propositional logic 05-31-2016 - university of maryland · outline 1 syntax 2 semantics truth...

46
Propositional Logic Jason Filippou CMSC250 @ UMCP 05-31-2016 Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 1 / 38

Upload: others

Post on 11-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Propositional Logic

Jason Filippou

CMSC250 @ UMCP

05-31-2016

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 1 / 38

Page 2: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Outline

1 Syntax

2 SemanticsTruth TablesSimplifying expressions

3 InferenceValid reasoningBasic rules of inference

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 2 / 38

Page 3: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Propositional Logic: Overview

Propositional logic is the most basic kind of Logic we will examine,and arguably the most basic kind of Logic there is.

It uses symbols that evaluate to either True or False,combinations of those symbols (which we call compoundstatements), as well as a set of equivalences and inferencerules.

Its simplicity allows it to be implemented in computer hardware!

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 3 / 38

Page 4: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Propositional Logic: Overview

We will study Propositional (and “Predicate” logic) in three(unbalanced) steps:

Syntax.Semantics.Inference (or “Proof theory”).

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 4 / 38

Page 5: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Syntax

Syntax

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 5 / 38

Page 6: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Syntax

Syntax

Syntax in Propositional Logic is very easy to grasp.

Components:The (self-explanatory) constant symbols True and False.A pre-defined vocabulary of propositional symbols which we usuallydenote P. Those “map” to either True or False.

Often-used symbols: p, q, r . . .

The negation operator ∼, applied on propositional symbols in P.Examples: ∼p (“not” p), ∼∼p (“not not p”).

The binary operators of conjunction (∧) and disjunction (∨).Examples: p ∧ q, p ∨ ∼q, q ∧ q.

The left and right parentheses ((,)), used to group terms forprioritization of execution or readability.

Examples: (p), (((((. . . (p) . . . ))))), (p ∧ q) ∨ z, p ∧ (q ∨ z).

The binary connectives of implication (“if-then”) (⇒), bi-conditional(“if and only if”, commonly abbrv. iff)(⇔) and logical equivalence:≡.

Examples: p⇒ r, p⇔ (q ∧ ∼r), p ∧ p ≡ p, (p ∧ q) ∨ (p ∧ ∼q) ≡ p.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 6 / 38

Page 7: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Syntax

Recap

Syntax for Propositional Logic consists of:{True, False,P,∼,∧,∨, (, ),⇒,⇔,≡}.So what do all of these symbols mean?

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 7 / 38

Page 8: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics

Semantics

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 8 / 38

Page 9: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics

Constants / Propositional Symbols

True and False should be self-explanatory, intuitive symbols.

Without agreement on what they mean, we can go no further.Think about them like the notions of a point and a line inEuclidean Geometry.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 9 / 38

Page 10: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics

Propositional Symbols and Interpretation

Think of a Propositional Symbol like a binary variable withdomain True, False.

Anything that can be either true or false in our world can bemodelled by such a symbol.

E.g the symbol rain is True if it’s raining today, False otherwise.

Probabilities?

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 10 / 38

Page 11: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Truth Tables

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 11 / 38

Page 12: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Negation Operator

Beginning from the definitions of our truth assignments forconstants and propositional symbols, we can assign truth to everycompound statement we can build with our syntax.

Basic instrument for doing this: Truth Tables.

E.g negation operator truth table:

p ∼p

False True

True False

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 12 / 38

Page 13: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Conjunction / Disjunction

What would the truth table for conjunction and disjunction be?

p q p ∧ q p ∨ q

F F F F

F T F T

T F F T

T T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 13 / 38

Page 14: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Conjunction / Disjunction

What would the truth table for conjunction and disjunction be?

p q p ∧ q p ∨ q

F F F F

F T F T

T F F T

T T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 13 / 38

Page 15: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Binary connectives

Implication:

p q p⇒ q

F F T

F T T

T F F

T T T

Bi-conditional:

p q p⇔ q

F F T

F T F

T F F

T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 14 / 38

Page 16: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Binary connectives

Implication:

p q p⇒ q

F F T

F T T

T F F

T T T

Bi-conditional:

p q p⇔ q

F F T

F T F

T F F

T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 14 / 38

Page 17: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Binary connectives

Implication:

p q p⇒ q

F F T

F T T

T F F

T T T

Bi-conditional:

p q p⇔ q

F F T

F T F

T F F

T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 14 / 38

Page 18: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Binary connectives

Implication:

p q p⇒ q

F F T

F T T

T F F

T T T

Bi-conditional:

p q p⇔ q

F F T

F T F

T F F

T T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 14 / 38

Page 19: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Truth Tables

Natural language examples

Let’s convert the following natural language statements topropositional logic:

1 It’s rainy and gloomy.

2 I will pass 250 if I study.

3 I will pass 250 only if I study.

4 THOU SHALT NOT PASS.

5 All work and no play makes Jack a dull boy.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 15 / 38

Page 20: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Simplifying expressions

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 16 / 38

Page 21: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Take 3

Do the truth tables for ∼(p ∧ q) and ∼p ∨ ∼q.

What do you observe?

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 17 / 38

Page 22: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

De Morgan’s Laws

For every p, q ∈ P, we have:∼(p ∧ q) ≡ ∼p ∨ ∼q∼(p ∨ q) ≡ ∼p ∧ ∼q

Fundamental result first observed by Augustus De Morgan.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 18 / 38

Page 23: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Other logical Equivalences

Convince yourselves about the following:∼p ∨ q ≡ p⇒ qp⇒ q ≡ ∼q ⇒ ∼p (contrapositive)

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 19 / 38

Page 24: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Tautologies / Contradictions

Tautology: A logical statement that is always True , regardlessof the truth values of the variables in it.

Common notation (also used in Epp): t.

E.g: p ∨ ∼p, p ∨ T

Contradiction: A logical statement that is always False ,regardless of the truth values of the variables in it.

Common notation (also used in Epp): c.

E.g: p ∧ ∼p, p ∧ F

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 20 / 38

Page 25: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Logical Equivalence cheat sheet

For (possibly compound) statements p, q, r, tautological statement tand contradicting statement c:

Commutativity p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ pAssociativity of binary op-erators

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributivity of binary op-erators

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Identity laws p ∧ t ≡ p p ∨ c ≡ pNegation laws p ∨ ∼p ≡ t p ∧ ∼p ≡ cDouble negation ∼(∼p) ≡ pIdempotence p ∧ p ≡ p p ∨ p ≡ pDe Morgan’s axioms ∼(p ∧ q) ≡ ∼p ∨ ∼q ∼(p ∨ q) ≡ ∼p ∧ ∼qUniversal bound laws p ∨ t ≡ t p ∧ c ≡ cAbsorption laws p ∨ (p ∧ q) ≡ p p ∧ (p ∨ q) ≡ pNegations of contradictions/ tautologies

∼c ≡ t ∼t ≡ c

Those will be posted on our website as a reference.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 21 / 38

Page 26: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Semantics Simplifying expressions

Practice

Using the equivalences we just established, simplify the followingexpressions:

p ∧ (∼p ∨ q) ∨ (∼(∼(z ∨ ∼q)))(p ∧ r) ∨ ((p ∨ s) ∧ (p ∨ a))

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 22 / 38

Page 27: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference

Inference

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 23 / 38

Page 28: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Valid reasoning

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 24 / 38

Page 29: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

The role of inference

We’ve looked at syntax, or the vocabulary of propositional logic.

Semantics helped us combine the members of the vocabulary intosentences (compound statements) and the notion of equivalencehelped us find equivalent statements, as well as simplifyunnecessarily long sentences.

We haven’t talked about constructing new knowledge!

That’s where inference, (or proof theory in the context of logic)comes to play.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 25 / 38

Page 30: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Valid reasoning

All reasoning has to be valid.

Intuitively: the knowledge we infer has to obey the constraints ofthe world defined by the stuff we already know.

Formal definition later.

Examples:

All men are mortal. Socrates is a man. Therefore, Socrates ismortal.All men are mortal. Socrates is mortal. Therefore, Socrates is aman.All men are mortal. Socrates is not mortal. Therefore, Socrates isnot a man.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 26 / 38

Page 31: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Complete reasoning

The notion of “complete” reasoning is one that we won’t examinemuch, if at all, in 250.

Intuitively, if we have a rule (or a set of rules) that can produce allof the knowledge that logically follows from the stuff that wealready know, we have a complete reasoning system.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 27 / 38

Page 32: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Premises and conclusions

All reasoning systems consist of rules.

All rules consist of premises and conclusions.

We will write rules in the following manner:

Premise 1

Premise 2

. . .

P remise n

∴ Conclusion

Some authors prefer the form:

Premise 1, Premise 2, . . . , Premise n

Conclusion

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 28 / 38

Page 33: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Definition of validity

Split rule to premises and conclusions

Critical rows: The rows of a truth table where all premises areTrue .

The rule is valid if the conclusion is also True for all critical rows.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 29 / 38

Page 34: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Valid reasoning

Definition of validity

Valid rule

Premise 1

Premise 2

Premise n

Figure 1: A pictorial representation of valid reasoning.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 30 / 38

Page 35: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Basic rules of inference

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 31 / 38

Page 36: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Modus Ponens

The cornerstone of deductive reasoning.

Modus Ponensp

p⇒ q∴ q

Theorem (Validity of Modus Ponens)

Modus Ponens is a valid rule of reasoning.

Proof.

p q p⇒ q

F F TF T TT F FT T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 32 / 38

Page 37: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Modus Ponens

The cornerstone of deductive reasoning.

Modus Ponensp

p⇒ q∴ q

Theorem (Validity of Modus Ponens)

Modus Ponens is a valid rule of reasoning.

Proof.

p q p⇒ q

F F TF T TT F FT T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 32 / 38

Page 38: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Modus Ponens

The cornerstone of deductive reasoning.

Modus Ponensp

p⇒ q∴ q

Theorem (Validity of Modus Ponens)

Modus Ponens is a valid rule of reasoning.

Proof.

p q p⇒ q

F F TF T TT F FT T T

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 32 / 38

Page 39: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Modus Tollens

Modus Tollensp⇒ q∼q

∴ ∼p

Proof?

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 33 / 38

Page 40: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Modus Tollens

Modus Tollensp⇒ q∼q

∴ ∼p

Proof?

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 33 / 38

Page 41: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Other valid rules of inference

The following are mentioned on Epp (but there exist many more).

Disjunctive addition

p∴ p ∨ q

Conjunctive simplification

p ∧ qp, q

Disjunctive syllogism

p ∨ q∼q∴ p

Hypothetical syllogism

p⇒ qq ⇒ r∴ p⇒ r

Prove their validity as an exercise!

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 34 / 38

Page 42: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Valid inference rules cheat sheet

Modus Ponens Modus Tol-lens

Disjunctiveaddition

Conjunctiveaddition

p

p⇒ q

∴ q

∼q

p⇒ q

∴ ∼p

p

∴ p ∨ q

p, q

∴ p ∧ q

ConjunctiveSimplification

Disjunctivesyllogism

HypotheticalSyllogism

p ∧ q

∴ p, q

p ∨ q

∼p

∴ q

p⇒ q

q ⇒ r

∴ p⇒ r

Note that disjunctive syllogism is symmetric, i.e if ∼q is the premise, p is theconclusion.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 35 / 38

Page 43: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Take 5

Are the following inference rules valid?

Rule 1 Rule 2 Rule 3

p ∨ q

p⇒ r

q ⇒ r

∴ r

p⇒ q

q

∴ p

p⇒ q

∼p

∴ ∼q

YES: Division Into Cases NO: Converse Error NO: Inverse Error

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 36 / 38

Page 44: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Take 5

Are the following inference rules valid?

Rule 1 Rule 2 Rule 3

p ∨ q

p⇒ r

q ⇒ r

∴ r

p⇒ q

q

∴ p

p⇒ q

∼p

∴ ∼q

YES: Division Into Cases NO: Converse Error NO: Inverse Error

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 36 / 38

Page 45: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Difference with language

Background knowledge oftentimes blurs the distinctionbetween valid and invalid arguments.

Consider the following arguments:

If my pet ostrich could do 100meters in under 10 seconds, it

could participate in theOlympics.

If these tracks are Bigfoot’s,Bigfoot exists.

My pet ostrich can do 100 me-ters in under 10 seconds.

Bigfoot exists.

∴ My pet ostrich can partici-pate in the Olympics.

∴ These tracks are Bigfoot’s.

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 37 / 38

Page 46: Propositional Logic 05-31-2016 - University Of Maryland · Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference Valid reasoning Basic rules of inference Jason

Inference Basic rules of inference

Proof by contradiction

A very popular proof methodology, which we will be using a lot, isproof by contradiction.

Intuitively, we want to prove something, so we assume that itdoesn’t hold (i.e its converse holds), and we arrive at acontradiction.

Formally, the following rule is sound:

Proof by contradiction∼p⇒ c∴ p

Very important to convince yourselves that the rule is sound!

Jason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 38 / 38