“propagating ideas”. rix=2.5 rix=1 l=0.5 d=0.35 our aim

48
“propagating ideas”

Upload: clyde-rice

Post on 04-Jan-2016

221 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Page 2: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Rix=2.5

Rix=1

L=0.5 D=0.35 Our Aim

Page 3: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

conditions BD. eappropriat

0

0HE

HE

EH

Fields governed by the source free Maxwell equations

The field equations

Page 4: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

The Field solver

Robust: Must be capable of dealing with any taper shape

Use mode matching method

Accurate: correctly model high contrast structures

Page 5: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Mode Matching Method

x

y z

1c

Nc

S1c

Ncinput

output

Section modes

Propagation constants

0,,,, )),(),(( ,,

m

zimsms

zimsms

msms eyxceyxc ψψH

E

1c

1c

Nc

Nc

sc

sc

Continuity at interfaces elimination of intermediate coefficients

Page 6: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

MMItapers

Mode convertersPhotonic crystals

Possible applications

Page 7: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Band Gap + line defect

Choose working =1.34m

Vary wavelength...

1,1c

2,1c

3,1c

4,1c

0

2

,m

mNc

Tot. power: Tot. power

Page 8: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Field plots in line defect (arbitrary input)

=1.34m

Only 1 mode excited

=1.43m

2 modes excited

Page 9: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Exciting the PC mode

Choose w=0.351

Design an “artificial” waveguide s.t. its fundamental mode has 100% transmission

W W

Page 10: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimising the y-junction

The initial structure...

Wavelength response

50% transmission

Page 11: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Setting up the optimisation

D1D2

L

Page 12: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Problem!

Many local minima holes can overlap and vanishdifferent topological configurations

L,D, or W

P

Many local minima

Page 13: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Search whole function space in intelligent way

Global optimisation

Evolution algorithms (statistical in nature)

• Not guaranteed to find global optimum• Loose a lot of information on the way!

Page 14: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

These are algorithms that systematically search the parameter space.

Deterministic global optimisation

Splitting algorithms: • successively subdivide regions in systematic way. • Divide more quickly where optima are “more likely” to exist.

Etc...

Page 15: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Monitoring interface

Specify your independent variables...Connect them to any structure parameter

define your own objective!

Page 16: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimisation results

A

A

B

B

Page 17: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

D1= 0.38m , D2 = 0.31m , L= - 0.17m

Optimal point A: transmission=99.8%!

Wavelength response

VERY BAD!

Resonant transmission

Page 18: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimal point B: transmission=99.5%!

D1= 0.12m , D2 = 0.47m , L = 0.15m

Wavelength response

MUCH better

steering transmission

Page 19: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Bend optimisation

D

D

LL

Page 20: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimisation results

Best point

Page 21: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Best shape : transmission=97%!

L= 0.24m , D = 0.47m

Wavelength response

Resonant transmission

FAIRLY good: variation = 8%

Page 22: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Bend + y junction

transmission=97%!

Input from here

Wavelength scan

Pretty good!

Page 23: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Bend optimisation II

D

D

LL

OFFOFF

Idea: try to find optimal steering transmissions

Page 24: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimisation results

2% variation

0.5% variation

Page 25: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

The complete crystal

98% transmission, 1% variation!!!

Page 26: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Optimal taper design

Inp ut fie ld

Po we r lo ss

Page 27: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Large losses

…Argh .. Not very good!

56% transmission

Page 28: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Could make it longer ...

Reduced losses

40 m

Too long!

95% transmission

Page 29: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Keep length fixed ...

Inp ut fie ld

Po we r lo ss

Maximise power output

Deform shape ...

Page 30: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

The local optimisation algorithm

Use an iterative technique (the quasi-Newton method).

Could approximate these using finite differences:

h

xxxPxhxxP

x

P NkNk

k

,...,,...,,...,,..., 11

…but this requires N field calculations per iteration!

second order convergence, but

Nx

P

x

P

,...,1

requires derivatives per iteration.

Page 31: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Only 2 field calculations per iteration!

GOOD NEWS!

We can derive analytic expressions for Nx

P

x

P

,...,1

dSP

FETaper region

Electric field (solution of wave equations) Adjoint electric field

(solution of adjoint wave equations)

Change in permettivity dueto shape deformation

Page 32: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

The first example: length 14um...

Rix = 2.5

Rix = 1.0

P = 84%

Vary ends

|C1

+

|2

Page 33: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Much better ...

P = 91%

|C1

+

|2

Page 34: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Design of optimal taper injector

Replace with

artificial input…and width

Vary taper length

Excite fundamental mode of input waveguide

Optimise offset 5m

Page 35: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

OPt transmission vs taper length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15

Taper langth um

Tra

ns

mis

sio

n F

rac

Choose 9m

Optimal results for length range

Page 36: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Field plot at length=9m

99%

Page 37: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

The complete result!!!

97% transmission, variation 5%!!!

Page 38: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

IMPROVE TAPER FURTHER?

x1

x2

x3 xN),...,,( 21 NxxxP

Optimization problem:

find (x1 , x2 , ... , xN) that maximise P

Could also parametrize shape ...

Page 39: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Here was the original ...

P = 56%

Page 40: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Here is the optimal design ...

15 nodes

P = 88%

Page 41: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

P = 97%

39 nodes

Fwd/bwd power “Resonant” region

Using lots of nodes

Page 42: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Increasing the number of nodes...

Optimisation problem becomes ill posed!

dSP

FE

P

P+P

For “thin enough” :

p 0

E,F are bounded, so

Page 43: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

Can improve transmission, but ...

there could be more minima,

Consequences

homing on optimum becomes more difficult:

Power transmission becomes less sensitive to variation of any individual node

Numerical instabilities - inverse problems

Use regularisation techniques.

On Shape Optimisation of Optical Waveguides Using Inverse Problem Techniques

Thomas Felici and Heinz W. Engl, Industrial Mathematics Institute, Johannes Kepler Universität Linz

Page 44: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

3D simulations

Air holes

membrane with refractive index 2.5

Vary height

Page 45: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

FDTD 3D

Probes just inside crystal

Input waveguide

Page 46: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

0%

10%

20%

30%

40%

50%

60%

70%

80%

1.1 1.2 1.3 1.4 1.5 1.6

steering

resonant

original

Page 47: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”

RAM requirements:

> 1 Gb - you need at least 2Gb of RAM for better performance;

updated version: only 765 Mb !!

Computational performance

Numerical space consists of 290x92x452 grid points ( 12 million points)

we use 8 thousand time steps

Hence we have 96 billion floating point operations per simulation!!

CPU time:

weeks??? - impossible due to the lack of memory (HP station at COM);

days??? Feasible but very slow due to usage of hard disk memory (Pentium 4 PC);

updated version: only3 hours and 55 minutes!!

Speed is even less than in Example1: 142.7 ns per grid point

Page 48: “propagating ideas”. Rix=2.5 Rix=1 L=0.5 D=0.35 Our Aim

“propagating ideas”