≥20)  

    05  June  2013   SuOon:  GW  Bursts  (YKIS  2013)   36  

    Reff '

    G2⇡2c3

    EGWS(f0)f 20 ⇢

    2det

    !1/2(1)

    15 / 20 Sutton network analysis & GWBs

    EGW=10-‐8  Mo  

    EGW  =  10-‐2  Mo  

    PS,  1304.0210  

    AdV  

    H1  (2010)  

    aLIGO