project final review · 2015-09-18 · project final review a coupled measurement-modeling approach...

34

Upload: others

Post on 12-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments
Page 2: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Project Final Review

A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates:

Application to Future Air Quality Assessments

Huiting Mao, Ming Chen, Barkley Sive, Robert Talbot, Ruth Varner and Robert GriffinUniversity of New Hampshire

RTP, NCOctober 28, 2008

Page 3: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Objectives

• To predict changes in climate that influence biogenic emissions and air quality.

• To quantify the impact of climate change on plant ecosystem composition.

• To estimate the impact of a changing plant ecosystem on biogenic emissions.

• To estimate the impact of changes in regional climate and plant ecosystem on aerosol loading, O3, NOx, hydrocarbons, and the oxidative capacity of the atmosphere.

Page 4: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Ring 1Ambient CO2

Ring 2Elevated CO2

(Ambient+200 ppmv)

TRACK I: CO2 ENRICHMENT RESEARCH –Measurements at the Duke Forest FACTS-I site

Measurements at Duke Forest

NMHCsHalocarbonsAlkyl NitratesOVOCsO3NOCO2H2O

SOA & POA – number density, size distribution and composition (AMS, CN, filters)Black CarbonMet Data

3 Field Campaigns

1. Canopy: September 2004

2. Vegetation and Soil: June 2005

3. Soil: September 2005

Page 5: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

EDT9/15/04 9/17/04 9/19/04 9/21/04 9/23/04 9/25/04 9/27/04

Mix

ing

Rat

io (p

ptv)

0

1000

2000

3000

4000

5000

6000

Ring 1 ethane (ambient CO2)Ring 2 ethane (elevated CO2)

EDT9/15/04 9/17/04 9/19/04 9/21/04 9/23/04 9/25/04 9/27/04 9/29/04

Mix

ing

Rat

io (p

ptv)

0

50

100

150

200

250

300

C2Cl4 Ring 1 (ambient CO2)C2Cl4 Ring 2 (elevated CO2)

0

50

100

150

200

250

0 50 100 150 200 250

Ring 1 (pptv)

Slope = 1.02

r2=0.99

C2Cl4

0

50

100

150

200

250

0 50 100 150 200 250

Ring 1 (pptv)

Slope = 1.02

r2=0.99

C2Cl4

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Ring 1 (pptv)

Slope = 0.99

r2=1.00

Ethane

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Ring 1 (pptv)

Slope = 0.99

r2=1.00

Ethane

Page 6: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

EDT9/15/04 9/17/04 9/19/04 9/21/04 9/23/04 9/25/04 9/27/04

Mix

ing

Rat

io (p

ptv)

0

1000

2000

3000

4000

5000

6000

Ring 1 α-pinene (ambient CO2)Ring 2 α-pinene (elevated CO2)

EDT9/15/04 9/17/04 9/19/04 9/21/04 9/23/04 9/25/04 9/27/04 9/29/04

Mix

ing

Rat

io (p

ptv)

0

1000

2000

5000

6000

7000

Ring 1 isoprene (ambient CO2)Ring 2 isoprene (elevated CO2)

R2:R1 = 1.08

α-pinene: R2:R1 = 0.77β-pinene:R2:R1= 0.80

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

Ring 1 (pptv)

Slope = 1.08

r2=0.90

Isoprene

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

Ring 1 (pptv)

Slope = 1.08

r2=0.90

Isoprene

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000

Ring 1 (pptv)

Slope = 0.76

r2=0.83

α-pinene

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000

Ring 1 (pptv)

Slope = 0.76

r2=0.83

α-pinene

Page 7: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Isoprene9/23/04

11am-6pm AverageMixing Ratio (pptv)

9/24/0411am-6pm Average Mixing Ratio (pptv)

Ring 1Ambient CO2 657 (± 80) 880 (± 79)Ring 2Elevated CO2 960 (± 135) 1112 (± 96)

Ring 2/Ring1 1.46 1.26

EDT9/23/04 9/24/04 9/25/04 9/26/04

Mix

ing

Rat

io (p

ptv)

0

500

1000

1500

2000Ring 1 isoprene (ambient CO2)Ring 2 isoprene (elevated CO2)

Page 8: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Mixing Ratio (pptv)

0 2000 4000 6000 8000 10000 12000 14000

Hei

ght (

m)

0

5

10

15

20 Ring 2 (Elevated)Ring 3 (Elevated)Ring 4 (Elevated)Ring 1 (Ambient)Ring 5 (Ambient)Ring 6 (Ambient)

Mixing Ratio (pptv)

-2000 0 2000 4000 6000 8000 10000

Hei

ght (

m)

0

5

10

15

20

Elevated-Ambient (Ring 2-1)Elevated-Ambient (Ring 3-5)Elevated-Ambient (Ring 4-6)

June 5, 2005 16:00 (EDT)Isoprene

Comprehensive vertical profiles Rings 1-6 confirm elevated isoprene in elevated CO2 environment.

Difference betw Rings: 1 & 2, 3 & 5, and 4 & 6. All rings exhibit similar differencesRules out that: 1) vegetation distributions betw rings biasing results2) results are fortuitous.

Page 9: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

2.5

2.0

1.5

1.0

0.5

0.09/11/2004 9/16/2004 9/21/2004 9/26/2004

2.5

2.0

1.5

1.0

0.5

0.09/11/2004 9/16/2004 9/21/2004 9/26/2004

• Ring 1 (ambient CO2 )

• Ring 2 (elevated CO2 )M

ixin

g R

atio

(ppb

v)M

ixin

g R

atio

(ppb

v)20 m

16 m

PTR-MS MVK + MACR

Page 10: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

• Below-canopy profiles of a suite of VOCs measured.

• Source of reactive alkenes in the lower forest canopy/soil in the elevated CO2 ring.

• Some uptake of isoprene near the surface.

Propene (pptv)0 100 200 300 400

0

5

10

15

20

Ethene (pptv)0 200 400 600 800 1000

Hei

ght (

m)

0

5

10

15

20

Isoprene (pptv)0 200 400 600 800 1000 1200 1400

0

5

10

15

20

1-butene (pptv)0 10 20 30 40 50 60

Hei

ght (

m)

0

5

10

15

20 Ring 1Ring 2

β-pinene (pptv)

0 50 100 150 200 250 300 350

0

5

10

15

20

α-pinene (pptv)

0 200 400 600 800 1000

Hei

ght (

m)

0

5

10

15

20

Ring 1Ring 2

Ring 1Ring 2

Ring 1Ring 2

Ring 1Ring 2

Ring 1Ring 2

Page 11: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Hour of Day (EDT) 00:00 04:00 08:00 12:00 16:00 20:00

Flux

(ug

g-1

h-1 )

0

1

2

3

4

5Ring 1Ring 2

Loblolly Pineα-pinene

Hour of Day (EDT) 00:00 04:00 08:00 12:00 16:00 20:00

Flux

(ug

g-1

h-1 )

0

20

40

60

80

100

120Ring 1Ring 2

isoprene

Sweetgum

Emission Fluxes

Page 12: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

a-Pinene b-Pinene

Emis

sion

Flu

x, u

g m

-2 d

-1

0

2000

4000

6000

8000

10000

12000

14000

16000

377 ppmv CO2600 ppmv CO2

Camphene Limonene

Emis

sion

Flu

x, u

g m

-2 d

-1

0

100

200

300

400

500

600

Duke Forest - Loblolly Pine

Page 13: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Net CO2 Flux(mmol m-2 d-1)

-600 -300 0 300 600

Net

OC

S F

lux

(nm

ol m

-2 d

-1)

-300

-200

-100

0

100

PAR > 10 μmol m-2 s-1

PAR < 10 μmol m-2 s-1

High Respiration

Ring 2: Sweetgum

R2 = 0.70

Ambient OCS

0 150 300 450

Net

OC

S F

lux

(nm

ol m

-2 d

-1)

-450

-300

-150

0

150

PAR > 10 μmol m-2 s-1

PAR < 10 μmol m-2 s-1

Ring 2: Loblolly Pine

R2 = 0.66

OCS uptake is tree species-dependent: ambient OCS level for Loblolly pine and net CO2 flux for sweetgum. White et al., 2008, ACPD, in review

Page 14: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

ng C

H3I

m-2

d-1

40

60

80

100

120

140

160

180

ug Isoprene m-2 d

-1

0

5000

10000

15000

20000

25000Loblolly PineSweetgumSweetgum (Isoprene)

Local Time (EDT)

00:00 04:00 08:00 12:00 16:00 20:00 00:00

PAR

, umol m

-2 s-1

0

200

400

600

800

1000

1200

1400

umol

CO

2 m

-2 s

-1

-1

0

1

2

3

PARLoblolly PineSweetgum

a)

b)

Emissions of CH3I from the two tree species were comparable, but with a distinct diurnal cycle from Loblolly Pine and none from Sweetgum (emission not stomatally driven).

The average CH3I flux from mid-latitude vegetation and soils similar in magnitude to previous estimates of the oceanic source strength.

Sive et al. [2007], GRL

Page 15: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Biogenic Emissions ares a Significant Source of Summertime Atmospheric Toluene

15 20 25 30 35 40

-2000

200400600800

100012001400

6/4/2005 12:00 6/5/2005 12:00 6/6/2005 12:00-200

0

200

400

600

800

1000

1200

0.0

3.0x105

6.0x105

9.0x105

1.2x106

1.5x106

tolu

ene

flux

(nm

ol m

-2 d

-1)

enclosure temperature (oC)

y = -600 +40xR2 = 0.73

b)

tolu

ene

flux

(nm

ol m

-2 d

-1)

local time (UTC-4:00)

net Toluene Flux

a)

α-p

inen

e flu

x (n

mol

m-2 d

-1)

net α-pinene Flux

1/1/2004 7/1/2004 1/1/2005 7/1/2005 1/1/2006 7/1/2006 1/1/20070.1

1

10

ethy

ne/C

O (p

ptv/

ppbv

)to

luen

e/be

nzen

e (p

ptv/

pptv

)

local date and time

ethyne/CO 15 day ethyne/CO ave. toluene/benzene 15 day toluene/benzene ave.

White et al., 2008, ACP

Toluene from

Fuel Evaporation Toluene from Crop

Plant Emissions Toluene from Pine

Tree Emissions Summer Toluene

Enhancement Year (pptv d-1) (pptv d-1) (pptv d-1) (pptv d-1) 2004 22 ±7 5 ±0.3 12 ±7 21 ±6 2005 16 ±6 5 ±0.3 12 ±7 43 ±9 2006 30 ±10 5 ±0.3 12 ±7 50 ±10

Page 16: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Days in September

R2-R1:

6.4±5.5 ppbv

O3, NO

Page 17: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

MM Simulated O3 Mixing Ratios

1. Box model results show that O3 levels in Ring 2 were increased by 2.4 ppbv±2.0 ppbv on average.

2. Ozone uptake by vegetation was increased in Ring 2 by 0.5±0.3 ppbv hr-1

on average compared to Ring 1 using the sap flux measurements.3. Overall, model only captured 37% of the observed O3 increases in Ring 2.

Compounds are missing from our VOC measurements that likely contributed to O3 production. Mao et al., 2008, to be submitted to ACP

Page 18: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

TRACK II – Regional Climate and Air Quality Assessment

For a future climate with doubled CO2:

1. More convective precipitation with higher intensity across the U.S.

2. Heavy precipitation events should become more frequent, and be distributed over fewer days with larger daily amounts.

3. The mean length of the drying period should increase from 1.78 days at present to 1.92 days, and the domain-wide maximum extended from 34 to 40 days.

4. The probability of flooding and droughts should increase in the future.

Chen et al. [2005], GRL

Page 19: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

CMAQ OA Module Improvement

Species Data points

Mean observation

(μg m-3)

Mean prediction (μg m-3)

Mean normalized gross error (MNGE)

Mean normalized bias (MNB)

CACM/MPMPO

CB4/SORGA

M

CACM/MPMPO

CB4/SORGA

M

CACM/MPMPO

CB4/SORGA

M

PM2.5 45 16.70 13.70 14.10 0.33 0.36 -0.17 -0.15

Sulfate 44 7.13 7.98 8.55 0.52 0.60 0.32 0.39

Nitrate 44 0.28 0.19 0.18 1.34 1.23 -0.06 -0.03

Ammonium 15 2.73 2.74 2.71 0.14 0.15 0.03 0.02

EC 44 0.80 0.39 0.39 0.52 0.52 -0.45 -0.45

OC 44 3.82 1.26 1.18 0.66 0.69 -0.66 -0.69

Chen et al. [2006], JGR

Page 20: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

2000 – 2004 Summertime Air QualityMap Types - Sea Level Pressure (mb)

Mean Daily Maximum O3

Hegarty et al., 2007, JGR

Page 21: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Interannual Variability Reconstruction

r = - 0.94

CII (hPa)

Map Type III

Regression Analysis

Reconstruction of summer O3 level based on map type frequency and intensity reproduced 46% of interannual variability

O3k - mean per map type k

ΔO3km - O3 perturbation from CII

Fkm - Frequency per map type k per year m

( ) kmk

kmkmm FOOO ∑=

Δ+=5

1333

Hegarty et al., 200750

52

54

56

58

60

62

64

66

68

2000 2001 2002 2003 2004

Year

O3 (

ppbv

)

Obs. All Days

Obs. Class. Days

Rec. MT Freq.

Rec. MT Freq. +CII

Page 22: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Surface 1h (a,b) and 8h (c,d) O3 Daily Maximums Averaged over 2001-2005

1-hr

8-hr

Page 23: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Comparison of Domain Averaged Observed and Modeled 1h-O3 Daily Maxima

8h-O3 Daily Maxima Sample # MODOBS − ±σ OBS MOD RMSE AINDEX R

2001 55718 1.8±14 55 53 14 73 0.58 2002 56223 3.4±16 58 54 16 69 0.56 2003 57300 -0.3±14 52 52 14 69 0.52 2004 55984 -4.7±13 46 51 13 65 0.51 2005 56505 -3.2±14 52 55 14 73 0.57 Total 282371 -0.6±14 52 53 14 71 0.54

Sample # MODOBS − ±σ OBS MOD RMSE AINDEX R 2001 55718 2.3±17 62 60 17 68 0.48 2002 56223 5.5±18 65 60 19 66 0.53 2003 57300 1.7±15 59 57 15 70 0.52 2004 55984 -3.6±15 52 56 15 64 0.46 2005 56505 -2.5±17 58 61 17 71 0.51 Total 282371 0.7±17 59 59 17 69 0.51

Page 24: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Cumulative Distribution of Frequency (%)0 10 20 30 40 50 60 70 80 90 100

O3 (

ppbv

)

0

30

60

90

120

150

180

1hO3 Obs1hO3 Mod8hO3 Obs8hO3 Mod

Page 25: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Example:IONS Ozonesonde

vs. Model

O3 (ppbv)0 50 100 150 200 250

Alti

tude

(km

)

0

2

4

6

8

10

ModObs

Average over all sites

a.) Beltsville, MD

0 50 100 150 200 250

Altit

ude

(km

)0

2

4

6

8

10

12

obsmod

b.) Hunstville, AL

0 50 100 150 200 2500

2

4

6

8

10

12

obsmod

c.) Narragansett, RI

0 50 100 150 200 2500

2

4

6

8

10

12

obsmod

e.) Ron Brown

O3 (ppbv)0 50 100 150 200 250

0

2

4

6

8

10

12

obs mod

f.) Wallops Island, VA

O3 (ppbv)0 50 100 150 200 250

0

2

4

6

8

10

12

obsmod

d.) Pellston, MI

O3 (ppbv)0 50 100 150 200 250

Alti

tude

(km

)

0

2

4

6

8

10

12

obsmod

Page 26: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Future Projection of Global and US Anthropogenic Emissions

IPCC A2 2000 2090 Change (%)VOCs (Tg yr-1) 141 309 120NOx (Tg(N) yr-1) 32 98 207

VOCs (OECD90) 40 52 29

NOx (OECD90) 13 18 38

Case Scenarios

Future Climate Change and Its Impact on Air Quality

Present (Case 1)

Future (Case 2)

Future (Case 3)

Future (Case 4)

Future (Case 5)

Climate P F P F F Emissions P F F P-Einv, F-Bio P BC P P P P P

Page 27: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

IsoprenePresent

TerpenesPresent

TerpenesFuture-Present

IsopreneFuture-Present

moles s-1

Biogenic Emissions

Page 28: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Daily Maximum 1h- and 8h-O3

O3 (ppbv) 0 10 20 30 40 50 60 70 80 90 100

Cum

ulat

ive

Dis

tribu

tion

of F

requ

ency

(%)

0

10

20

30

40

50

60

70

80

90

100

1hO3 Baseline1hO3 FClim_FEinv1hO3 CClim_FEmis1hO3 FClimž_CEinv1hO3 FClim_CEmis8hO3 Baseline8hO3 FClim_FEinv8hO3 CClim_FEmis8hO3 FClimž_CEinv8hO3 FClim_CEmis

Present (Case 1)

Future (Case 2)

Future (Case 3)

Future (Case 4)

Future (Case 5)

Median 31/60 25/66 28/67 30/64 29/62 4th highest 41/91 40/99 41/101 40/93 40/89

2.5th 13/44 9/46 9/45 14/45 14/45 25th 25/54 19/58 21/59 24/56 24/55 75th 37/71 33/79 37/78 36/75 36/71

97.5th 41/96 40/103 41/108 40/99 40/93

Page 29: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Seasonal Mean Daily Maximum 8h-O3 Levels

Page 30: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Average Mean Temperature and Surface Pressure Levels

The area of largest increases in O3 coincides with that of positive pressure changes in spite of uniform increases in anthropogenic O3precursors.

Page 31: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Publications• Chen, M., H. Mao, and R. Talbot (2005), Changes in precipitation

characteristics over North America for doubled CO2, Geophys. Res. Lett., 32, L19716, doi:10.1029/ 2005GL024535.

• Mao, R. Talbot, D. Troop, B. Moore, R. Johnson, S. Businger, and A. M. Thompson (2006), Smart Balloon Observations over the North Atlantic: Part II – O3 Data Analysis and Modeling, J. Geophys. Res., 111, D23S56, doi:10.1029/2005JD006507.

• Hegarty, J., H. Mao, and R. Talbot (2007), Relationships between circulations patterns and surface ozone over the northeastern United States,J. Geophys. Res., 112, D14306, doi:10.1029/2006JD008170.

• Chen, J., H. Mao, R.W. Talbot, and R.J. Griffin (2006), Application of the CACM and MPMPO modules using the CMAQ model for the Eastern United States, J. Geophys. Res.,111, D23S25, doi:10.1029/2006JD007603.

• Sive, B. C., R. K. Varner, H. Mao, D. R. Blake, O. W. Wingenter, and R. Talbot (2007), A large terrestrial source of methyl iodide, Geophys. Res. Lett., 34, L17808, doi:10.1029/2007GL030528.

• Sive, B. C., R. K. Varner, L. C. Nielsen, R. S. Russo, Y. Zhou, M. L. White, A. Csakai, P. Beckman, J. Ambrose, O. W. Wingenter, H. Mao and R. Talbot (2006), Isoprene and monoterpene emissions in ambient and future CO2 environments, in preparation for submission to Atmos. Chem. Phys.

Page 32: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Continued

• White, M. L., B. C. Sive, R. K. Varner, R. S. Russo, Y. Zhou, A. Csakai, P. Beckman, J. Ambrose, O. W. Wingenter, H. Mao and R. Talbot (2008a), Methyl halides and OCS exchange with soil and trees at the Duke Forest FACE site, Chapel Hill, NC, ACPD, in review.

• White, M. L., et al. (2008b): Are Biogenic Emissions a Significant Source in Summertime Toluene Enhancements in the Rural Northeast? ACPD, in review.

• Chen, M. et al., (2008), Characteristics Climate Change Patterns over Regions of Upwind Pollutants Sources and Their Impact on Regional Air Quality over New England, in preparation for submission to J. Geophys. Res.

• Mao, H., R. Talbot, B. Sive, R. Varner, M. Chen, R. Oren, and H.-S. Kim (2008a), Enhanced O3 in an elevated CO2 environment, in preparation for submission to Atmos. Chem. Phys.

• Mao, H., M. Chen, and R. Talbot (2008b), Air quality assessment for the northeastern United States, in preparation for submission to Atmos. Chem. Phys.

• Mao, H., M. Chen, and R. Talbot (2008c), Present and future air quality assessment for the northeastern United States, in preparation for submission to Atmos. Chem. Phys.

Page 33: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments
Page 34: Project Final Review · 2015-09-18 · Project Final Review A Coupled Measurement-Modeling Approach to Improve Biogenic Emission Estimates: Application to Future Air Quality Assessments

Acknowledgement

• Laura Cottrell• Pieter Beckman• Tod Hagan• All graduate students and technicians from

Climate Change Research Center who participated in the project.