progress in simulations of turbulent boundary layerspschlatt/data/tsfp7...progress in simulations of...

64
Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer, Henrik Alfredsson, Arne Johansson, Dan Henningson Linné FLOW Centre, KTH Mechanics, Stockholm, Sweden TSFP-7, Ottawa, July 31, 2011

Upload: lyhuong

Post on 20-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

Progress in Simulations of Turbulent Boundary Layers

Philipp Schlatter

Ramis Örlü, Qiang Li, Geert Brethouwer, Henrik Alfredsson, Arne Johansson, Dan Henningson

Linné FLOW Centre, KTH Mechanics, Stockholm, Sweden

TSFP-7, Ottawa, July 31, 2011

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAA

Page 2: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

2

TSFP7, July 31, 2011

Philipp Schlatter

Outline: Turbulent Boundary Layers

• Comparison of DNS

– Re-evaluation of data

• New KTH simulations and experiments

– Something about codes

– Establishment of fully-developed turbulence

– Detailed comparison to experiments

• Some findings and detours

– Wall shear stress, negative velocities and high flatness

– Modulation of near-wall turbulence

– Three-dimensional effects

– Suction boundary layer

– Coherent structures (Eduction, Visualisations)

– Passive scalars and free-stream turbulence

– Sublayer scaling, finding the wall and correcting hotwires

– Ongoing new simulation

• Conclusions

Page 3: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

3

TSFP7, July 31, 2011

Philipp Schlatter

Outline: Turbulent Boundary Layers

• Comparison of DNS

– Re-evaluation of data

• New KTH simulations and experiments

– Something about codes

– Establishment of fully-developed turbulence

– Detailed comparison to experiments

• Some findings and detours

– Wall shear stress, negative velocities and high flatness

– Modulation of near-wall turbulence

– Three-dimensional effects

– Suction boundary layer

– Coherent structures (Eduction, Visualisations)

– Passive scalars and free-stream turbulence

– Sublayer scaling, finding the wall and correcting hotwires

– Ongoing new simulation

• Conclusions

Page 4: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

18

TSFP7, July 31, 2011

Philipp Schlatter

Turbulence close to the surface Friction Drag Fuel consumption

Turbulent flow close to solid walls...

Page 5: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

19

TSFP7, July 31, 2011

Philipp Schlatter

large and small scales: multi-scale phenomena!

Turbulent flow close to solid walls... (simulation result)

Page 6: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

20

TSFP7, July 31, 2011

Philipp Schlatter

large and small scales: multi-scale phenomena!

Turbulent flow close to solid walls... (simulation result)

Recent reviews:

Marusic et al., Phys. Fluids, 2010 Klewicki, J. Fluids Eng., 2010 Smits et al., Annu. Rev. Fluid Mech., 2011

Page 7: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

25

TSFP7, July 31, 2011

Philipp Schlatter

DNS of Turbulent Boundary Layers

(TBL)

Page 8: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

26

TSFP7, July 31, 2011

Philipp Schlatter

What we are used/expect to see …

Fernholz & Finley (1996) Monkewitz et al. (2008)

Physical experiments are commonly scrutinised before they are employed to calibrate, test, or validate other experiments, scaling laws or theories

Compilation/ Assessment of experimental data from ZPG TBL flows

DNS DNS

Page 9: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

27

TSFP7, July 31, 2011

Philipp Schlatter

… and what “we” are not so used to see

Simulation data are hardly scrutinised, when it comes to basic (integral) quantities

Schlatter & Örlü (2010)

Red symbols are data from 7 independent DNS from ZPG TBL flows

DNS DNS

Page 10: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

29

TSFP7, July 31, 2011

Philipp Schlatter

Employed ZPG TBL DNS data

Wu & Moin (2010) 900 – 1840 *

Ref.: Schlatter & Örlü, J. Fluid Mech. 2010

Lee & Sung (2011) 2560 finite differences, recycling

Page 11: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

30

TSFP7, July 31, 2011

Philipp Schlatter

Justification for re-evalution

• Integral quantities are often given as function of Re, however, how these were computed is often not given in detail

• Varying free-stream velocities for y+ > d+ implies (in conjunction with quite varying box height) unambiguous upper integral bound and free-stream velocity

Need for consistent re-evaluation!

Page 12: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

31

TSFP7, July 31, 2011

Philipp Schlatter

Consistent way to re-evaluate

• For the following re-evaluation we make use of the Nickels (2004) composite profile to determine free-stream velocity and the 99% boundary-layer thickness

• Chauhan, Monkewitz & Nagib (2009) composite profile for near-wall comparisons

• 4th order polynomial fit around maxima of Reynolds stresses to determine peak value and location

Page 13: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

34

TSFP7, July 31, 2011

Philipp Schlatter

Re

H12

300 1000 3000

1.4

1.5

1.6

1.7

Re

c f 1

03

300 1000 3000

3

4

5

6

A closer look at DNS from ZPG TBL flows Shape factor & Skin friction

Data from 8 independent DNS (Schlatter & Örlü, JFM, 2010)

• “we” are usually very confident about DNS data, at least when it comes to basic integral quantities, but …

Chauhan et al. (2009) ± 1 %, 5 %

Smits et al. (1983) ± 5 %, 20 %

Page 14: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

42

TSFP7, July 31, 2011

Philipp Schlatter

• “we” are usually very confident about DNS data, when it comes to mean velocity profiles, but …

• Note of caution: profiles have been utilised in the past to develop corrections for total-head probes, wall position, friction velocity, etc…

(see Örlü et al., JPAS, 2010)

Chauhan et al. (2009)

A closer look... Inner layer

Re

c f 1

03

300 1000 3000

3

4

5

6

Page 15: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

46

TSFP7, July 31, 2011

Philipp Schlatter

Need for new simulations close to experiments…

Page 16: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

55

TSFP7, July 31, 2011

Philipp Schlatter

Spatial Boundary Layer computational domain (periodic)

physical domain fringe region

laminar turbulent transitional

U1

x0

trip forcing

• Fully spectral method: Fourier/Chebyshev tau method

• Periodic boundary condition in the wall-parallel directions, no-slip at lower wall, Neumann conditions at upper boundary.

• Fringe region (volume force) to enforce laminar Blasius inflow

• Trip forcing to induce “natural” laminar-turbulent transition

• Code SIMSON (Chevalier et al. 2007) on up to 16384 cores BG/P

±

±0

Page 17: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

73

TSFP7, July 31, 2011

Philipp Schlatter

TBL up to Re = 4300...

real aspect ratio

aspect ratio 4:1 :

Re=180 Re=4000 Re=2500 Re=1410 Re=3500

Re=1000

Skote (2001)

Schlatter et al. (2009)

Wu & Moin (2010)

Jiménez et al. (2010)

Ferrante & Elghobashi (2004)

Schlatter & Örlü (JFM 2010)

tripping to turbulence, Re=180

x+=9, y+=0.04-14, z+=4 Total: 7.5¢109 grid points

Page 18: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

74

TSFP7, July 31, 2011

Philipp Schlatter

TBL up to Re = 4300...

Re=180 Re=4000 Re=2500 Re=1410 Re=3500

Re=1000

Skote (2001)

Schlatter et al. (2009)

Wu & Moin (2010)

Jiménez et al. (2010)

Ferrante & Elghobashi (2004)

DeGraaff & Eaton Erm & Joubert

DeGraaff & Eaton

Örlü Österlund

Örlü Österlund

EXP:

Osaka

Osaka Örlü Österlund

Purtell Purtell

x+=9, y+=0.04-14, z+=4 Total: 7.5¢109 grid points

Page 19: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

78

TSFP7, July 31, 2011

Philipp Schlatter

Some quick statistics…

Page 20: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

79

TSFP7, July 31, 2011

Philipp Schlatter

Integral Quantities up to Re=4300

• Skin friction cf and shape factor H12

Medium DNS Fine DNS High DNS

DNS Spalart (1988) Re=300, 670, 1410 DNS Jiménez et al. (2009) Re=1100, 1550, 2000 EXP Österlund (1999) Re=2500, 3000 ... EXP Örlü (2008) Re=2500, 3000 ...

Correlations (Monkewitz et al. 2007, Österlund (1999)) DNS Skote (2001)

Re

H12

0 1000 2000 3000 40001.3

1.4

1.5

1.6

Re

c f

0 1000 2000 3000 4000 50002

3

4

5

6

7x 10

-3

Page 21: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

82

TSFP7, July 31, 2011

Philipp Schlatter

DNS – Comparison to EXP

y+

U+

100

101

102

103

0

5

10

15

20

25

y+

U+

102

103

16

18

20

22

24

26

Comparison to experiments by Örlü (2008) at Re=2532, 3640, 4080

and Österlund (1999) at Re=2532, 3060, 3651

present DNS at matching Re

Re=4080

Re=2532

Page 22: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

96

TSFP7, July 31, 2011

Philipp Schlatter

Re

(u/U

)

2 =

(1

/2)

c f

0 1000 2000 3000 4000

0

1

2

3

4x 10

-3

Von Kármán Integral Equation

• von Kármán equation

• Derived based on boundary-layer approximation • Terms balance up to O(0.1%)

u2¿ = U21

dx+

d

dx

Z 1

0

¡hu02i ¡ hv02i

¢dy

Page 23: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

101

TSFP7, July 31, 2011

Philipp Schlatter

However, how about lower Reynolds numbers?

Page 24: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

103

TSFP7, July 31, 2011

Philipp Schlatter

Evolution from initial conditions

• Spatial development turbulence needs to be

continuously generated close to / at the inflow:

– artifical turbulence (e.g. Klein et al.)

– precursor (periodic) simulation

– recycling/rescaling (Lund et al.)

– tripping/transition to turbulence

• Immediate questions:

– Depending on method, what inflow length is necessary?

– Pressure gradient during adaptation/transition?

– what is the lowest Re for ”fully developed” turbulence

Similar issues in experiments, see e.g. Erm & Joubert (1991), Castillo et al. (2004)

?

Ref.: Örlü & Schlatter, ETC-13, 2011

Page 25: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

106

TSFP7, July 31, 2011

Philipp Schlatter

Different Trippings

• Visualisation: negative 2 (Jeong & Hussain 1995)

region Rex=70,000-

750,000 (half of the

computational domain)

Re=1100

Re=1250

Re=1600

Re=1700

Ref.: Örlü & Schlatter, ETC-13, 2011

Page 26: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

108

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• We consider 4 different tripping mechanisms:

a) baseline b) low amplitude

c) low frequency d) Tollmien-Schlichting (TS) waves

All simulations reach a common friction curve at some Re.

Skin friction cf is a measure for inner-layer convergence...?

turbulent

laminar

c f

Re=1100

Page 27: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

116

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Contours of u+rms (steps 0.25)

a) baseline b) low amplitude c) low frequency d) Tollmien-Schlichting (TS) waves

Page 28: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

117

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Contours of u+rms (steps 0.25)

a) baseline b) low amplitude c) low frequency d) Tollmien-Schlichting (TS) waves

Page 29: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

118

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Contours of u+rms (steps 0.25)

a) baseline b) low amplitude c) low frequency d) Tollmien-Schlichting (TS) waves

Page 30: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

119

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Contours of u+rms (steps 0.25)

a) baseline b) low amplitude c) low frequency d) Tollmien-Schlichting (TS) waves

Page 31: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

120

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Contours of u+rms (steps 0.25)

a) baseline b) low amplitude c) low frequency d) Tollmien-Schlichting (TS) waves

tripping at higher Re

Page 32: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

122

TSFP7, July 31, 2011

Philipp Schlatter

Inflow Length: Tripping

• Consider three Re=1100, 1550, 2000

y+

U+

100

101

102

103

0

5

10

15

20

25

y+

U+

102

103

18

20

22

24

baseline TS-waves Jiménez et al. (2010)

Re=1100

Re=2000

Re=1550

Ref.: Örlü & Schlatter, ETC-13, 2011

Page 33: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

125

TSFP7, July 31, 2011

Philipp Schlatter

Let’s compare DNS and experiments…

Page 34: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

126

TSFP7, July 31, 2011

Philipp Schlatter

• ZPG TBL flow in the range 2300< Reθ <7500 (Örlü, 2009)

• single hot-wire measurements at 1.65m from leading edge of a 7m long plate fulfilling “equilibrium” criteria (à la

Chauhan et al. 2009)

• independent skin friction measurements by means of oil-film interferometry

• DNS corresponds to a 2m stretch…

Thesis Örlü 2009

MTL wind tunnel

0.8m x 1.2m

New experiments at KTH

25m

10m

Page 35: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

129

TSFP7, July 31, 2011

Philipp Schlatter

- - - Correlation by Chauhan et al. (2009) ± 1 %, 5 % ± 5 %, 20 %

Shape factor & skin friction coefficient

Recall

Örlü and Schlatter, iTi 2010

Page 36: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

130

TSFP7, July 31, 2011

Philipp Schlatter

Shape factor & skin friction coefficient In the following slides data from DNS at

and experiments at

will be shown and data at will be compared

Örlü and Schlatter, iTi 2010

Page 37: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

131

TSFP7, July 31, 2011

Philipp Schlatter

Mean streamwise velocity profiles

DNS (solid lines) EXP (symbols)

Log-law indicator function Mean velocity profile

Örlü and Schlatter, iTi 2010

Page 38: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

132

TSFP7, July 31, 2011

Philipp Schlatter

Turbulence intensity profiles

(e.g. Örlü & Alfredsson, EF, 2010)

--- DNS with matched spatial resolution to hot-wire length

Page 39: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

138

TSFP7, July 31, 2011

Philipp Schlatter

Pre-multiplied spectral map

DNS EXP

Örlü and Schlatter, iTi 2010

Page 40: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

139

TSFP7, July 31, 2011

Philipp Schlatter

Pre-multiplied spectral map

DNS EXP

Örlü and Schlatter, iTi 2010

Page 41: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

146

TSFP7, July 31, 2011

Philipp Schlatter

Wall-shear stress w

Page 42: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

149

TSFP7, July 31, 2011

Philipp Schlatter

Wall-shear stress fluctuation

Wall shear stress: Fluctuation:

Main reference: Alfredsson et al. (1988): Explanation with spatial resolution...

Channel flows Skote (2001) Ferrante & Elghobashi (2005) Correlation Österlund ( )

Schlatter & Örlu (2010) Jiménez et al. (2010)

Wu & Moin, Phys. Fluids 2010

* * *

*

* * *

*

*

*

* * *

DNS

EXP

Ref.: Örlü & Schlatter, Phys. Fluids, 2011

Page 43: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

152

TSFP7, July 31, 2011

Philipp Schlatter

Wall-shear stress fluctuation

120+

0.9d99

Re

Power spectrum of

Inner part essentially invariant (viscous scaling)

Outer peak scales in outer units and is increasing

2D spectrum of w

• Why increasing for all Re, even for low Re?

120+

1000+/Uc

Ref.: Örlü & Schlatter, Phys. Fluids, 2011

Page 44: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

160

TSFP7, July 31, 2011

Philipp Schlatter

Spatial Structures…

Page 45: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

179

TSFP7, July 31, 2011

Philipp Schlatter

visualised domain: length 7000+ 5.0 d99 width 4500+ 3.2 d99

Disturbance Velocity

• positive and negative streamwise disturbance velocity ( 0.1U1)

at Re=4000

view from top

view from bottom

d99

R

d99

2z+ = 115

2z/d99 = 0.85

d99

Page 46: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

180

TSFP7, July 31, 2011

Philipp Schlatter

Amplitude Modulation

• Cross-stream cut through the boundary layer

• currugated edge of the boundary layer • clear modulation of the whole boundary layer

(including near-wall region)

vortical structures, coloured by streamwise velocity

low-speed high speed

z

Page 47: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

194

TSFP7, July 31, 2011

Philipp Schlatter

• Example Reµ=1000 Reµ=1410

Reµ=2500 Reµ=4000

Amplitude Modulation

Remove symmetric part:

Refs.: Mathis et al. (2009); Bernardini & Pirozzoli, Phys. Fluids 2011

Page 48: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

195

TSFP7, July 31, 2011

Philipp Schlatter

• Example Reµ=1000 Reµ=1410

Reµ=2500 Reµ=4000

Amplitude Modulation

Re

max

imu

m C

mod

1000 2000 3000 40000

0.1

0.2

0.3

0.4

Increase of modulation coefficient in agreement with the findings by

Bernardini & Pirozzoli 2011.

+

Page 49: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

261

TSFP7, July 31, 2011

Philipp Schlatter

Structures – Visualisation

Page 50: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

293

TSFP7, July 31, 2011

Philipp Schlatter

”Focus on Fluids” (May 2009)...

Figures: Wu & Moin (JFM 2009)

Page 51: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

301

TSFP7, July 31, 2011

Philipp Schlatter

Boundary Layer Visualisation

based on LES data

Page 52: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

302

TSFP7, July 31, 2011

Philipp Schlatter

Boundary Layer Visualisation

based on DNS data

Page 53: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

309

TSFP7, July 31, 2011

Philipp Schlatter

Structures...

Isocontours of negative 2 and

positive / negative disturbance velocity

Page 54: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

310

TSFP7, July 31, 2011

Philipp Schlatter

Structures...

Page 55: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

311

TSFP7, July 31, 2011

Philipp Schlatter

Structures...

Isocontours of 2, colour code ~ wall distance

Page 56: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

314

TSFP7, July 31, 2011

Philipp Schlatter

Structures...

Isocontours of 2, colour code ~ wall distance

Page 57: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

368

TSFP7, July 31, 2011

Philipp Schlatter

Preliminary Results: Ongoing simulation

up to Reµ=8300

Page 58: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

369

TSFP7, July 31, 2011

Philipp Schlatter

LES up to Reµ=8300

• Ongoing LES (using ADM-RT)

Re

cf

0 2000 4000 6000 80002

3

4

5

6x 10

-3

y+

U+

100

101

102

103

104

0

5

10

15

20

25

30

Domain: 13500 x 400 x 540d0*

Re = 500-8300 ; Re¿ = 2300

Resolution: 9216 x 513 x 768 (8.5 billion grid points)

x+=18, y+=0.06-16, z+=8

Friction coefficient Mean velocity

new LES DNS 4300 Örlü (2009)

Reµ=1000

Reµ=2500

Reµ=4000

Reµ=5800

Reµ=7500

EXP Örlü (2009)

Page 59: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

370

TSFP7, July 31, 2011

Philipp Schlatter

LES up to Reµ=8300

• Ongoing LES (using ADM-RT)

Re

cf

0 2000 4000 6000 80002

3

4

5

6x 10

-3

y+

U+

100

101

102

103

104

0

5

10

15

20

25

30

Domain: 13500 x 400 x 540d0*

Re = 500-8300 ; Re¿ = 2300

Resolution: 9216 x 513 x 768 (8.5 billion grid points)

x+=18, y+=0.06-16, z+=8

Friction coefficient Mean velocity

Reµ=1000

Reµ=2500

Reµ=4000

Reµ=5800

Reµ=7500

new LES DNS 4300 Örlü (2009)

y+

U+

102

103

18

20

22

24

26

28Reµ=7500

Reµ=2500

Reµ=1000

EXP Örlü (2009)

EXP Örlü (2009)

Page 60: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

371

TSFP7, July 31, 2011

Philipp Schlatter

LES up to Reµ=8300

• Ongoing LES (using ADM-RT)

y+

100

101

102

103

0

1

2

3

4

5

6

y+

urm

s

+

100

101

102

103

104

0

0.5

1

1.5

2

2.5

3

Reµ=1000

Reµ=2500

Reµ=4000

Reµ=5800

Reµ=7500

¥ = y+(dhUi+=dy+)Reynolds stresses

Indicator function

• Good agreement at lower Reynolds number with other DNS/LES

• Good agreement with experiments at

higher Re

• Proper scaling behaviour at higher Re

Re = 500-8300 ; Re¿ = 2300

Correlation Monkewitz et al.

Page 61: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

373

TSFP7, July 31, 2011

Philipp Schlatter

Conclusions

DNS data for a spatial turbulent zero pressure gradient turbulent boundary layer from Re=180 up to Re=4300, using ~7.5·109 grid points.

NUMERICAL EXPERIMENT

1. Statistics/budgets/spectra/PDF etc. in excellent agreement with experiments

2. Outer-layer convergence and fully developed state for boundary layers. When do we have a ”good” simulation?

3. Large-scale structures O(d99) with footprint/modulation visible at the wall

4. Visualisation of coherent structures in high-Re turbulent boundary layers: No clear hairpin vortices detected except for low-Re (transition) region.

Data and visualisations at: www.mech.kth.se/~pschlatt/DATA

Contact me: [email protected]

Page 62: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

374

TSFP7, July 31, 2011

Philipp Schlatter

Swedish National Infrastructure for

Computing

Acknowledgments:

Page 63: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

375

TSFP7, July 31, 2011

Philipp Schlatter

Thank You!

Page 64: Progress in Simulations of Turbulent Boundary Layerspschlatt/DATA/TSFP7...Progress in Simulations of Turbulent Boundary Layers Philipp Schlatter Ramis Örlü, Qiang Li, Geert Brethouwer,

376

TSFP7, July 31, 2011

Philipp Schlatter

Boundary Layer Visualisation

based on DNS data