progress, prospects, and opportunities in stellarator v1€¦ · in stellarator physics and 3d...

38
Progress, Prospects, and Opportunities in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator Community 2013 Experimental Plasma Research Workshop, Fort Worth TX, February 14, 2013 or To steal a phrase from Krstic: “If 3D effects are so important, why did it take decades to recognize?”

Upload: others

Post on 08-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Progress, Prospects, and Opportunities in Stellarator Physics and 3D Plasma 

Confinement Research

Presented by D.T. Anderson on behalf of the US Stellarator Community2013 Experimental Plasma Research Workshop, Fort Worth TX, February  14, 2013

or

To steal a phrase from Krstic:

“If 3‐D effects are so important, why did it take decades to recognize?”

Page 2: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Topics

• Why Stellarators?• Achievements and Status of Major Experiments• Collaboration Activities and Physics Opportunities– Fully 3‐D systems– 3‐D physics in “2‐D” systems– Code development/application and education

• Needs and Opportunities for Improvement• Concluding Remarks and Discussion

Page 3: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Why Stellarators?• Stellarators have confinement similar to 

tokamaks• Inherently steady‐state• Startup on well‐formed magnetic surfaces• Capable of nearly currentless operation• No virulent current‐driven or pressure‐

driven instabilities that abruptly terminate the plasma

• Good normalized  pressure ()• Minimal profile control or current drive 

requirements• Big advantage – capable of high density 

operation– Desirable for divertor operation– Faster damping of energetic particles– No current => no conflict with current drive– Density limit set by simple power balance

N /(Iequiv/aB)

Page 4: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

LHD   [next three slides from H. Yamada 2012 report to IEA]

Page 5: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator
Page 6: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator
Page 7: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

W7X   [next five slides from Bosch Oct.2012 presentation to DOE]

Will come back to these later

Page 8: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator
Page 9: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator
Page 10: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Oak Ridge and Princeton major players in design and assembly of the superconducting coil current lead components

Page 11: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator
Page 12: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Collaboration Activities and Physics Opportunities

– Fully 3‐D systems• W7X (Trim coils, divertor, thermal imaging)• LHD  (Spectroscopy, flow effects on islands)• Disruption suppression with 3‐D fields (CTH)

– 3‐D physics in “2‐D” systems• ELM suppression in tokamaks• Equilibrium reconstruction across all toroidal systems

– Selective comments on code developments/applications– University programs are making world‐class fundamental contributions

Page 13: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

• Trim coil system constructed by PPPL consists of 5 water‐cooled copper coils with independent power supplies.

• Coils produces mainly an n =1 radial field with variable spatial phase• Use to regulate(time dependently) non‐uniform hot spots due to error fields, alignment 

offsets.• Important “knob” to use in verification of heat load modeling and control.

US on track to deliver all Trim Coil equipment by end of FY‐13. 

W7X Trim Coil Project 

No talk/poster on this: Talk to Jeff Harris for more details

Page 14: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

New ‘Scraper Element’ being designed

14

MW/m2

• Issue:  W7‐X magnetic configuration evolves as plasma bootstrap current increases– Configuration evolution can result in overload of main target edges, >10MW/m2 on sections rated for 5MW/m2

– Occurs on ~40s timescale, effectively steady‐state thermal loads

• Solution: New ‘scraper element’ intercepts heat and particle fluxes to protect main targets– Element will be built using actively cooled carbon fiber composite (CFC) monoblocks  (design qualified for ITER)– Steady‐state heat fluxes ~10MW/m2 (rated for 20MW/m2)

• Successful design PDR held in July

W7‐X Divertor Module

Heat loads without scraper

Heat loads with scraper

Overloaded elements (>10MW/m2, rated for 5)

Field lines carrying heat to overloaded target sections are intercepted by scraper element Scraper 

element

Main targets

Scraper element

Poster J. Lore: This afternoon

Page 15: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Views of the C‐Mod divertor tiles

IR camera system tested on C-Mod for W7X• A new high speed infrared camera was procured and tested 

this summer on the Alcator C‐Mod tokamak.  Export control documents are in the approval process with DOD and the State Department. The camera will first be used at IPP to confirm resolution tests of the prototype endoscope system, and for real‐time imaging software development   [LANL/ Talk to Glen Wurden for more information]

Page 16: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

X‐RAY IMAGING CRYSTAL SPECTROMETER (XICS) on LHD:PROVIDES FULL PROFILES OF Ti, Te & Vθ

• Provides profile measurements of:– Ion Temperature– Electron Temperature– Poloidal Flow Velocity

– Time resolution: 20ms, Spatial resolution: 2cm.– Non‐perturbative to the plasma (no NBI).

Can provide profiles in ECH and IRCF plasma. 

• Tomographic inversion allows local values to be inferred from line integrated measurements.– Requires 3D equilibrium reconstructions 

(STELLOPT).

• Two complementary systems are installed which use emission from Ar17+ and Ar16+– Coverage in nearly all LHD plasma conditions.

• Development led by Novimir Pablant at PPPL.

ION 

TEMPERATU

REELECTRO

NTEM

PERATURE

ARGON 16+

BRIGHTN

ESS

See poster by N. Pablant (P2.029, Thursday Afternoon)

Page 17: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Plasma flows heal islands in stellarators

3 40

1

2

0 0.5 1.0 1.5 2.0

-505

R[m]

Te[keV] #43619 t=2.13[s]Growth

[rad]

b1n=1/Bt[10-5]3 4

0

1

2

0 0.5 1.0 1.5 2.0

-505

Te[keV]Healing

R[m]

#67923 t=2.4[s]

b1n=1/Bt[10-5]

[rad]

• LHD performed experiments with large vacuum islandsUnder some operating conditions, the islands spontaneously healed Not predicted by 3‐D MHD equilibrium codes

• Theory suggests flows physics is crucial (Hegna, NF ‘11) Plasma flows induce island healing currents Theory predicts critical conditions for healing 

• 3‐D equilibrium codes undulypessimistic in predicting surface fragility

• Extended MHD modelingrequired

170 0.2 0.4 0.6 0.80

1

wvac=116mm C1=50(ne/1019)0.5(h*@/2=1)1/4(1+C1h*@/2=1)-1/4

[%]@/2=1

crit prediction consistent with LHD data

Poster this afternoon by Hegna

Page 18: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

2‐D/3‐D Connections

• 3‐D codes and analysis are being applied to understand plasma behavior in nominally 2‐D systems and examine benefits of 3‐D shaping

• Subject of next three talks– Maurer on disruption suppression in CTH– Schlutt on application of NIMROD to profile evolution in CTH[for more on CTH see poster by Knowlton this afternoon]

– Chapman on 3‐D equilibria in the MST RFP

Page 19: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Mechanism for RMP suppression of ELMs in tokamaks is not understood

• RMP produces 3‐D MHD equilibrium  alters stability and transport properties – Model developed to explain transport in H‐mode with RMP

– Edge plasma flows of sufficient magnitude to suppress resonant field penetration –> stochastic transport not viable

– Small 3‐D distortions can lead to substantial modificationsto the local shear  KBM Stability boundaries– Distortion sensitive toproximity to rational q values– Dramatic changes tolocal micro‐instability properties(Bird and Hegna, NF, ‘13)

19

No presentation this workshop; see Hegna for more details

Page 20: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

20

We can now reconstruct 3D equilibria from experimental data for any device with flux 

surfaces

Page 21: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

IAEA 2012 paper: J. D. Hanson and 19 co‐authors=> V3FIT University led effort! <=

US: Auburn, GA, ORNL, PPPL, WisconsinInternational: NIFS (Japan), RFX (Italy)

Multiple US‐origin reconstruction codesV3FIT, STELLOPT both use VMEC as equilibrium engine

Use in ongoing physics studies & diagnostic interpretationStability: ELMs & disruptions, hi‐res profiles, helical states

Future developmentsAutomation, acceleration in algorithmsIslands (PIES, SIESTA, SPEC, HINT2, etc.)W7X steady state: real‐time for control?Unique contributions to ITER from lab + university team

US team leads world in 3D equilibrium reconstruction

21

Page 22: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

STELLOPT has been developed for stellarator equilibrium reconstruction

• Development led by Sam Lazerson at PPPL.

• STELLOPT optimizes the input parameters for an VMEC equilibrium solution.– Searches for a best match to input diagnostic data.– Assumes good flux surfaces (no stochastic field lines).

• Accurate reconstructions are important for:– Diagnostic interpretation.– Beam deposition calculation.– Transport analysis.– Study of performance limits.

• Used routinely for XICS analysis on LHD.

• Integration into TASK‐3D underway.

Page 23: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

• Uses VMEC equilibria (with nested surfaces) as initial starting point to calculate equilibria with islands

• SIESTA could eventually be used to replace VMEC as the equilibrium engine for:– Initializing extended MHD simulations– Stellarator optimization– Equilibrium reconstruction

• Scalability: Allows for massively parallel simulations 

SIESTA: a nonlinear MHD equilibrium solver 

M=6 island chain

Page 24: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

PENTA Restores Momentum Conservation

• Originally developed by Don Spong (ORNL) – Uses DKES coefficient calculations– Corrects for momentum conservation with method of Sugama and Nishimura

• Has been expanded at HSX (J Lore now at ORNL) for– Multiple ion species of arbitrary mass, charge, temperature (HSX impurity transport)– Arbitrary expansion order (improves accuracy, allows for convergence checks)– Particularly important experimental comparisons of flow (ChERS) and bootstrap current

• Effects of parallel flow, interspecies collisions included• Expressions used analytically reproduce intrinsic ambipolarity in 

symmetric limit• In principle, this method can be applied to the full range of 

configurations:tokamaks rippled tokamaks quasi-symmetric conventional stellarators

Increasing effective rippleH. Sugama and S. Nishimura, Phys. Plasmas 9, 4637 (2002).

Page 25: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

University programs are making world‐class fundamental contributions

• Quasisymmetry• Extended MHD • 3D reconstruction• Disruption suppression with 3‐D fields• 3‐D modeling and optimization• Overseas collaborations/exchanges help bothprograms, e.g.– HSX student to LHD for impurity studies– W7X student to HSX for magnetic diagnostics and equilibrium reconstruction

Page 26: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Opportunities for Configuration Improvement

• Previous optimization targets and demonstration of success

• Identified areas where improvement is needed (and what can we do)– Divertors– Energetic ion confinement– Turbulent transport– Impurity transport and accumulation– Coil simplification and maintainability

Page 27: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Optimizations for W7X, HSX, and NCSX

• W7X was optimized for good magnetic surfaces, 5% , low parallel current and reduced collisionless transport (operational 2014)

• HSX was optimized for very low 1/ transport, marginal well, and avoidance of resonances; high effective transform; quasihelical symmetry (operational 2001)

– eff = N‐m = 3 in HSX (q=1/3)• NCSX optimized for compactness, MHD stability and neoclassical transport; large bootstrap current; quasiaxisymmetry

Page 28: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Successes in HSX with Quasisymmetry

Collector Disk

• Collector plate in direction of electron B drift shows large negative potential when quasisymmetry broken.

• Larger HXR flux in QHS configuration also observed.e

-

ECRH

Floating Potential vs Density

QHS

Mirror

0 1 2 3 4 5 60.7

0.8

0.9

1

1.1

1.2

1.3

(Radians)

|B| (

T)

0 1 2 3 4 5 60.7

0.8

0.9

1

1.1

1.2

1.3

(Radians)

|B| (

T)

MirrorQHS|B| along field line |B| along field line

Good  single particle confinement of trapped particles with QHS

Page 29: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Quasisymmetry in Thermal Plasmas

0 0.5 10

0.5

1

1.5

2

2.5

3

r/a

T e (keV

)

QHS

Mirror

100 kW ECRH input

φ

θ

QHS

Large flows measured by CXRS in the direction of 

symmetry

Increase in central electron temperature with symmetry (from Thomson scattering)

Page 30: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Divertors in Stellarator Geometries• An effective divertor is critical for core performance and control of the plasma edge

• Stellarators can operate at high density, but have severe geometrical constraints– Helical divertors as in LHD– Island divertors as in W7X– Both have drawbacks

• Reliable divertor modeling is essential for design of new systems and divertor concepts  and optimization toward a stellarator DEMO

Critical area! Universities can fit in through detailed edge 

measurements and modeling

Page 31: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

EMC3 used to model HSX‐like plasmas

EMC3 is a Monte-Carlo edge code that solves the fluid equations on open and closed field lines in fully 3D geometries.

Adjusting the edge transform in an HSX-like QHS plasma, can alter the presence and size of magnetic islands in the edge plasma.

The results can be used to help design future experiments and to compare with edge measurements on HSX.

Aaron Bader’s poster yesterday!

Page 32: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Measurements of flows on HSX can inform edge transport models

Edge measurements with a 6-pin Gundestrup probe are already underway on HSX.

Additional experiments will look at other plasma parameters in the edge and heat/particle fluxes to the targets.

Page 33: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Energetic ion confinement

• ALL of Wendelstein 7X, HSX and NCSX were designed to have good confinement of energetic ions in their ideal magnetic configurations

‐in their realizations they all failed!

• Small ripples introduced by the finite coils to produce the configuration resulted in significant predicted losses‐In the ARIES‐CS compact stellarator reactor study ‐particle losses were approximately 10%‐Perturbation of the quasiaxysymmetry by addition of a toroidal mirror term cut these losses in half.

• The effects of small ripples depend  on where they are located:‐Particles trapped in a ripple where the drift direction is within a magnetic surface do not contribute to the radial transport and loss.

Configuration and coil design needs to more properly account for energetic particle losses than simply ensuring good 

quasisymmetry in the ideal design

Page 34: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Optimization for Turbulent TransportSee Poster by Harry Mynick this afternoon

• HSX results show that when neoclassical losses are sufficiently reduced, the electron thermal transport is anomalous

• There is a need to incorporate reduction of turbulent transport in the optimization process.

• Groundbreaking work by Mynick has developed a method for including optimization targets  for the reduction of turbulent transport into the STELOPT code 

• STELOPT has generated configurations  that have heat fluxes calculated by GENE reduced by factors of 3‐4

Reduction of turbulent transport without relying on rotation has far ranging implications for device design.

Page 35: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Impurity Transport and Accumulation

• Stellarators in ion root discharges (inward directed radial electric field) are predicted to have impurity accumulation

• This can lead to radiative collapse of the plasma• Divertors and edge control will help, but cannot alleviate this 

occurrence• Conditions have been identified, but not understood, where 

impurities are eliminated from the core plasma without the presence of ELM’s• HDH mode in W7‐AS at high density (> 1014)• “Impurity hole” on LHD (also at high density)• New occurrence at high Ti at 1013 (Slide4)

There is a need to understand the conditions and mechanisms for impurity exclusion from 

stellarator core plasmas

Page 36: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

“Simpler” Coils

• Stellarator coils have been manufactured and used successfully 

• Very low aspect ratio drives complexity• Coils which have reduced curvature and more plasma/coil spacing are desirable for ease of manufacturing and space for an effective divertor

• Flexibility in the coil  structure  to accommodate optimization needs  such as energetic particle confinement, anomalous transport reduction and maintainability could result in more compelling designs.

• Interesting avenue for investigation

[Poster this afternoon by Josh Breslau on new method for coil modeling]

Page 37: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Concluding Remarks• The stellarator is a player in the quest for fusion energy • There exists an excellent fundamental research program in 3‐D 

physicsEquilibrium reconstruction, extended MHD, edge divertor physics, configuration optimization

• University programs can and are contributing significantly to large programs

Big opportunities at many levels to get involved

• Collaborations work best from bottom up• Large space for improvements in stellarator design

Large increase in capabilities over last 25 years!New targets: divertors, anomalous transport, energetic  particlesWhat are tradeoffs in optimization?How good can we make it?

Page 38: Progress, Prospects, and Opportunities in Stellarator v1€¦ · in Stellarator Physics and 3D Plasma Confinement Research Presented by D.T. Anderson on behalf of the US Stellarator

Discussion!