property methods

Upload: manas-karnure

Post on 04-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Property methods

    1/26

    1

    Ref: Physical Property Methods and Models,Aspen Technology, Inc., 2006

  • 7/30/2019 Property methods

    2/26

    Property Methods

    A property method is a collection of property calculation routes.

    Thermodynamic properties:

    Phase equilibrium (VLE, LLE, VLLE) Enthalpy

    Entropy

    Gibbs free energy

    Molar volume

    Transport properties:

    Viscosity

    Thermal conductivity

    Diffusion coefficient

    Surface tension2

  • 7/30/2019 Property methods

    3/26

    Property Methods

    It is important to choose the right property method for an

    application to ensure the success of your calculation.

    The classes of property methods available are:

    IDEAL

    Liquid fugacity and K-value correlations

    Petroleum tuned equations of state

    Equations of state for high pressure hydrocarbon applications Flexible and predictive equations of state

    Liquid activity coefficients

    Electrolyte activity coefficients and correlations

    Solids processing

    Steam tables3

  • 7/30/2019 Property methods

    4/26

    EOS Method

    1- Vapor-Liquid Equilibrium

    At Equilibrium:

    Where

    Therefore

    l

    i

    v

    i ff

    ti

    l

    i

    l

    iti

    v

    i

    v

    i PxfPyf ,

    v

    i

    l

    i

    i

    ivl

    ix

    yk

    4

  • 7/30/2019 Property methods

    5/26

    EOS Method

    2- Liquid-Liquid Equilibrium

    At Equilibrium:

    Where

    Therefore

    21 l

    i

    l

    i ff

    t

    l

    i

    l

    i

    l

    it

    l

    i

    l

    i

    l

    i PxfPxf222111 ,

    1

    2

    2

    1

    21

    l

    i

    l

    i

    l

    i

    l

    ill

    ix

    xk

    5

  • 7/30/2019 Property methods

    6/26

    EOS Method

    3- Vapor-Liquid-Liquid Equilibrium

    At Equilibrium:

    Where

    Therefore

    v

    i

    l

    i

    l

    i fff 21

    ti

    v

    i

    v

    i

    t

    l

    i

    l

    i

    l

    it

    l

    i

    l

    i

    l

    i

    Pyf

    PxfPxf

    222111 ,

    v

    i

    l

    i

    l

    i

    ivl

    iv

    i

    l

    i

    l

    i

    ivl

    i

    x

    yk

    x

    yk

    2

    2

    2

    1

    1

    1 ,

    6

  • 7/30/2019 Property methods

    7/26

    EOS Method

    4- Fugacity Coefficient Formula

    mV

    nVTi

    i ZdVV

    RT

    n

    P

    RTj

    ln1

    ln

    ,,

    Cubic Equations of State in the Aspen Physical Property SystemRedlich-Kwong(-Soave) based Peng-Robinson basedRedlich-Kwong (RK) Standard Peng-Robinson(PENG-ROB)Standard Redlich-Kwong-Soave(RK-SOAVE ) Peng-Robinson(PR-BM)Redlich-Kwong-Soave (RKS-BM) Peng-Robinson-MHV2Redlich-Kwong-ASPEN(RK-ASPEN) Peng-Robinson-WSSchwartzentruber-RenonRedlich-Kwong-Soave-MHV2Predictive SRK (PSRK)

    Redlich-Kwong-Soave-WS 7

  • 7/30/2019 Property methods

    8/26

    EOS Method

    5- Standard RK-SOAVE

    )( bVV

    a

    bV

    RTP

    mmm

    Where

    i

    ii

    i j

    ijjiji bxbkaaxxa ,)1()(5.0

    ci

    cii

    ci

    ciii

    PRTb

    PTRa 08664.0,42747.0

    22

    225.0 176.057.148.0,)]1(1[)( iiiriii mTmT

    8

  • 7/30/2019 Property methods

    9/26

    EOS Method

    6- Standard PENG-ROB

    )()( bVbbVV

    a

    bV

    RTP

    mmmm

    Where

    i

    ii

    i j

    ijjiji bxbkaaxxa ,)1()(5.0

    ci

    cii

    ci

    ciii

    PRTb

    PTRa 07780.0,45724.0

    22

    225.0 26992.054226.137464.0,)]1(1[)( iiiriii mTmT

    9

  • 7/30/2019 Property methods

    10/26

    EOS Method

    7- Advantages and Disadvantages Equations of state can be used over wide ranges of

    temperature and pressure, including subcritical andsupercritical regions.

    Thermodynamic properties for both the vapor and liquidphases can be computed with a minimum amount ofcomponent data.

    For the best representation of non-ideal systems, you mustobtain binary interaction parameters from regression ofexperimental VLE data. Binary parameters for manycomponent pairs are available in the Aspen databanks.

    10

  • 7/30/2019 Property methods

    11/26

    EOS Method

    7- Advantages and Disadvantages Equations of state are suitable for modeling

    hydrocarbon systems with light gases such as CO2 , N2

    and H2 S .

    The assumptions in the simpler equations of state(SRK, PR, Lee-Kesler , ) are not capable of

    representing highly non-ideal chemical systems, suchas alcohol-water systems. Use the activity-coefficientoptions sets for these systems at low pressures. At highpressures, use the predictive equations of state.

    11

  • 7/30/2019 Property methods

    12/26

    Activity Coefficient Method

    1- Vapor-Liquid EquilibriumAt Equilibrium:

    Where

    Therefore

    F0r ideal gas and liquid

    l

    i

    v

    i ff

    liii

    liti

    vi

    vi fxfPyf

    *,,

    t

    v

    i

    l

    ii

    i

    ivl

    i

    P

    f

    x

    yk

    *,

    LawsRaoult

    P

    P

    x

    yk

    t

    i

    i

    ivl

    i

    v

    ii '1,1*

    12

  • 7/30/2019 Property methods

    13/26

    Activity Coefficient Method

    2- Liquid-Liquid Equilibrium

    At Equilibrium:

    Where

    Therefore

    21 l

    i

    l

    i ff

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i fxffxf*,*, 222111 ,

    1

    2

    2

    1

    21

    l

    i

    l

    i

    l

    i

    l

    ill

    ix

    xk

    13

  • 7/30/2019 Property methods

    14/26

    Activity Coefficient Method

    3- Vapor-Liquid-Liquid Equilibrium

    At Equilibrium:

    Where

    Therefore

    v

    i

    l

    i

    l

    i fff 21

    ti

    v

    i

    v

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    l

    i

    Pyf

    fxffxf

    *,*, 222111 ,

    t

    v

    i

    l

    i

    l

    i

    l

    i

    ivl

    i

    t

    v

    i

    l

    i

    l

    i

    l

    i

    ivl

    i

    P

    f

    x

    yk

    P

    f

    x

    yk

    *,*, 2

    2

    2

    1

    1

    1 ,

    14

  • 7/30/2019 Property methods

    15/26

    Activity Coefficient Method

    4- Liquid Phase Reference Fugacity For solvents: The reference state for a solvent is defined as

    pure component in the liquid state, at the temperature and

    pressure of the system.

    i*,v = Fugacity coefficient of pure component i at the system

    temperature and vapor pressures, as calculated from the vapor phase

    equation of state

    qi*,l= Poynting factor

    )11(,),( *,*,*,*,*, iil

    i

    l

    i

    l

    i

    v

    i

    l

    i xasPPTf q

    P

    P

    l

    i

    l

    i l

    i

    dPV

    RT*,

    *,*, 1expq

    15

  • 7/30/2019 Property methods

    16/26

    Activity Coefficient Method

    4- Liquid Phase Reference Fugacity For dissolved gases: Light gases (such as O2 and N2 ) are

    usually supercritical at the temperature and pressure of the

    solution. In that case pure component vapor pressure ismeaningless and therefore it cannot serve as the reference

    fugacity.

    Using an Empirical Correlation: The reference state fugacity

    is calculated using an empirical correlation. Examples are the

    Chao-Seader or the Grayson-Streed model.

    01**

    iiiii

    l

    i

    xasandHxf

    16

  • 7/30/2019 Property methods

    17/26

    Activity Coefficient Method

    5- Multicomponent Mixtures Multicomponent vapor-liquid equilibria are calculated from

    binary parameters. These parameters are usually fitted to binary

    phase equilibrium data (and not multicomponent data) andrepresent therefore binary information. The prediction of

    multicomponent phase behavior from binary information is

    generally good.

    Multi-component liquid-liquid equilibria cannot be reliably

    predicted from binary interaction parameters fitted to binary

    data only. In general, regression of binary parameters from

    multi-component data will be necessary.

    17

  • 7/30/2019 Property methods

    18/26

    Activity Coefficient Method

    6- NRTL (Non-Random Two-Liquid)

    The NRTL model calculates liquid activity coefficients for the

    following property methods: NRTL, NRTL-2, NRTL-HOC,

    NRTL-NTH, and NRTL-RK. It is recommended for highly

    nonideal chemical systems, and can be used for VLE, LLE and

    VLLE applications.

    j

    k

    kjk

    m

    mjmjm

    ij

    k

    kjk

    ijj

    k

    kik

    j

    jijij

    iGx

    Gx

    Gx

    Gx

    Gx

    Gx

    ln

    18

  • 7/30/2019 Property methods

    19/26

    Activity Coefficient Method

    6-NRTL (Non-Random Two-Liquid)

    Where

    The binary parameters aij, bij, cij, dij, eij and fij can be determined

    from VLE and/or LLE data regression. The Aspen Physical Property

    System has a large number of built-in binary parameters for the

    NRTL model.

    j

    k

    kjk

    m

    mjmjm

    ij

    k

    kjk

    ijj

    k

    kik

    j

    jijij

    iGx

    Gx

    Gx

    Gx

    Gx

    Gx

    ln

    )15.273(

    0,ln

    1,)exp(

    Tdc

    TfTeTba

    GG

    ijijij

    iiijijijijij

    iiijijij

    19

  • 7/30/2019 Property methods

    20/26

    Activity Coefficient Method

    7- Advantages and Disadvantages The activity coefficient method is the best way to represent

    highly non-ideal liquid mixtures at low pressures.

    You must estimate or obtain binary parameters fromexperimental data, such as phase equilibrium data.

    Binary parameters are valid only over the temperature and

    pressure ranges of the data.

    The activity coefficient approach should be used only at low

    pressures (below 10 atm).

    The Wilson model cannot describe liquid-liquid separation at

    all; UNIQUAC, UNIFAC and NRTL are suitable. 20

  • 7/30/2019 Property methods

    21/26

    1. Choosing the most suitable property method.

    2. Comparing the obtained predictions with data fromthe literature.

    3. Estimate or obtain binary parameters from

    experimental data if necessary.

    4. Generation of lab data if necessary to check theproperty model.

    Principle Steps in Selecting the Appropriate

    Property Method

    21

  • 7/30/2019 Property methods

    22/26

    Eric Carlsons Recommendations

    E?

    R?

    P?

    Polar

    Real

    Electrolyte

    Pseudo & Real

    Vacuum

    Non-electrolyte

    Braun K-10 or ideal

    Chao-Seader,Grayson-Streed orBraun K-10

    Peng-Robinson,Redlich-Kwong-Soave,Lee-Kesler-Plocker

    Electrolyte NRTLOr Pizer

    See Figure 2Figure 1

    Polarity

    R?Real orpseudocomponents

    P? Pressure

    E? Electrolytes

    AllNon-polar

    22

    Yes NRTL UNIQUAC

  • 7/30/2019 Property methods

    23/26

    P?

    ij?

    ij?

    LL?

    (See alsoFigure 3)

    P < 10 bar

    P > 10 bar

    PSRKPR or SRK with MHV2

    Schwartentruber-Renon

    PR or SRK with WSPR or SRK with MHV2

    UNIFAC and itsextensions

    UNIFAC LLE

    PolarNon-electrolytes

    No

    Yes

    Yes

    LL?

    No

    No

    Yes

    Yes

    No

    WILSON, NRTL,

    UNIQUAC andtheir variances

    NRTL, UNIQUACand their variances

    LL?

    Liquid/Liquid

    P? Pressure

    ij? Interaction ParametersAvailable

    Figure 2

    23

  • 7/30/2019 Property methods

    24/26

    VAP?

    DP?Yes

    NoWilson, NRTL,UNIQUAC, or UNIFAC*

    with ideal Gas or RK EOS

    WilsonNRTLUNIQUACUNIFAC

    Hexamers

    DimersWilson, NRTL, UNIQUAC,

    UNIFAC with Hayden OConnellor Northnagel EOS

    Wilson, NRTL, UNIQUAC,or UNIFAC with special EOSfor Hexamers

    VAP? Vapor Phase Association

    Degrees of PolymerizatiomDP?UNIFAC* and its Extensions

    Figure 3

    24

  • 7/30/2019 Property methods

    25/26

    Eric Carlsons Recommendationsfor 1-Propanol ,H2O mixture

    E?Polar

    Non-electrolyte See Figure 2

    Figure 1

    Polarity

    R?Real orpseudocomponents

    P? Pressure

    E? Electrolytes

    25

  • 7/30/2019 Property methods

    26/26

    P?

    ij?

    LL?

    (See alsoFigure 3)

    P < 10 bar

    UNIFAC and itsextensions

    PolarNon-electrolytes

    Yes

    LL?

    No

    No

    No

    WILSON, NRTL,

    UNIQUAC andtheir variances

    LL?

    Liquid/Liquid

    P? Pressure

    ij? Interaction ParametersAvailable

    Figure 2

    26