program 2017 aa ip - uclaana/program_2017.pdf · were used to fabricate field effect transistors...

44
1 Sponsors:

Upload: others

Post on 01-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

1

Sponsors:

Page 2: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

2

InternationalConferenceonChemicalBondingTechnicalProgram

Wednesday,June21ArrivalandregistrationThursday,June22Morning:Opening.Bondingappetizerplate. Presiding:AnastassiaAlexandrova

8:30–8:45am Alex,Anastassia,Lai-Sheng-Introductoryremarks8:45–9:15am TomNilges(TUMunich,Germany) “Low-dimensionalGroup15Semiconductors”9:15–9:45am GiovanniMaestri(UniversitàdiParma,Italy) “ConnectingHomogeneousandHeterogeneousCatalysiswithAll-MetalAromatics”9:45–10:15am PatrickBultinck(GhentUniversity,Belgium)

“MaximumProbabilityDomains–aNewToolinChemicalBonding”10:15–10:45am Lai-ShengWang(BrownUniversity,USA)

“Probing theElectronic Structure andChemicalBonding of Size-SelectedBoronandDoped-BoronClustersUsingPhotoelectronSpectroscopy:FromBorophenestoMetalloborophenes”

10:45–11:00am CoffeeBreak11:00–11:30am KnutAsmis(UniveristätLeipzig,Germany)

“UnusualPropertiesofBoron-ContainingClustersProbedbyCryogenicIonTrapVibrationalSpectroscopy”

11:30–12:00am BryanWong(UniversityofCalifornia,Riverside,USA) “AnomalousOptoelectronicPropertiesofNanostructuresfromDFTandTD-DFTCalculations”12:00–12:30am OttoDopfer(TUBerlin,Germany) “StructuresofSiliconIonsandClusters:SilaneIonsandDopingontheNanoscale”

Afternoon: Quantumeffectsinmaterialsandinterfaces Presiding:BryanWong

3:00–3:30pm PaulWeiss(UniversityofCalifornia,LosAngeles,andCNSI,USA) “Imaging,Understanding,andLeveragingBuriedInteractionsinSupramolecularAssemblies”3:30–4:00pm RichardSaykally(UniversityofCalifornia,Berkeley,andLBNL,USA)

“OntheMechanismofSelectiveAdsorptionofIonstoAqueousInterfaces:Graphene/Watervs.Air/Water”

4:00–4:30pm TyrelMcQueen(JohnsHopkinsUniversity,USA)“TheRichBondingMotifsofQuantumMaterials”

4:30–4:45pm CoffeeBreak4:45–5:15pm VladimiroMujica(ArizonaStateUniversity,USA,andYachayTech,Ecuador)

“TheRoleofHydrogenBondinElectronTransportinMolecularJunctions”5:15–5:45pm JeffreyGrossman(MIT,USA)

“GrapheneandGraphene-OxideBasedMembranesforFiltration”5:45–6:15pm VijayKumar(ShivNadarUniversity,India) “Novel Nanostructures of Boron: Bowls, Drums, Cages, Nanotubes, and Atomic Layers with

DiracCones“6:15–6:45pm AnastassiaAlexandrova(UniversityofCalifornia,LosAngeles,USA) “PlayingwithElectronsin2Dand3DBorides“07:00–10:00pm RECEPTIONatKauaiBeachResort

Page 3: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

3

Friday,June23Morning: Bondingatnanoandsub-nanoscales Presiding:VijayKumar8:30–9:00am OlegPrezhdo(UniversityofSouthernCalifornia,USA)

“ChemicalBondingSteersExcitedStateDynamicsinNanoscaleMaterials”9:00–9:30am MichaelHeaven(EmoryUniversity,USA) “SpectroscopicStudiesoftheAlkalineEarthOxidesandHypermetallicOxides”9:30–10:00am RalfKaiser(UniversityofHawaiiatManoa,USA)

“OneStepataTime-UnravelingtheFormationofInterstellarGrainsunderSingleCollisionConditions”

10:00–10:30am StefanieDehnen(Philipps-UniversitätMarburg,Germany)“StructuresandBondinginMultimetallicClusterAnions”

10:30–11:00am MiguelCastro(UniversidadNacionalAutónomadeMéxico)“StructuralandElectronicPropertiesofSmallVanadium,Vn0,+, clustersandof theHydratedVnH2OandVn+H2O,n≤13,Systems”

11:00–11:15am CoffeeBreak11:15–11:45am IsraelFernández(UniversidadComplutensedeMadrid,Spain) “ReactivityandBondingofPolycyclicAromaticHydrocarbons:ShapeandSizeDependence”11:45–12:15pm XuenianChen(HenanNormalUniversity,China)

“BondingAnalysisandSynthesisofBoraneComplexes”12:15–12:45am MarcelaBeltran(UniversidadNacionalAutónomadeMéxico) “TBA”12:45–13:15am ArtemOganov (Skolkovo Institute of Science and Technology, Russia, and Stony

BrookUniversity,USA)“ComputationalMaterialsDiscovery”

Afternoon: Bondinginheterogeneouscatalysis Presiding:PingYang

3:00–3:30pm GarethParkinson(TechnischeUniversitätWien,Austria) “SingleAtomCatalysis:ASurfaceScienceApproach”3:30–4:00pm Evgeny Pidko (Eindhoven University of Technology, the Netherlands, and ITMO

University,Russia) “Confinement-InducedReactivityinZeoliteCatalysis”4:00–4:30pm PhilippeSautet(UniversityofCalifornia,LosAngeles,USA)

“ModelingChemicalBondatElectrochemicalInterfaces:anApproachfromFirstPrinciples”4:30–5:00pm SergeyKozlov(KAUST,KingdomofSaudiArabia) “SimulationsofAlloysforCatalysis”

5:00–5:15pm CoffeeBreak

5:15–5:45pm IveHermans(UniversityofWisconsin,Madison,USA)“TheScienceandSerendipitybehind theUnexpectedDiscoveryofBoronNitrideas SelectiveOxidationCatalyst”

5:45–6:15pm DennisSalahub(UniversityofCalgary,Canada)“BeyondStructure:ontheRoleofDynamicsandEntropyinNanocatalysis”

6:15–6:45pm XueminYang(InstituteofChemicalPhysics,ChineseAcademyofScience,China) “TBA”

Page 4: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

4

Saturday,June24TOURDAYSunday,June25Morning: Fundamentals Presiding:MaratTalipov

8:30–9:00am MingfeiZhou(FudanUniversity,China)“InfraredSpectroscopyofDonor-AcceptorBondingCarbonylComplexes”

9:00–9:30am EduardMatito(EuskalHerrikoUnibertsitatea,DIPC,BasqueCountry,Spain)“ConjugationandAromaticityinLargeCircuits”

9:30–10:00am JinlongYang(UniversityofScience&TechnologyofChina,Hefei,China)“SuperatomicMoleculeTheoryofMetalClusters”

10:00–10:30am MaartenGoesten(CornellUniversity,USA)“(Unusual)Hypervalence”

10:30–11:00am DmitryZubarev(IBMResearch,Almaden,USA)“ChemicalEvolutioninStructuredEnvironments”

11:00–11:15am CoffeeBreak11:15–11:45am ÁngelMartínPendás(UniversidaddeOviedo,Spain) “One-ElectronImagesinRealSpace:NaturalAdaptiveOrbitals”11:45–12:15pm TimLee(NASAAmesResearchCenter,USA)

“ComputationalStudyoftheFormationofPrebioticMoleculesinAstrophysicalEnvironments:MixedIcesandGas-PhaseConditions”

12:15–12:45am CherifMatta(MountSaintVincentUniversity,Canada) “MoleculesasNetworks” Afternoon: Challengingorganometallics Presiding:MaartenGoesten3:00–3:30pm KitCummins(MIT,USA)

“Generation,ReactivityPatterns,andBondinginSingletPhosphinidenes”3:30–4:00pm JochenAutschbach(UniversityofBuffalo,SUNY,USA) “Bonding,Localizationvs.Delocalization,andMolecularProperties”4:00–4:30pm EtienneGarand(UniversityofWisconsin,Madison,USA)

“ProbingtheStructureandSolvationofCatalyticReactionIntermediates”4:30–5:00pm Dong-ShengYang(UniversityofKentucky,USA)

“Organolanthanide Radicals Formed by Metal-Mediated Bond Activation of SmallHydrocarbons”

5:00–5:15pm CoffeeBreak

5:15–5:45pm AngelaWilson(MichiganStateUniversity,USA)“TBA”

5:45–6:15pm PingYang(LosAlamosNationalLaboratory,USA) “CovalencyinActinide-LigandBonds”6:15–6:45pm AnneAndrews(UniversityofCalifornia,LosAngeles,USA) “TBA”

Page 5: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

5

Monday,June26 Morning:Newmaterials:predictionsandrealizations Presiding:EduardMatito8:30–9:00am SvilenBobev(UniversityofDelaware,USA)

“ZintlPhaseswithRare-EarthElements”9:00–9:30am EvaZurek(UniversityatBuffalo,SUNY,USA) “TheoreticalPredictionsofSuperconductingHydridesUnderPressure”9:30–10:00am TimStrobel(CarnegieInstitutionforScience,USA)

“Accessing Metastable States with Pressure: Synthetic Pathways to New Materials withExceptionalProperties”

10:00–10:30am TatianaTimofeeva(NewMexicoHighlandsUniversity,USA)“IntramolecularInteractionsfromX-rayDiffractionDataasaToolofUnderstandingCrystalProperties”

10:30–11:00am Choong-ShikYoo(WashingtonStateUniversity,USA)“ChemistryinDenseSolidMixtures”

11:00–11:15am CoffeeBreak11:15–11:45am ThomasHeine(LeipzigUniversity,Germany)

“ChemicalBondinginTwo-DimensionalCrystals”11:45–12:15pm DylanJayatilaka(UniversityofWesternAustralia,Australia)

“TBA” Afternoon: Bondingatnanoandsub-nanoscales Presiding:AnastassiaAlexandrova3:00–3:30pm MaratTalipov(NewMexicoStateUniversity,USA)

“Long-BondingInteractionBetweenTwoRadicalsasaSourceofNovelMolecules”3:30–4:00pm RyanC.Fortenberry(GeorgiaSouthernUniversity,USA)

“TheBrightestofVibrationalTransitions:Proton-BoundComplexes”4:00–4:30pm AlexanderBoldyrev(UtahStateUniversity,USAandSouthernFederalUniversity,

Russia)“Homocatenation”

Page 6: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

6

AbstractsLow-dimensionalGroup15SemiconductorsT.Nilges,M.Köpf,D.Pfister,M.Baumgartner,C.OttSynthesisandCharacterizationofInnovativeMaterialsGroupTechnicalUniversityofMunich,DepartmentofChemistryLichtenbergstrasse4,85748Garchingb.München,GermanyE-mail:[email protected],likeorthorhombicblack,violetorfibrousphosphorusgainedreasonable interest in the past years due to their electronic properties and their ability to bedelaminatedintoquantum-confinedtwo-dimensionalnanosheetsorfibers[1].Here,wepresentaneasyaccesstothisclassoflow-dimensionalsemiconductorsandprovideselectedapplicationsafterwards. Black phosphorus, violet phosphorus and arsenic-substituted black phosphoruswere used to fabricate field effect transistors and sensors. A selection of these features are

presented[2-4].Fig. 1. Double helical SnIP, sections of thecrystal structure (a,b), ELF calculationsfeaturing the covalent and van der Waalstype interactions (c), Crystal morphologyand microscope picture of SnIP (d, e) andsuspension of delaminated nano particularSnIPinchloroforme.Another emerging class of quasi one-dimensional semiconductors are based onhelical polyphosphide substructures [5].

Recently, the first pure inorganic, atomic-scale double helix compound SnIPwas reported [6].Thematerial consists of hexagonally stacked double helices formed by phosphorus and [SnI]singlehelices.Duetotheunusualstructure itcombinesthemechanicalpropertiesofpolymersandtheelectronicpropertiesofmaingroupsemiconductors.Basedinthisstructureprototypeahomologues series of double helical main group semiconductors were predicted featuringintriguingelectronicproperties,likeforinstancebandgapsbetween1and2.5eV[7].[1]A.Carvalho,M.Wang,X.Zhu,A.S.Rodin,H.Su,A.H.CastroNeto,Nat.Rev.Mater.(2016),1,16061.[2]A.N.Abbas,B.Liu,L.Chen,Y.Ma,S.Cong,N.Aroonyadet,M.Köpf,T.Nilges,C.Zhou,ACSNano(2015),9,5618.[3]B.Liu,M.Köpf,A.A.Abbas,X.Wang,Q.Guo,Y.Jia,F.Xia,R.Weihrich,F.Bachhuber,F.Pielnhofer,H.Wang,R.Dhall,S.B.

Cronin,M.Ge,X.Fang,T.Nilges,C.Zhou,Adv.Mater.(2015),27,4423.[4]F.Baumer,Y.Ma,C.Shen,A.Zhang,L.Chen,Y.Liu,D.Pfister,T.Nilges,C.Zhou,ACSNano(2017),DOI:

10.1021/acsnano.7b00798.[5]A.S.Ivanov,A.J.Morris,K.V.Bozhenko,C.J.Pickard,A.I.Boldyrev,Angew.Chem.Int.Ed.(2012),51,8330.[6]D.Pfister,K.Schäfer,C.Ott,B.Gerke,R.Pöttgen,O.Janka,M.Baumgartner,A.Efimova,A.Hohmann,P.Schmidt,S.

Venkatachalam,L.vanWüllen,U.Schürmann,L.Kienle,V.Duppel,E.Parzinger,B.Miller,J.Becker,A.Holleitner,R.Weihrich,T.Nilges,Adv.Mater.(2016),28,9783.

[7]M.Baumgartner,R.Weihrich,T.Nilges,Chem.Eur.J.(2017),DOI:10.1002/chem.201700929.

Page 7: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

7

CONNECTINGHOMOGENEOUSANDHETEROGENEOUSCATALYSISWITHALL-METALAROMATICSGiovanniMaestriDepartmentofChemistry,LifeSciencesandEnvironmentalSustainability,UniversitàdiParma,17/AParcoAreadelleScienze,43124Parma-Italy([email protected])

Pivotingona familyof stable trinuclear clusters featuringdelocalizedmetal-metalbonds,1 thelecture will present key aspects of the synthesis, stereoelectronic properties2 and catalyticapplications3,4oftheseprototypicalsub-nanometricmetalsurfaces.These scaffolds can be readily prepared through a single synthetic step from commercialreagents.Theycouldincorporatebothpalladiumandplatinumnuclei,allowingonetoaccessandstudyall-metalheteroaromatics.Thesecomplexescancatalyze thereductionofalkynes tocis-alkenes under transfer hydrogenation conditions with complete selectivity coupled withunmatchedactivity.Ongoingdevelopmentswillpresenttheaccesstomultinuclearcomplexesinwhich the metal triangle acts formally as an aromatic donor-ligand for a Lewis acid and thedevelopment of cascades involving polyunsaturated linear organic substrates for thediastereoselectiveassemblyofmultiplecarbon-carbonbonds.References1.SynthesisofTriangularTripalladiumCationsasNoble-MetalAnaloguesoftheCyclopropenylCation.Angew.Chem.Int.Ed.2014,53,1987.2.ASimpleSynthesisofTriangularAll-MetalAromaticsAllowingAccesstoIsolobalAll-MetalHeteroaromatics.Chem.Eur.J.2015,21,12271.3.CatalyticSemireductionofInternalAlkyneswithAll-MetalAromaticComplexesChem.Cat.Chem.2015,7,32664.Boostingcatalystactivityincis-selectivesemi-reductionofinternalalkynesbytailoringtheassemblyofall-metalaromatictri-palladiumcomplexes.DaltonTrans.,2016,45,15786.

Page 8: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

8

Page 9: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

9

ProbingtheElectronicStructureandChemicalBondingofSize-SelectedBoronandDoped-BoronClustersUsingPhotoelectronSpectroscopy:

FromBorophenestoMetalloborophenes

Lai-ShengWangDepartmentofChemistry,BrownUniversity,Providence,RhodeIsland02912,USA

Joint studies using photoelectron spectroscopy and computational chemistry over the

pastdecadehaveshownthatsmallboronclusterspossessplanarstructures[1,2],culminatedinthediscoveryofthehexagonalB36cluster,thatledtotheconceptofborophene[3].Therecentsyntheses of borophenes on inert substrates have availed the opportunities to investigate theinterestingpropertiesofthisnewformof2Dmaterials[4].Metal-dopingcansignificantlychangetheelectronicandstructuralpropertiesofboronclusters.Wehave investigatedboronclustersdopedwith a single Co atom and observed a number of interesting structures. For CoB8−,wefound that it formsamolecularwheel-type structurewitha centralCoatomcoordinatedbyamonocyclicB8ring[5](a),whereasCoB12−hasahalf-sandwich-typestructureinwhichaquasi-planarB12clusteriscoordinatedtotheCoatom[6](b).ArecentstudyonCoB16−hasledtothediscovery of Co-centered molecular drum [7] (c). A more recent finding concerns the planarCoB18−cluster,inwhichtheCoatomisobservedtobepartofthe2Dnetwork[8](d),suggestingthe possibility of metalloborophenes, a potentially new class of 2D materials consisting of aboronnetworkdopedbytransitionmetals.Thetalkwilldiscusstheserecentadvancesandtheimplicationsforborophenesandmetalloborophenes.

References:[1]A.N.Alexandrova,A.I.Boldyrev,H.J.Zhai,L.S.Wang.All-boronaromaticclustersaspotentialnewinorganic

ligandsandbuildingblocksinchemistry.Coord.Chem.Rev.2006,250,2811-2866.[2]L.S.Wang.Photoelectronspectroscopyofsize-selectedboronclusters:fromplanarstructurestoborophenesand

borospherenes.Int.Rev.Phys.Chem.2016,35,69-142.[3]Z.A.Piazza,H.S.Hu,W.L.Li,Y.F.Zhao,J.Li,L.S.Wang.PlanarhexagonalB36asapotentialbasisforextended

single-atomlayerboronsheets.NatureCommun.2014,5,3113.[4]A.J.Mannix,B.Kiraly,M.C.Hersam,N.P.Guisinger.Synthesisandchemistryofelemental2Dmaterials.Nat.Rev.

Chem.2017,1,0014.[5]C.Romanescu,T.R.Galeev,W.L.Li,A.I.Boldyrev,L.S.Wang.Transition-metal-centeredmonocyclicboronwheel

clusters(M©Bn):Anewclassofaromaticborometalliccompounds.Acc.Chem.Res.2013,46,350-358.[6]I.A.Popov,W.L.Li,Z.A.Piazza,A.I.Boldyrev,L.S.Wang.Complexesbetweenplanarboronclustersand

transitionmetals:AphotoelectronspectroscopyandabinitiostudyofCoB12–andRhB12–.J.Phys.Chem.A2014,118,8098-8105.

[7]I.A.Popov,T.Jian,G.V.Lopez,A.I.Boldyrev,L.S.Wang.Cobalt-centredboronmoleculardrumswiththehighestcoordinationnumberintheCoB16−cluster.NatureCommun.2015,6,8654.

[8]W.L.Li,T.Jian,X.Chen,T.T.Chen,G.V.Lopez,J.Li,L.S.Wang.TheplanarCoB18−clusterasamotifformetallo-borophenes.Angew.Chem.Int.Ed.2016,55,7358-7363.

Page 10: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

10

UnusualPropertiesofBoron-ContainingClustersProbedbyCryogenicIonTrapVibrationalSpectroscopyKnutR.AsmisWilhelm-Ostwald-InstitutfürPhysikalischeundTheoretischeChemieUniveristätLeipzig,Linnéstr.2,04109Leipzig,Germany

Boroniselectrondeficientandthereforehasastrongtendencytoshareelectrons.Consequently,boron compounds can exhibit pronounced delocalized bonding and aromatic behavior. Theseunusual electronic properties of elemental boron lead to a rich polymorphism. Infraredphotodissociation (IRPD) spectroscopy of mass-selected ions, thermalized to cryogenictemperatures, combined with quantum chemical calculations allows for a detailedcharacterization of these unusual properties in gas phase clusters. Recent advances in thevibrational spectroscopy of pure boron cluster cations [1] and polyhedral closo-dodecaborateanions[2]arehighlighted.

Comparison of the IRPD spectrum of the magic-number boroncluster B13+ to simulated IR spectra of low energy isomers fromdensity functional theory (DFT) unambiguously reveal a planarboron double-wheel species (see Fig. 1). Born-Oppenheimer DFTmolecular dynamics simulations show that B13+ exhibits internalquasi-rotation already at 100 K. Vibrational spectra derived fromthese simulations allow extracting the first spectroscopic evidencefromtheIRPDspectrumfortheexceptionalfluxionalityofB13+.

The closo-dodecaborate anion B12Cl11¯ spontaneously binds thenoble gases (Ng) xenon and krypton at room temperature – areaction typical of “superelectrophilic” dications. The electrophilicnature of the anion is confirmed spectroscopically by theobservationofablueshiftof theCOstretchingmodeintheIRPDspectrumof[B12Cl11CO]¯andtheoreticallybytheinvestigationofitselectronicstructure.TheorientationoftheelectricfieldatthereactivesiteofB12Cl11¯resultsinanenergybarrierfortheapproachofpolarmoleculesandfacilitates the formation of Ng-adducts that are not detected with reactive cations like C6H5+.Basedonthesestudiesthenewchemicalconceptof“dipolediscriminatingelectrophilicanions”isintroduced.

References:

[1]M.R.Fagiani,X.Song,P.Petkov,S.Debnath,S.Gewinner,W.Schöllkopf,T.Heine,A.Fielicke,K.R.Asmis,Angew.Chem.Int.Ed.56501(2017).

[2]M.Rohdenburg,M.Mayer,M.Grellmann,C. Jenne,T.Borrmann,F.Kleemiß,V.A.Azov,K.R.Asmis,S.Grabowsky,J.Warneke,Angew.Chem.Int.Ed.Inpress(2017).

Fig.1

Page 11: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

11

AnomalousOptoelectronicPropertiesofNanostructuresfromDFTandTD-DFTCalculationsBryanM.WongDepartmentofChemical&EnvironmentalEngineeringandMaterialsScience&EngineeringProgram,UniversityofCalifornia-Riverside,Riverside,Californiahttp://www.bmwong-group.com

Nanostructures with π-conjugated orbitals continue to provide fascinating systems forunderstandingandprobingtheuniquechemicalbondinginteractionsinnanomaterials.Althoughπ-conjugation effects are intrinsically quantum-mechanical in nature (i.e., π-orbitaldelocalization/aromaticity has no classical analogue), these electronic effects have a profoundimpact on real material properties such as energy transfer, charge delocalization, andelectron/holemobility. Indeed, it is precisely these unique electronic effects that have ignitedimmenseefforts inthesynthesisofnewconjugatednanostructureswiththedesiredstructuralandelectronicproperties.Inthispresentation,Iwillhighlightrecentandongoingwork1-3inmygroup to understand the unusual optoelectronic properties that have emerged in recently-synthesizednanostructures.Specifically,wehavediscoveredthatthelowestexcitationenergy–inbothcycloparaphenylenecarbonnanoringsandrecently-synthesizedporphyrinnanotubes–surprisingly becomes larger as the size is increased, in contradiction with typical quantumconfinement effects. To rationalize these unusual electronic properties, we have carried outextensive investigations of excitonic effects by analyzing electron-hole transition densitymatrices,quasiparticleenergylevels,andotherelectronicchemicaldescriptorsusingbothDFTand time-dependent DFT. Based on our theoretical analyses, we find that both excitonic andaromaticeffectsplayavitalroleinunderstandingtheunusualphotoinduceddynamicsinthesenanostructures.1. S. I. Allec, N. V. Ilawe, and B. M. Wong, “Unusual Bandgap Oscillations in Template-Directed π-

ConjugatedPorphyrinNanotubes.”JournalofPhysicalChemistryLetters,7,2362(2016).2. B.M.WongandJ.W.Lee,“AnomalousOptoelectronicPropertiesofChiralCarbonNanorings…andOne

RingtoRuleThemAll.”JournalofPhysicalChemistryLetters,2,2702(2011).3. B. M. Wong, “Optoelectronic Properties of Carbon Nanorings: Excitonic Effects from Time-Dependent

DensityFunctionalTheory.”JournalofPhysicalChemistryC,113,21921(2010).

Page 12: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

12

StructuresofSiliconIonsandClusters:SilaneIonsandDopingontheNanoscaleOttoDopferInstitutfürOptikundAtomarePhysik,TUBerlin,GermanyDoping of bare silicon clusters at the nanoscale is relevant for applications in materials

science and astrochemistry. We present IR spectra and calculations of neutral and chargedSinXm(+)clusterswith firstrowelementsX=Be-Ogenerated ina laserdesorptionclustersourcecoupledtoamolecularbeam,atime-of-flightmassspectrometer,andanIRfreeelectronlaser[1-6]. Vibrational spectra of neutral SinXm clusters are obtained by resonant IR-VUVphotoionization,whilethoseofcationicSinXm+clustersaremeasuredfromIRphotodissociationof cold mass-selected SinXm+-Xe clusters. The structures are assigned by comparison tosophisticatedDFTcalculationscombinedwitheffectivebasinhoppingand/orgeneticalgorithmsearch routines. It is shown, that the cluster structures and their bonding characteristicssensitivelydependonthetypeandnumberofdopantatoms.Silanes and their derivatives and ions are fundamental species in a variety of chemical

disciplines,rangingfromorganicchemistryandmaterialssciencetoastrochemistryandtheoryofchemicalbonding.Incontrasttohydrocarbonions,almostnoinformationisavailableforthecorresponding SixHy+ cations. Here, IR spectra of SixHy+ produced in a supersonic plasmaexpansionofSiH4areinferredfromphotodissociationofcoldNeandArcomplexesobtainedinatandem quadrupole mass spectrometer coupled to an electron impact ionization source, anoctopoleiontrap,andanIR-OPOlaser.Theclustersarecharacterizedintheirgroundelectronicstatesbyquantumchemicalcalculationstoinvestigatetheeffectsofionization/protonationandAr/Necomplexationontheirgeometric,vibrational,andelectronicstructure.Wepresentinitialresults for Si2H6+, Si2H7+ and Si3H8+, which have complex potential energy surfaces,with low-energy isomers featuring unusual three-center two-electron (3c-2e) bonding [8-10]. Some oftheseclustersexhibitthenewconceptof“charge-inverted”hydrogenbonding.Resultsonelusiveprotonatedsilanolswillalsobepresented.

[1]M.Savoca,J.Langer,A.Lagutschenkov,D.J.Harding,A.Fielicke,O.Dopfer,J.Phys.Chem.A117,1158(2013)[2]M.Savoca,J.Langer,D.J.Harding,O.Dopfer,A.Fielicke,Chem.Phys.Lett.557,49(2013)[3]N.X.Truong,M.Savoca,D.J.Harding,A.Fielicke,O.Dopfer,Phys.Chem.Chem.Phys.16,22364(2014)[4]M.Savoca,J.Langer,D.J.Harding,D.Palagin,K.Reuter,O.Dopfer,A.Fielicke,J.Chem.Phys.141,104313(2014)[5]N.X.Truong,M.Savoca,D.J.Harding,A.Fielicke,O.Dopfer,Phys.Chem.Chem.Phys.17,18961(2015)[6]N.X.Truong,M.Haertelt,B.Jaeger,S.Gewinner,W.Schöllkopf,A.Fielicke,O.Dopfer,Int.J.MassSpectrom.395,1(2016)[7]N.X.Truong,B.Jaeger,S.Gewinner,W.Schöllkopf,A.Fielicke,O.Dopfer,J.Phys.Chem.C,submitted(2017)[7]M.Savoca,M.A.R.George,J.Langer,O.Dopfer,Phys.Chem.Chem.Phys.15,2774(2013)[8]M.Savoca,J.Langer,O.Dopfer,Angew.Chem.Int.Ed.52,1568(2013)[9]M.A.R.George,M.Savoca,O.Dopfer,Chem.Eur.J.19,15315(2013)

Page 13: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

13

Imaging,Understanding,andLeveragingBuriedInteractionsinSupramolecularAssemblies PaulS.WeissCaliforniaNanoSystemsInstituteandDepartmentsofChemistry&BiochemistryandMaterialsScience&Engineering,UCLA,LosAngeles,CA90095Structuraldomainsisself-assembledsystemsarewellknown.Thetypesofdomainboundariescanbesimplifiedbyusingsymmetricbuildingblocks.Likewise,interactionscanbedesignedintothebuildingblockstoaddstabilitytothesystems.Bydevelopingnewimagingtoolsthatletusvisualizetheseinteractionnetworks,wehavediscoveredthatburiednetworkscancrossstructuraldomainboundaries,regionsofdisorder,andsubstratestepedgesinmonolayersystems.1-3Theinteractions,theirrangesandtheconsequencesoftheseeffectswillbediscussed.1.HeadsandTails:SimultaneousExposedandBuriedInterfaceImagingofMonolayers,P.Han,A.R.Kurland,A.N.Giordano,S.U.Nanayakkara,M.M.Blake,C.M.Pochas,andP.S.Weiss,ACSNano3,3115(2009).2.Defect-TolerantAlignedDipoleswithinTwo-DimensionalPlasticLattices,J.C.Thomas,J.J.Schwartz,J.N.Hohman,S.A.Claridge,H.S.Auluck,A.C.Serino,A.M.Spokoyny,G.Tran,K.F.Kelly,C.A.Mirkin,J.Gilles,S.J.Osher,andP.S.Weiss,ACSNano9,4734(2015).3.MappingBuriedHydrogen-BondingNetworks,J.C.Thomas,D.P.Goronzy,K.Dragomiretskiy,D.Zosso,J.Gilles,S.J.Osher,A.L.Bertozzi,andP.S.Weiss,ACSNano10,5446(2016).On the Mechanism of Selective Adsorption of Ions to Aqueous Interfaces: Graphene/Water vs. Air/Water RichardJSaykallyDepartmentofChemistry,UniversityofCalifornia.ChemicalSciencesDivision,LawrenceBerkeleyNationalLaboratoryBerkeley,CA94720-1460Thebehaviorofionsataqueousinterfaceshasbeenasubjectofmuchcontroversyforoveracentury.Byexploitingthestrongcharge-transfer-to-solvent(CTTS)resonancesofselectedanionsinaqueouselectrolytes,theiradsorptionpropertieshavemeasuredbydeepUV-SHGspectroscopymethodsforbothair/waterandgraphene/waterinterfaces.Temperatureandconcentrationdependencesdeterminedbybothexperimentandcomputersimulationsfortheair/watercaserevealthatthestronginterfacialadsorptionobservedforweaklyhydratedionsisenthalpicallydrivenbyhydrationforcesandimpededbyanovelentropyeffect(capillarywavesuppression).Extensionofthisapproachtothewater-grapheneinterfacerevealsasurprisingsimilaritytotheair-watercase,albietwithverydifferentmechanisticdetails.OurrecentdevelopmentofabroadbanddeepUVSFGspectroscopytechniquehasproduceddetailedCTTSspectraofinterfacialions,forwhichcomparisonswithbulkCTTSspectraprovideadditionalnewinsights.

Page 14: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

14

Rizzuto,A.M.,Irgen-Gioro,Shawn,Eftekhari-Bafrooei,A.,Saykally,R.J."BroadbandDeepUVSpectraofInterfacialAqueousIodide"J.Phys.Chem.Lett.,7,3882-3885(2016).D.E.Otten,P.Shaffer,P.Geissler,R.J.Saykally,ElucidatingtheMechanismofSelectiveIonAdsorptiontotheLiquidWaterSurface,PNAS109,701(2012).D.L.McCaffrey,S.C.Nguyen,S.J.Cox,P.L.Geissler,H.Weller,A.P.Alivisatos,andR.J.Saykally,Selectiveadsorptionofionstothegraphene-waterinterfacestudiedbydeepUVsecondharmonicgenerationspectroscopyandtheoryInPreparation(2017).TheRichBondingMotifsofQuantumMaterialsTyrelM.McQueenDepartmentofChemistry,DepartmentofMaterialsScienceandEngineering,DepartmentofPhysicsandAstronomy,InstituteforQuantumMatter,TheJohnsHopkinsUniversityhttps://occamy.chemistry.jhu.eduAquantummaterialislooselydefinedasamaterialinwhichthereareoneormorehighlycorrelateddegreesoffreedomthatoftengiverisetoemergentbehaviorthatappearsgreaterthanthesumoftheindividualinteractions.Inthistalk,Iwillpresentourrecentworkonthediscoveryandsynthesisofnewquantummaterials,withaparticularfocusonelucidatingthephysicalprinciplesunderpinningnotonlytheobservedbondingmotifsbutalsotheprocessoftheirformationduringsynthesis.Exampleswillbedrawnfromouruseofsmallatomicclusters,assembledintoextendedthreedimensionalframeworks,torealizenewquantummagneticstates(e.g.condensedvalencebondsinLiZn2Mo3O8),oursuccessfulelectrondopingofatwodimensionalkagomespinliquid,andthecompetitionbetweenlocalizedanditinerantstates,andd-andf-orbtialcontributions,inSmB6.TheRoleofHydrogenBondinElectronTransportinMolecularJunctionsMicahWimmer1,TarakeshwarPilarisetty1,andVladimiroMujica1,21ArizonaStateUniversitySchoolofMolecularSciencesPhysicalSciencesCenterPSD-D102,Tempe,AZ852872SchoolofChemicalSciencesandEngineering,YachayTech,YachayCityofKnowledge,100119-Urcuqui,Ecuador.The use of local probe, e.g. STM, can shed new light on the properties of chemical bonds.Wepresent a theoretical and computational study of electron transport in molecular junctionsinvolving hydrogen bonds. While electron transport through covalent bonds has beenextensively studied, in recent work the focus has been shifted towards hydrogen-bondedsystems due to their ubiquitous presence in biological systems and their potential in formingnano-junctionsbetweenmolecularelectronicdevicesandbiologicalsystems.

This analysis allows us to significantly expand our comprehension of the experimentallyobserved result that the inclusion of hydrogen bonding in a molecular junction significantlyimpactsitstransportproperties,afactthathasimportantimplicationsforourunderstandingof

Page 15: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

15

transport through DNA, and nano-biological interfaces in general. We have explored theimplications of quasiresonant transport in short chains ofweakly-bondedmolecular junctionsinvolvinghydrogenbondstointerpretrecentexperimentsbyNishinoetalandexplaintheroleofFanoresonancesinthetransmissionpropertiesofthejunction.

GrapheneandGraphene-OxideBasedMembranesforFiltrationJeffreyGrossmanMIT,USATheuseofnanoporousgraphene-basedfilmsforfiltrationhasrecentlyemergedasapromisingapproach to reducethe energyconsumption and capital costs of molecular separations.Graphene and graphene-oxide aretwo-dimensional materials with very highmechanicalstrength, favorablesurface properties, and the potential to exhibit waterpermeability two ordersofmagnitude greater than that of themembranes usedcommerciallytoday.Thesystem-levelbenefits that thesekineticsaffordcanonlyberealized ifNPGmaterialcan be produced at scale. In thistalk, I will highlight our computational and experimentalworkon theproperties, synthesis, and performance of NPG-based materials forfiltrationapplications.NovelNanostructuresofBoron:Bowls,Drums,Cages,Nanotubes,andatomicLayerswithDiracCones VijayKumarDr.VijayKumarFoundation,Gurgaon,Haryana122001,IndiaCenterforInformatics,SchoolofNaturalSciences,ShivNadarUniversity,TehsilDadri,GautamBuddhaNagar,India

Boronisjustbeforecarbonintheperiodictableandtherehasbeenmuchinteresttoexploreifitcanhavenanostructuressimilartocarbonfullerenesandnanotubes.Researchinpastfewyearshasshownnovelstructuresofboronclustersaswellasstabilizationofatomic layersofboroncalledborophene. In this talk I shall discuss our recent findings fromab initio calculations onquasi-planar B84 and other clusters stabilized with hexagonal holes [1]. Further studies havebeencarriedoutwithdopingofmetalatomsinboronclusters.Ishallpresentresultsonmagicmetaldopedquasi-planar[2]anddrum-shapedM@B14andM@B16(M=transitionmetalatom)[3]clusterswhosestabilityhasbeenunderstoodusingadiskjelliummodelwithmagicbehaviorat12and24valenceelectrons.Assembliesofsuchdrumshapedclustersleadstotheformationofnanotubes.Forlargerclustersizes,metaldopedcageshavebeenobtained[4].FurtherIshallpresentresultsondifferentatomiclayersofboronstabilizedonmetalsurfaces[5],anddiscussthebondingcharacteraswellasDirac-conefeaturesinthesesystems.

Page 16: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

16

Acknowledgements:IgratefullyacknowledgemycollaboratorsA.B.Rahane,P.Saha,N.Sukumar,J. Karthikeyan, and P. Murugan who contributed to these studies. The calculations wereperformedusingMagusatSNU,CECRImachineaswell as resourcesatVKF.Financial supportfromITC-PACisthankfullyacknowledged.[1]A.B.RahaneandV.Kumar,Nanoscale,7,4055(2015).[2]P.Saha,A.B.Rahane,V.Kumar,andN.Sukumar,PhysicaScripta91,053005(2016)[3]P.Saha,A.B.Rahane,V.Kumar,andN.Sukumar,J.Phys.Chem.C(2017)[4]A.B.Rahane,P.Saha,N.Sukumar,andV.Kumar,tobepublished.[5]J.Karthikeyan,P.Murugan,andV.Kumar,tobepublished.PlayingwithElectronsin2Dand3DBoridesAnastassiaN.Alexandrova,P.J.Robinson,ZhihaoCui,ElisaJimenez-IzalDepartmentofChemistryandBiochemistry,UniversityofCalifornia,LosAngeles,andCaliforniaNanoSystemsInstitute,USAI will present a prediction of several 2D materials with interesting electronic properties:isotropicandanisotropic conductivity, andmagnetism. Iwill alsopresent thenewmechanismfor howan extremely correlated solid, SmB6, exhibits the Sm2+/Sm3+mixed valency. A highly-non-adiabatic nature of the Sm-boron bonding is found responsible, as supported by TyrelMcQueen’sexperiment.Theunifying themeof the findings to-be-presented is thepromiscuousbondingnatureofboron:whenboundtometals, itcanbecovalent,cationic,oranionic,withapossible fluxionality between these bonding scenarios even at room temperature andwithoutextraforces.[1]Nandula,A.;Trinh,Q.T.;Saeys,M.;Alexandrova,A.N.OriginofExtraordinaryStabilityofSquarePlanarCarbonAtomsinSurfaceCarbidesofCobaltandNickel.Angew.Chem.Int.Ed.2015,54,5312-5316.[2] Jimenez-Izal, E.; Saeys,M.; Alexandrova, A.N.MetallicandMagnetic2DMaterialsContainingPlanarTetracoordinatedCandN.J.Phys.Chem.C2016,120,MarkGordonFestchriftIssue,21685–21690.[3]Robinson,P.J.;Zhang,X.;McQueen,T.;Bowen,K.H.;Alexandrova,A.N.SmB6-ClusterAnion:CovalencyInvolvingf-Orbitals.J.Phys.Chem.A2017,121,1849–1854.[4]Cui,Z.;Jimenez-Izal,E.;Alexandrova,A.N.Predictionoftwo-dimensionalboronphasewithanisotropicelectricalconductivity.J.Phys.Chem.Lett.2017,8,1224–1228.[5] Robinson, P.J.; Zhang, X.; McQueen, T.; Bowen, K. H.; Alexandrova, A. N. SmB6 – a Non-Born-OppenheimerSolidwithaNewTypeofMixedValency.2017,inpreparation.

Page 17: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

17

ChemicalBondingSteersExcitedStateDynamicsinNanoscaleMaterialsOlegV.PrezhdoUniversityofSouthernCalifornia,LosAngeles

Our group’s research focuses on modeling non-equilibrium processes in condensed phasesystemsexplicitlyintime-domain.Wedevelopapproachesfornon-adiabaticmoleculardynamicsand time-domain density functional theory [1-4], and apply them to a variety of excited stateelectron-vibrationalprocessesinnanoscalematerials.Thesoftwaretoperformthesesimulations[5-7] are freely available at http://gdriv.es/pyxaid. A significant fraction of the efforts ismotivated by photovoltaic and photo-catalytic applications. The talk will highlight theimportance of chemical bonding in the excited state dynamics, including several, perhapscounter-intuitive, examples investigated recently both by pump-probe spectroscopies andtheoreticallyinourgroup.Various chromophores are used to sensitizeTiO2 to achievephoto-induced charge separation.Most chromophores have a significant band-gap to avoid rapid electron-hole recombination.Surprisingly, graphene – a metal (!) – can be used as a chromophore as well. The chargeseparationisfasterthantheelectron-holerecombinationduetochemicalbondingbetweenTiO2andgraphene[8].Similarly, surface plasmon excitations of metallic particles leads to electron transfer to TiO2substrate.Thetraditionalmechanismassumesthatplasmonsrapidlydephaseintoelectron-holepairs, and after that an electron is transferred. However, electrons and holes should rapidlyrecombine inmetallic systems.Our simulations showed that charge separated states can formimmediatelyduringplasmonexcitation[9].Thepredictionwasconfirmedexperimentallyayearlater[10]. ThismechanismreliesonstronginteractionbetweenmetallicparticlesandTiO2.Incomparison, the traditionalmechanismoperates formetalonMoS2,because the interaction isweak.Long non-conjugated bridges between donor and acceptor species are viewed as insulators,slowingdownelectrontransfer.Acounter-intuitiveobservation,suchbridgeconnectingaCdSequantumdot andC60 accelerates charge separation. We rationalize this experimentby strongelectron-phononcouplingmediatedbythehigh-frequencyvibrationsofthebridge[11].Surface defects are viewed as a negative attribute of semiconductor quantum dots, andsignificantsyntheticeffortsarededicatedtoeliminatethem.Interestingly,CdvacanciesonCdSsurfacequenchluminescence;however,Svacanciesdonot.WerationalizethisbytheabilityofCd-richsurfacesto“heal”defectsmuchbettercomparedtoS-richsurfaces:excessnon-metallicSismuchmoreselectiveincreatingchemicalbondsthanexcessmetallicCd[12,13].We also show that certain types of defects accelerate photo-induced charge separation inquantum-dot/molecular-chromophore systems, while maintaining slow charge recombination[14].Wedemonstratehowtheelectrontransfermechanismchangesfromnon-adiabatictoadiabaticasaresultofchemicalbondinginducedbysurfacedefects[15].Finally,wewilldiscussAuger-typeprocessesthatarecommoninmostnanoscalematerials. Inparticular, in semiconductor quantum dots, they are responsible for fast losses of electronenergy to heat. They energy loss can be avoidedwith hole trapping by appropriately bondedligands[16].Discoveredrecentlyintheexperiment-theorycollaboration[17,18],anewtypeof

Page 18: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

18

electrontransfer–Augerassistedelectrontransfer–eliminatestheMarcusinvertedregionandaccelerates photon-induced charge separation. The mechanism relies on chemical interactionbetweenthequantumdotelectrondonorandmolecularacceptor.1. C.F.Craig,W.R.Duncan,O.V.Prezhdo,”Trajectorysurfacehoppinginthetime-dependentKohn-Shamtheoryforelectron-nucleardynamics”,Phys.Rev.Lett.,95163001(2005).

2. B. F. Habenicht, O. V. Prezhdo, ”Electron and hole relaxation dynamics in a semiconducting carbonnanotube”,Phys.Rev.Lett.,100,197402(2008),chosenforVirt.J.ofUltrafastScience,June2006.

3. S.R.Fischer,B.F.Habenicht,A.B.Madrid,W.R.Duncan,O.V.Prezhdo,“Regardingthevalidityofthetime-dependentKohn-Shamapproachforelectron-nucleardynamicsviatrajectorysurfacehopping”,J.Chem.Phys.,134,024102(2011);chosenforJan.24,2011issueofVirt.J.NanoscaleSci.&Tech.

4. L.-J.Wang,A.Akimov,O.V.Prezhdo,“Recentprogressinsurfacehopping:2011-2015”,J.Phys.Chem.Lett.,7,2100-2112(2016).

5. A.V.Akimov,O.V.Prezhdo,”ThePYXAIDprogramfornon-adiabaticmoleculardynamicsincondensedmattersystems”,J.Chem.Theor.Comp.,9,4959(2013).

6. A. V. Akimov, O. V. Prezhdo, ” Advanced capabilities of the PYXAID program: integration schemes,decoherenceeffects,multiexcitonicstates,andfield-matterinteraction”,J.Chem.Theor.Comp.,10,789(2014).

7. S. Pal, D. J. Trivedi, A. V. Akimov, B. Aradi, T. Frauenheim, O. V. Prezhdo, “Nonadiabatic moleculardynamicsforthousandatomsystems:atight-bindingapproachtowardPYXAID”,J.Chem.Theor.Comp.,12,1436(2016).

8. R. Long, N. English, O. V. Prezhdo, “Photo-induced charge separation across the graphene-TiO2interfaceisfasterthanenergylosses:atime-domainabinitioanalysis”,J.Am.Chem.Soc.,134,14238(2012);chosenforJACSSpotlight.

9. R.Long,O.V.Prezhdo“Instantaneousgenerationofcharge-separatedstateonTiO2surfacesensitizedwithplasmonicnanoparticles”,J.Am.Chem.Soc.,136,4343(2014).

10. K. Wu, et al., “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfertransition”,Science,349,6248(2015).

11. V. V. Chaban, V. V. Prezhdo, O. V. Prezhdo, “Covalent linking greatly enhances photoinducedelectron transfer in fullerene-quantum dot nano-composites: Time-domain ab initio study”, J. Chem.Phys.Lett.,4,1(2013).

12. H.Wei,C.M.Evans,B.D. Swartz,A. J.Neukirch, J. Young,O.V.Prezhdo,T.D.Krauss, “Colloidalsemiconductorquantumdotswithtunablesurfacecomposition”,NanoLett.,12,4465(2012).

13. K. L Sowers, Z. T. Hou, J. J. Peterson, B. Swartz, S. Pal, O. Prezhdo, T. D. Krauss, “PhotophysicalpropertiesofCdSe/CdScore/shellquantumdotswithtunablesurfacecomposition”,Chem.Phys.,471,24-31(2016).

14. R.Long,N. J.English,O.V.Prezhdo,”Defectsareneeded for fastphoto-inducedelectron transferfrom a nanocrystal to a molecule: Time-domain ab initio analysis”, J. Am. Chem. Soc., 135, 18892(2013).

15. D.N.Tafen,R.Long,O.V.Prezhdo,”DimensionalityofnanoscaleTiO2determinesthemechanismofphotoinducedelectroninjectionfromaCdSenanoparticle”,NanoLett.,14,1790(2014).

16. D.J.Trivedi,L.J.Wang,O.V.Prezhdo,“Auger-mediatedelectronrelaxationisrobusttodeepholetraps:time-domainabinitiostudyofCdSequantumdots”,NanoLett.,15,2086-2091(2015).

17. H.Zhu,Y. Yang,K.Hyeon-Deuk,M.Califano,N. Song,Y.Wang,W.Zhang,O.V. Prezhdo,T. Lian,NanoLett.,14,1263(2014).

18. K. Hyeon-Deuk, J. Kim, O. V. Prezhdo, “Ab initio analysis of Auger-assisted electron transfer”, J.Phys.Chem.Lett.,6,244(2015).

Page 19: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

19

SpectroscopicStudiesoftheAlkalineEarthOxidesandHypermetallicOxidesM.C.Heaven1,D.J.Frohman1,M.N.Sullivan1,K.J.Mascaritolo1,A.R.Dermer1,M.L.Theis1,andW.M.Fawzy21.DepartmentofChemistry,EmoryUniversity,Atlanta,GA.2.DepartmentofChemistry,MurrayStateUniversity,Murray,KYOurstudiesofgroupIIAoxideshavetwoprimarymotivations. Thefirst isassociatedwiththepotentialforcreatingoxideionsunderultra-coldconditions. Thealkalineearthatomiccationscanbesubjectedtoefficient lasercoolingandcapturedasCoulombcrystals inradiofrequencytraps. Metaloxide ionsmay thenbe formedunderconditionswhere theyaresympatheticallycooledbythesurroundingatomicions.Spectroscopicdatafortheoxideionsareneededforthecharacterization of internal state population distributions and state manipulations. Initialexperiments of this kindhave focusedondiatomic ions (e.g., BaO+, CaO+). However, it is alsoapparent that ultra-cold polyatomic ionsmay be generated in a similar fashion. TheHudsongroupatUCLAhaspreliminarydataindicatingtheformationofCaOBa+inaCoulombcrystal.Theneutral MOM hypermetallic oxides are of interest in their own right, havingmarkedly multi-reference singlet ground states. We report electronic spectra and theoretical calculations forBeOBe, MgOMg and CaOCa. These measurements represent the first steps towardscharacterizingtheMOM+cationsbymeansoftwo-colorphotoionizationspectroscopy. A second interest is in the ability of the oxides to form stable anions. For example,theoreticalpredictionsforBeO-yieldanelectronbindingenergyof2.15eVandtheexistenceoftwo dipole-bound electronically excited states (Gutsev et al. CPL, 276, 13 (1997)). We haveexaminedthesepredictionsbymeansofslowelectronvelocitymap imagingspectroscopy. Anaccurateelectronaffinity,molecularconstantsfortheanionandthebindingenergyofthefirstexciteddipoleboundstatehavebeendetermined.OneStepataTime -Unraveling theFormationof InterstellarGrainsunderSingleCollisionConditionsRalfI.KaiserDepartmentofChemistry,UniversityofHawaiiatManoa,Honolulu,[email protected] the last years, the energetics and dynamics of elementary reactions of the simplestsilicon-bearing radical, silylidyne (SiH), with hydrocarbons and withmolecular oxygen undersingle collision conditions and the inherent formation of small silicon-bearingmolecules havereceivedconsiderableattentionbothfromtheexperimentalandtheoreticalviewpointsspanningastrochemistry, physical organic chemistry, and chemical bonding. An understanding of thesedynamics is vital to explore the underlyingmolecular processes involved in the formation of(organo)silicon-bearing molecules in cold molecular clouds and in outflows of circumstellarenvelopesofAsymptoticGiantBranch(AGB)starsasthesespeciescanactasmolecularbuildingblocks of interstellar silicates and silicon-carbide based grains. Bymerging crossedmolecular

Page 20: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

20

beams with electronic structure calculations, we present new data on the formation andstructures of small (organo)silicon molecules in extraterrestrial environments. These studiesyieldaunifiedpictureoftheenergeticsanddynamicsofgroundstatesilylidyneradicalreactionswith prototype hydrocarbonmolecules as well as with molecular oxygen and aid in a betterunderstandinghowmolecularbuildingblockstointerstellargrainsareformedfromthebottomup inextremeenvironments. Implicationsarealsodiscussedhow these interstellargrains cancatalyze the formationofbiorelevantmoleculessuchasaminoacids,glycerol,andphosphorusbearing molecules (phosphates, diphosphates) in cold molecular clouds as unraveledexperimentallyviaexposureofinterstellaranalogicestoionizingradiationandprobingthenew-lyformedmoleculesviasinglephotovacuumultravioletphotoionizationcoupledwithreflectrontimeofflightmassspectrometry.R.I.Kaiser,X.Gu,ChemicalDynamicsoftheFormationoftheEthynylsilylidyneRadical(SiCCH(X2Π))intheCrossed Beam Reaction of Ground State Silicon Atoms (Si(3P)) with Acetylene (C2H2(X1Σg+)). Journal ofChemicalPhysics131,104311/1-6(2009).T.Yang,B.B.Dangi,P.Maksyutenko,R.I.Kaiser,L.W.Bertels,M.Head-Gordon,ACombinedExperimentalandTheoreticalStudyontheFormationoftheElusive2-Methyl-1-Silacycloprop-2-enylideneMoleculeunderSingleCollisionConditionsviaReactionoftheSilylidyneRadical(SiH(X2Π))withAllene(H2CCCH2;X1A1)andD4-Allene (D2CCCD2; X1A1). J. Phys. Chem. A (Special Issue 50 Years Molecular Dynamics) 119, 12562-12578(2015).T. Yang, A.MThomas, B.B. Dangi, R.I. Kaiser,Untangling theReactionDynamicsof theSilylidyneRadical(SiH;X2Π)withAcetylene(C2H2;X1Σg+).Chem.Phys.Lett654,58-62(2016).T.Yang,B.B.Dangi,P.Maksyutenko,R.I.Kaiser,L.W.Bertels,M.Head-Gordon,Formationofthe2-Methyl-1-Silacycloprop-2-EnylideneMoleculefromCrossedBeamReactionoftheSilylidyneRadical(SiH;X2Π)withMethylacetylene(CH3CCH;X1A1)andD4-Methylacetylene(CD3CCD;X1A1).TheJournalofPhysicalChemistryA120,4872-4883(2016).T. Yang, A.M. Thomas, B.B. Dangi, R. I. Kaiser, Formationof the2,3-Dimethyl-1-silacycloprop-2-enylideneMolecule via the Crossed Beam Reaction of the Silylidyne Radical (SiH; X2Π) with Dimethylacetylene(CH3CCCH3;X1A1g).TheJournalofPhysicalChemistryA1207262–7268(2016).T.Yang,B.B.Dangi,A.Thomas,R.I.Kaiser,ACombinedCrossedMolecularBeamandAbInitioStudyontheFirstGas-PhaseSynthesisof1-Silacyclopenta-2,4-diene(Silole;SiC4H6)AngewandteChemie–InternationalEdition55,7983-7987(2016).

Page 21: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

21

StructuresandBondinginMultimetallicClusterAnionsStefanieDehnenFachbereichChemieandWissenschaftlichesZentrumfürMaterialwissenschaften,Philipps-UniversitätMarburg,Hans-Meerwein-Straße,D-35032Marburg,Germany.*[email protected],non-oxidicmetallatesaswellasmetallideshavebeenactively investigatedbymanyresearchgroupsoverthepastdecadesregardingbasicpropertiesaswellastheirpotentialuseasinnovative materials.1 Recently, binary main group element aggregates proved to be usefulsynthetictoolsformultinarytransitionmetal-maingroup(semi-)metalclusters.2-4Reactions of chalcogenidoetrelate ions [E14xE16y]q– (E14 = Ge, Sn, Pb; E16 = S, Se, Te) or theinverselypolarizedpnictogentrielide/tetrelideions[E13/14xE15y]q–(E13/14=Ga,In,Tl;Ge,Sn,Pb;E15=As,Sb,Bi)with transitionmetal (M)compounds lead to the formationofunprecedentedclusteranionslike[Rh3(CN)2(PPh3)4(µ3-Se)2(µ-PbSe)]3–,[U@Bi12]3–(seefigure)or{[CuSn5Sb3]2–}2. These exhibit unusual geometric and electronic structures that position them in betweenelectronprecisemoleculesandsuperatoms.5-10

References:[1]P.Feng,X.Bu,N.Zheng,Acc.Chem.Res.2005,38,293.[2]F.Lips,R.Clérac,S.Dehnen,J.Am.Chem.Soc.2011, 133, 14168. [3] S. Santner, J. Heine, S. Dehnen, Angew. Chem. Int. Ed. 2016, 54, 886. [4] N.W.Rosemann,J.P.Eußner,A.Beyer,S.W.Koch,K.Volz,S.Dehnen,S.Chatterjee,Science2016,352,1301.[5]B.Weinert,F.Müller,K.Harms,S.Dehnen,Angew.Chem.Int.Ed.2014,53,11979.[6]G.Thiele,Y.Franzke,F.Weigend,S.Dehnen,Angew.Chem.Int.Ed.2015,54,11283.[7]S.Mitzinger,L.Broeckaert,W.Massa,F.Weigend,S.Dehnen,Nat.Commun.2016,7,10480. [8]N.Lichtenberger,R.J.Wilson,A.R.Eulenstein,W.Massa,R.Clérac,F.Weigend,S.Dehnen,J.Am.Chem.Soc.2016,138,9033.[9]R.J.Wilson,L.Broeckaert,F.Spitzer,F.Weigend,S.Dehnen,Angew.Chem.Int.Ed.2016,55,11775.[10]R.J.Wilson,S.Dehnen,Angew.Chem.Int.Ed.2017,56,3098.

Page 22: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

22

Structural and Electronic Properties of Small Vanadium, Vn0,+, clusters and oftheHydratedVnH2OandVn+H2O,n≤13,SystemsMiguelCastroDepartamentodeFísicayQuímicaTeórica,DEPg.FacultaddeQuímica,UniversidadNacionalAutónomadeMéxico,Del.Coyoacán,MéxicoD.F.,C.P.04510,MéxicoBy means of density functional theory, BPW91-D2 all-electron calculations with dispersioncorrections,thelow-lyingstatesofVnandVn+arestudiedinthiswork.Theobtainedresultsrevealthat dimers motifs, acting as basic building blocks, produce distorted structures for these smallclusters. The estimated properties for Vn and Vn+ agree with experimental results for ionizationenergies(IE),dissociationenergies,andIRspectra.WefoundthatmultipleisomersareinvolvedinthespectrumofsomeVn+ionsandthattheIEsarereducedconsiderablybywaterattachmentintheVn-H2Osystems.Wateradsorptiononthesmallvanadiumclusters,Vn-H2OandVn+-H2O,n≤13, isquite important to understanding the features of the metal-solvation process, very difficult todetermine experimentally. Throughmetal-oxygen bonding, V-O, water adsorption takes place onatopsitesof theVn+ cations.This is confirmedby the resultsofvibrationalanalysis,whichare inagreementwithreportedexperimentalfindings,revealingsmallblueandredshiftsofthebendingfrequencyof the adsorbedwatermolecule. InneutralVn-H2Ohydrogenbonding also contributes.Remarkably, inV5-H2Othemetalatomlies inbetweentheOandHatoms, formingagosticbonds,producingactivationoftheO-Hbond:Vnclustersshowsomecatalyticbehaviorintheirinteractionwithwatermolecules.ReactivityandBondingofPolycyclicAromaticHydrocarbons:ShapeandSizeDependenceIsraelFernándezDepartamentodeQuímicaOrgánicaI,FacultaddeCC.Químicas,UniversidadComplutensedeMadrid,28040-Madrid,Spain,e-mail:[email protected] Diels-Alder reactivity and selectivity involving Polycyclic Aromatic Hydrocarbons (PAHs)have been explored computationally within the DFT framework. To this end, the [4+2]-cycloaddition reactions betweenmaleic anhydride and both planar PAHs[1] and buckybowls[2]havebeenstudiedbymeansoftheActivationStrainModel[3](ASM)ofreactivityinconjunctionwiththeEnergyDecompositionAnalysis(EDA)method.Forbowl-shapedPAHs,itwasfoundthatthereisasmoothconvergencetotheC60barrierenergyifthesizeofthebuckybowlisincreased(seeFigure).[5]Similarly,theprocessinvolvingthebayregions of planar PHAs becomes more and more exothermic and the associated activationbarriers become lower and lower when the size of the system increases.[5] This enhancedreactivity follows an exponential behavior whose maximum can be extrapolated for theanalogous process involving graphene. In addition, the influence of the presence of ametallabenzenefragmentinthesystemonthereactivityshallbealsodiscussed.[6]

Page 23: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

23

References:[1] E.H.Fort,P.M.Donovan,L.T.Scott,J.Am.Chem.Soc.2009,131,16006.[2] L.T.Scott,Chem.Soc.Rev.2015,44,6464.[3] I.Fernández,F.M.Bickelhaupt,Chem.Soc.Rev.2014,43,4953.[4] Y.García-Rodeja,M.Solà,F.M.Bickelhaupt,I.Fernández,Chem.Eur.J.2016,22,1368.[5] Y.García-Rodeja,M.Solà,I.Fernández,Chem.Eur.J.2016,22,10572.[6] Y.García-Rodeja,I.Fernández,Chem.Eur.J.2017,doi:10.1002/chem.201700551.BondingAnalysisandSynthesisofBoraneComplexesXuenianChenSchool of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced EnergyMaterials,HenanNormalUniversity,Henan,China,453007Boron,locatedinthesecondperiodandgroup3Aintheperiodictable,istheonlyelementofthisgroupthatcanbeconsiderednonmetallic.Afamilyofwell-knownboroncontainingcompoundsiscalledboranes,whichcontainonlyboronandhydrogen.Thedeficiencyinvalenceelectronsisthetypicalpropertyofsuchtypeofcompoundsthathasattractedgreatattentionofresearchers.Ontheotherhand,althoughboronisconsideredasnonmetallicelement,itappearstobepositivecharge in borane complexes because the electronegativity of boron (2.0) is less than that ofhydrogen(2.1).Thus, thehydrogenofboranes is “hydridic”orcalledhydride,e.g. theycarryapartial negative charge whichmeans that the hydride of boranes could show the Lewis baseproperty.Therefore,boranes,suchasthesimplestborane,BH3,couldbeamphiproticintermsofinorganic chemistry. It is capable of acting as either a Lewis acid using its empty orbital or aLewis base using its hydride in different reactions. Boranes could also be described as eitherelectrophilesornucleophilesintermsoforganicchemistry.TheLewisacidpropertyofboranesiswell-known,while itsLewisbasepropertyis littleknown.It isthenecleophilicofhydrideofboranes that results in interesting reactions. In this topic,wewillpresent several examplesofhydride of boranes causing neclophilic reactions which lead to the formation of new boranecomplexes.References:

Diels-Alder Reactivity– +

Page 24: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

24

1.Chen,X.;Zhao,J.-C.;,Shore,S.G.Acc.Chem.Res.,2013,46,2666-2675.2.Li,H.;Ma,N.;Meng,W.;Gallucci,J.;Qiu,Y.;Li,S.;Zhao,Q.;Zhang,J.Zhao,J.-C.;Chen,X.;J.Am.Chem.Soc.,2015,137,12406-12414.3.Chen,X.;Bao,X.;Zhao,J.-C.;Shore,S.G.J.Am.Chem.Soc.,2011,133,14172-14175.4.Chen,X.;Zhao,J.-C.;Shore,S.G.J.Am.Chem.Soc.,2010,132,10658–10659.5.Chen,X.;Zhang,Y.;Wang,Y,;Zhou,W.;Knight,D.A.;Yisgedu,T.B.;Huang,Z.;Lingam,H.K.;Billet,B.;Udovic,T.J.;Brown,G.M.;Shore,S.G.;Wolverton,C.;Zhao,J.-C.Chem.Sci.,2012,3,3183-3191.6. Chen, X.; Gallucci, J.; Campana, C.; Huang, Z.; Lingam,H. K.; Sheldon G. Shore, S. G.; Zhao, J.-C.Chem.Commun.,2012,48,7943-7945.7.Chen,X.;Bao,X.;Billet,B.;Shore,S.G.;Zhao,J.-C.Chem.-Eur.J.2012,18,11994–11999.TBAMarcelaBeltranUniversidadNacionalAutonomadeMexico ComputationalMaterialsDiscoveryArtemR.OganovSkolkovoInstituteofScienceandTechnology,5NobelSt.,Moscow143026,Russia.StonyBrookUniversity,NY11794-2100Recentmethods of crystal structure prediction have openedwide opportunities for exploringmaterialsatextremeconditionsandperformcomputationalscreeningformaterialswithoptimalproperties for various applications. In my laboratory, we have developed a very powerfulevolutionaryalgorithmUSPEX[1,2],enablingpredictionofboththestablecompoundsandtheircrystal structures at arbitrary conditions, given just the set of chemical elements. Recentdevelopments includemajor increase of efficiency and extensions to low-dimensional systemsandmolecularcrystals[3](whichallowedlargestructurestobehandledeasily,e.g.Mg(BH4)2[4]andH2O-H2[5])andanewtechniquecalledevolutionarymetadynamics[6].SomeoftheresultsthatIwilldiscussinclude:1.Theoreticalandexperimentalevidenceforanewpartiallyionicphaseofboron,γ-B[7]andaninsulatingandopticallytransparentformofsodium[8].2.Predictedstabilityof“impossible”chemicalcompoundsthatbecomestableunderpressure–e.g.Na3Cl,Na2Cl,Na3Cl2,NaCl3,NaCl7[9],Mg3O2andMgO2[10].3. Novel compounds in the C-H-O, N-H andMg-Si-O systems, and implications for interiors ofgiantplanets.4.Novelcompoundsofhelium,stableatexperimentallyreachablepressures,Na2HeandNa2HeO[11].5. Extended techniques (e.g., multiobjective optimization [12]) and their applications to thediscoveryofnovelsuperhard,thermoelectricetc.materialswillbehighlighted.

Page 25: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

25

References[1]OganovA.R.etal,J.Chem.Phys.124,244704(2006).[2]LyakhovA.O.etal.,Comp.Phys.Comm.184,1172-1182(2013).[3]ZhuQ.etal,ActaCryst.B68,215-226(2012).[4]ZhouX.-F.etal,Phys.Rev.Lett.109,245503(2012).[5]QianG.R.etal.Sci.Rep.4,5606(2014).[6]ZhuQ.etal,Cryst.Eng.Comm.14,3596-3601(2012).[7]OganovA.R.etal,Nature457,863(2009).[8]MaY.etal,Nature458,182(2009).[9]ZhangW.W.etal,Science342,1502-1505(2013).[10]ZhuQ.etal.,Phys.Chem.Chem.Phys.15,7796-7700(2013).[11]DongX.,etal.,NatureChemistry,inpress(2017).[12]KvashninA.G.,etal.,J.Phys.Chem.Lett.,20178,755–764(2017).SingleAtomCatalysis:ASurfaceScienceApproachGarethS.ParkinsonInstituteofAppliedPhysics,TUVienna,Austria*parkinson@iap.tuwien.ac.atSingleatomcatalysisisarapidlyemergingbutcontroversialareaofcatalysisresearchthataimstomaximizetheefficientusageofpreciousmetalsthroughtheuseofsingleatomactivesites[1].Althoughcatalyticactivityhasbeendemonstratedforseveralsingleatomcatalystsystems, theinabilitytoaccuratelycharacterizeacatalystbasedonsingleatomactivesitesensuresthatthatthefieldremainscontroversial,andlittleisreallyknownabouthowasingleatomadsorbedonametaloxidesupportcancatalyzeachemicalreaction.Inthislecture,Iwilldescribehowweareaddressing the crucial issues of stability and reaction mechanism using a surface scienceapproach. The work is based on the magnetite (001) surface, which exhibits an unusualreconstruction based on subsurface cation vacancies [2]. A remarkable property of thisreconstructionisthatitstabilizesorderedarraysofmetaladatoms(ofalmostanyvariety)withanearestneighbordistanceof0.84nmtotemperaturesashighas700K[3].Crucially,becausethegeometryoftheadatomsisuniformandpreciselyknown,reactivityexperimentsareperformedonawell-definedmodelsystem,andtheoreticalcalculationscanbeperformedtoshedlightonthemechanismsunderlying catalytic activity anddeactivation. Several examples of our recentworkwillbeusedtoillustratethetrendswehavediscoveredtodate, includinghowstrongCOadsorptiondestabilizesPdandPtadatomsleadingtomobilityandrapidsintering[4],andhowextraction of lattice oxygen from the metal-oxide is central to catalytic activity in the COoxidationreaction[5;6].[1] X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-Atom Catalysts: A New Frontier inHeterogeneousCatalysis,AccountsofChemicalResearch461740-1748(2013);10.1021/ar300361m[2] R. Bliem, E.McDermott, P. Ferstl,M. Setvin, O. Gamba, J. Pavelec,M.A. Schneider,M. Schmid,U.Diebold, P. Blaha, L. Hammer, G.S. Parkinson, Subsurface cation vacancy stabilization of themagnetite(001)surface,Science3461215-1218(2014);10.1126/science.1260556

Page 26: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

26

[3] G.S.Parkinson,Ironoxidesurfaces,SurfaceScienceReports71272-365(2016);[4] G.S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha, U. Diebold,CarbonMonoxide-InducedAdatomSinteringinaPd–Fe3O4ModelCatalyst,NatureMaterials12724-728(2013);10.1038/nmat3667[5] R.Bliem,J.vanderHoeven,A.Zavodny,O.Gamba,J.Pavelec,P.E.deJongh,M.Schmid,U.Diebold,G.S.Parkinson,AnAtomic-ScaleViewofCOandH2OxidationonaPt/Fe3O4ModelCatalyst,AngewandteChemieInternationalEdition5413999–14002(2015);10.1002/anie.201507368[6] R.Bliem,J.E.S.vanderHoeven,J.Hulva,J.Pavelec,O.Gamba,P.E.deJongh,M.Schmid,P.Blaha,U.Diebold,G.S.Parkinson,DualroleofCOinthestabilityofsubnanoPtclustersattheFe3O4(001)surface,ProceedingsoftheNationalAcademyofSciences1138921-8926(2016);10.1073/pnas.1605649113Confinement-InducedReactivityinZeoliteCatalysisR.Rohling,[a]E.Uslamin,[a]E.Khramenkova,[b]E.J.M.Hensen,[a]E.A.Pidko[a,b]*[a]Inorganic Materials Chemistry, Department of Chemical Engineering & Chemistry, Eindhoven University ofTechnology,Eindhoven,TheNetherlands[b] Theoretical Chemistry group, Laboratory of Solution Chemistry for Advance Materials and Technologies, ITMOUniversity,St.Petersburg,RussiaNon-covalent interactions between the substratemolecules and confining environment of theenzymaticactivesitesgiverisetomolecularrecognition,bindingandcatalytictransformationsinmany biological systems. Billions of years of evolutionary pressure have tailored the enzymeactive site environmentswith functionalities precisely positioned to be complementary to thetransition states of the reactions they catalyze.[1] Typically the molecular recognition ofsubstrates and transition states by enzymatic active sites stems from the concerted action ofmultiple non-covalent substrate-catalyst interactions that may be individually weak butcollectively become very important.[2] In chemocatalysis, however, conventional mechanisticmodelsandreactivitytheoriespredominantlyfocusontheso-calledsingle-siterationalizationofthe catalytic phenomenon. In the respective models, the intrinsic chemistry of the isolatedreactiveensembleisthoughttobekeytothecatalyticperformanceoftheoverallsystem.Inthislecture, Iwilldiscusshow themolecular recognition-typephenomenacanbecomeadominantfactordeterminingthecatalyticperformanceoflow-silicazeolitecatalysts.

Figure1.AprincipleschemefortheconversionofcellulosicbiomasstoaromaticsAsashowcaseexample,wewilldiscussaDiels-AldercycloadditionDehydration(DAD)reactionofDMFwithethyleneovercation-exchangedzeolitestoproducebio-aromaticproducts[3](Figure1). A crucial finding of this study is that the catalytic performance of low-silica zeolites isgovernedby a concert action of all accessible cationic-sites inside the zeolitemicropores. TheDAD reactivity does not follow the Lewis acidity trend of the exchangeable cations. For allelementary steps of the DAD process, molecular recognition effects are themain factors that

Page 27: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

27

determine the kinetics of the individual transformations. The optimal properties of theconfinementspaceforthisreactionareprovidedbyKYzeolite.Catalyticexperimentsconfirmthetheoreticallypredictedreactivitytrends.[1]A.J.Neel,M.J.Hilton,M.S.Sigman,F.DeanToste,Nature2017,543,637[2]S.J.Bencovic,S.A.Hammes-Schiffer,Science2003,301,1196[3]J.J.Pacheco,M.E.Davis,Proc.Natl.Acad.Sci.USA2014,111,8363Modeling Chemical Bond at Electrochemical Interfaces: an Approach fromFirstPrinciplesPhilippeSauteta,StephanN.Steinmannba)DepartmentofChemicalandBiomolecularengineering,UniversityofCalifornia,LosAngeles,LosAngeles,CA90095,UnitedStatese-mail:[email protected])UnivLyon,CNRS,LaboratoiredeChimie,EcoleNormaleSupérieuredeLyon46alléed’Italie,69007LyonCedex07,France Electrified interfaces are central for electrocatalysis, batteries and molecular electronics.Experimental characterization of these complex interfaces with atomic resolution is highlychallenging. First principlesmodeling couldprovide a linkbetween themeasurable quantitiesand an atomic scale understanding. However, such simulations are far from straightforward.Although approaches that include the effect of the potential and the electrolyte have beenproposed, detailed validation has been scarce and "indirect" since atomically resolvedexperimentalstudiesofsystemsthatcanbeconvincinglysimulatedarescarce.Wewilldiscussinthislecturehowbondingbetweenamoleculeandametalsurfaceisaffectedby the applied potential. After presenting CO2 adsorption on Ni and Cu, we introduce in thislecture the adsorption of pyridine on Au(111) as a convenient and relevant model: theadsorption mode of pyridine switches as a function of the electrochemical potential. Wedemonstrate that the primitive surface-chargingmodel gives qualitatively correct results at alow cost. For quantitative agreement, however, the model needs to include a more realisticdescription of the electrical double layer. Approximating the latter through the linearizedPoisson-Boltzmann equation leads to a quantitative improvement, lowering the error in thetransitionpotentialfrom1Vtoacceptable0.3V.TheinclusionofthesizeofcationsoranionscanbeperformedthoughahybridQM/MMtypecalculation.Hence,wedemonstratethequalitativeusefulness of the surface charging method, the excellent agreement that can be obtained byslightly more sophisticated electrolyte models, and the picture provided for the chemicalbondingatanelectrifiedinterface. References1)StephanN. SteinmannandPhilippeSautet “AssessingaFirstPrinciplesModelof anElectrochemicalInterfacebyComparisonwithExperiment”J.Phys.Chem.C120,5619–5623(2016)2)StephanN.Steinmann,CarineMichel,RenateSchwiedernoch,Jean-SebastienFilhol,PhilippeSautet“ModellingtheHCOOH/CO2ElectrocatalyticReaction:WhenDetailsAreKey”ChemPhysChem16,2307–2311(2015)

Page 28: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

28

SimulationsofAlloysforCatalysisS.M.Kozlov,Z.Cao,L.Falivene,L.CavalloKAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science andTechnology(KAUST),Thuwal23955-6900,KingdomofSaudiArabiaAlloysarewidelyemployedinheterogeneouscatalysisbecausetheirpropertiesaswellastheircostcanbeeasilytunedbythealloycomposition.Despiteoftheconstantlyincreasinginterestinthechemistryofalloys,manyalloyformulationsarestillunexplored.Althoughsimulationscangreatlyaccelerate thedevelopmentofnovelalloycatalysts, theyremainchallengingdueto theexceptional structural complexity of alloyparticles.Moreover, reliable simulations require theknowledgeofthe3Dalloystructurewithatomicresolution,whichisrarelyeveravailablefromtheexperiment.Atthesametime,obtainingrealisticalloystructurefromsimulationsrepresentsaglobaloptimizationproblem,whichcanbesolvedonlyforsystemswith<100atoms.First, Iwill introduceanewmethodtogeneraterealisticmodelsofalloyparticles forcatalyticstudies [1]. This method is based on topologic energy expressions and allows one to obtainrealisticstructuresofalloynanoparticleswiththousandsofatoms.Thismethodhasbeenshownto have essentially DFT accuracy for a diverse set of nanoalloys with core-shell (e.g. PtCo),ordered(PdZn),Janus(CuNi)andintermediate(PdCu,PtSn)structures.Iwillalsodemonstratearecent application of this method to simulations of nanoparticles of arbitrary shapes and atarbitrarytemperatures[2].Second, I will discuss how tuning the composition of a nanoalloy may improve its catalyticproperties.IwilldemonstratethisforNiCoalloys,whichareabletomantainlongtermcatalyticactivity in thedry reformingofmethane (DRM)reaction,CH4+CO2→2H2+2CO,unlike theirmonometallic components [3].WhereasNi catalystgetsdeactivatedby coke formationandCocatalyst gets deactivated by oxidation, NiCo alloys balance the amount of surface C and O toremainactive.Finally, Iwill talk about electrochemical stability of Pt-based alloys [4]. This is a timely topicbecause high cost of Pt and its gradual leaching under high electrode potentials limit thecommercialpotentialoffuelcelltechnologies.AlthoughsomePtalloyswithinexpensivemetalsare highly active electrocatalysts (per gram of Pt), these alloys may be also more prone toleaching.Iwillpresentasimplewaytoevaluatetheon-setelectrodepotentialforalloyleaching,discussthetrendsforvariousalloysandidentifythosewithsuperiorelectrochemicalstabilityathighelectrodepotentials.References[1] S.M.Kozlov,G.Kovács,R.Ferrando,K.M.Neyman,Howtodetermineaccuratechemicalorderinginseveralnanometerlargebimetalliccrystallitesfromelectronicstructurecalculations,Chem.Sci.(2015)3868–3880.doi:10.1039/C4SC03321C.[2] G. Kovacs, S.M. Kozlov, K.M.Neyman, VersatileOptimization of Chemical Ordering in BimetallicNanoparticles,J.Phys.Chem.C.(2017)acs.jpcc.6b11923.doi:10.1021/acs.jpcc.6b11923.[3] B.AlSabban,L.Falivene,S.M.Kozlov,A.Aguilar-Tapia,S.Ould-Chikh,J.-L.Hazemann,L.Cavallo,J.-M.Basset,K.Takanabe, In-operandoelucidationof bimetallic CoNinanoparticlesduringhigh-temperatureCH4/CO2reaction,underrevision[4] S.M.Kozlov,Z.Cao,L.Cavallo,ElectrochemicalStabilityofPt-basedalloys,inpreparation

Page 29: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

29

The Science and Serendipity behind the Unexpected Discovery of BoronNitrideasSelectiveOxidationCatalystIveHermansUniversityofWisconsin–Madison,USAThe oxidative dehydrogenation of propane (ODHP) as a method of “on-purpose” propyleneproduction has the potential to be a game-changing technology in the chemical industry.1However,evenafterdecadesofresearchestablishingsupportedvanadiumoxideasthestate-of-the-artcatalystforODHP,2,3selectivitytotheolefinproductremainstoolowtobecommerciallyattractivebecauseoffacileover-oxidationofpropyleneintoCOandCO2(COx).DuringthispresentationIwillbringthestoryofhowwediscoveredthathexagonalboronnitride(h-BN)andboronnitridenanotubes(BNNTs)arehighlyselectivecatalystsfortheODHPreaction(see Figure 1).4,5 Despite structurally similar materials (graphene and carbon nanotubes)showing catalytic activity for partial oxidations in recent years, BN materials have yet to beexplored for their own catalytic activity. Kinetic and spectroscopic insights will be combinedwithcomputationalpredictionstoshinelightonpotentialreactionmechanisms.

Figure1.(A)SelectivitytopropyleneplottedagainstpropaneconversionforODHP,comparingh-BN (green),BNNT (blue) andV/SiO2(black) topreviously reported catalysts (open shapes);(B) Comparisons of product selectivity between V/SiO2(XC3H8=5.8%), h-BN (XC3H8)=5.4%) andBNNTs(XC3H8=6.5%).Productselectivitiesarerepresentedbycoloredbars.References1. T.Degnan,FocusonCatalysts,2(2016)12. C.Carrero,R.Schlogl,I.Wachs,R.Schomaecker,ACSCatal.,4(2014)33573. J.Grant,C.Carrero,A.Love,R.Verel,I.Hermans,ACSCatal.,5(2015)57874. J.Grant,C.Carrero,F.Goeltl,J.Venegas,P.Mueller,S.Burt,S.Specht,W.McDermott,A.Chieregato,I.Hermans,Science,354(2016)15705. J.Grant,C.Carrero,J.Venegas,A.Chieregato,I.Hermans,USPatentApplication15/260,649.

Page 30: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

30

BeyondStructure:ontheRoleofDynamicsandEntropyinNanocatalysisDennisR.SalahubDepartmentofChemistry,CMS–CentreforMolecularSimulation,IQST–InstituteforQuantumScienceandTechnologyandQuantumAlberta,UniversityofCalgary,CanadaWe are attempting to develop a multiscale, multimethodology approach to the modeling ofchemicalreactionsincomplexenvironments.OurmainmethodsareDensityFunctionalTheory(DFT), Density Functional Tight Binding (DFTB), QuantumMechanical/MolecularMechanical(QM/MM)methodsforbothDFTandDFTBandtheReaxFFreactiveforce-field.Theparadigmforthefieldisshiftingfromstructureandpotential-energysurfacestodynamicsandfree-energy.Iwillreportprogressonapplicationsintheareasofnano-catalysisforoilsandsupgrading.Nano-catalysisforoilsandsupgrading:Wehaverecentlycompletedthefirstmultiscalestudyof thehydrogenationof benzenebymolybdenumcarbidenanoparticles in a hydrocarbonMMenvironmentincludingtheimportantanharmonicentropiceffectsthatcontributegreatlytothefree-energyprofile.WehaverecentlyembarkedonasimilarexplorationofNi-ceriacatalystsforthewatergasshiftreaction.TodatewehaveperformedperiodicDFT(VASP)calculationsforthethreeimportant(100),(111)and(110)surfacesofceriawithNipresenteitherasanadsorbateorasasubstitutionaldopant.Thebehaviorofoxygenvacancies inrelation to the formationofCe3+hasbeenelucidated.TheseDFTcalculationswilleventuallybeusedintheparameterizationofDFTB.Iwillreportprogress.TBAXueminYangInstituteofChemicalPhysics,ChineseAcademyofScience,China InfraredSpectroscopyofDonor-AcceptorBondingCarbonylComplexesMingfeiZhouCollaborativeInnovationCenterofChemistryforEnergyMaterials,DepartmentofChemistry,ShanghaiKeyLaboratoryof Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China. E-mail:mfzhou@fudan.edu.cnCarbonmonoxideisoneofthemostimportantligandininorganicandorganometallicchemistry.Itcanbindtoahostofneutralandchargedtransitionmetalaswellasmaingroupmetalcentersin forming diverse metal carbonyl complexes. The bonding interactions between carbonmonoxideandmetalcentercanbedescribedusingtheDewar−Chatt−Duncansonmodel,whichinvolvesσdonationfromthecarbonlone-pair5σorbitaltothemetalandconcomitantπback-

Page 31: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

31

donationofelectrondensityfromthemetald(p)orbitalsintothe2π*antibondingorbitalsofCO.Thistalkwillpresentourrecentresultsonthepreparationofanumberofneutralandchargedmetalcarbonylcomplexeseitheringasphaseorinsolidnoblegasmatrices,whicharestudiedusing infrared photodissociation spectroscopy and matrix isolation infrared absorptionspectroscopy. Vibrational spectroscopic combined with state-of-the-art quantum chemicalcalculationsunrevealedunusualstructureandbondingpropertiesofthesecomplexes.CONJUGATIONANDAROMATICITYINLARGECIRCUITSE.Matito,abcI.Casademont,abE.Ramos-Cordoba,abdM.Torrent-Sucarrat,abceaKimikaFakultatea,EuskalHerrikoUnibertsitatea(UPV/EHU),Donostia,Euskadi(Spain).bDonostiaInternationalPhys.Center(DIPC),Donostia,Euskadi(Spain).dIKERBASQUE,BasqueFoundationforScience,48011Bilbao,Euskadi,(Spain).dKennethS.PitzerCenterforTheor.Chem.,Univ.Cal.Berkeley,SFO(USA).eOrganicChem.Dep.,CentrodeInnovaciónenQuímicaAvanzada(ORFEO-CINQA),Donostia,Euskadi(Spain).e-mail:[email protected] introduce a new electronic aromaticity index, AV1245,1 consisting of an average of the 4-centermulticenterindices(MCI)alongthering.AV1245measurestheextentoftransferabilityofthe delocalized electrons between bonds 1–2 and 4–5, which is expected to be large inconjugated circuits and, therefore, in aromaticmolecules. AV1245 is a size-extensivemeasurecarryingalowcomputationalcostthatgrowslinearlywiththenumberofringmembers;itdoesnot rely on reference values and it does not present limitations concerning the nature of theatoms.Unlike currentmulticenter delocalization indices,2AV1245 is especially suited to studythe conjugation in large circuits suchas thoseoccurring inexpandedporphyrinsorpolymericchains.

In this talk we present the index and a few applications, including the study of a six-porphyrin nanoring template complex in various oxidation states.3 AV1245 permits tounderstandthelocalandglobalchangesofaromaticityoccurringinthecomplexuponoxidation.References:1.MatitoE.,Phys.Chem.Chem.Phys.,18,11839(2016).2.FeixasF.,MatitoE.,PoaterJ.,SolàM.,Chem.Soc.Rev.44,6434(2015)3.PeeksM.D.,ClaridgeT.D.W.,AndersonH.L.,Nature541,200(2017)

Page 32: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

32

SuperatomicMoleculeTheoryofMetalClustersJinlongYangHefeiNationalLaboratoryforPhysicsSciencesatMicroscale,UniversityofScience&TechnologyofChina,Hefei,Anhui,230026,People’[email protected]://staff.ustc.edu.cn/~jlyangInclusterscience,theconceptofsuperatomisamajorfindingandhasbeenwidelyexplored.Inthistalk,weextendsuperatomstosuperatomicmolecules.Weintroduceanewconceptofsupervalencebond,ofwhichsuperatomscansharebothvalencepairsandnucleiforshellclosurethusforming delocalized super bonding. Using Li clusters as a test case, we theoretically find thatmetal clusterscanmimic thebehaviorof simplemolecules inelectronicshells. It is found thatLi14, Li10, and Li8 clusters are analogues of F2, N2, and CH4 molecules, respectively, inmolecularorbitaldiagramsandbondingpatterns.Usingthisconcept,weexplainthestabilityofsome thiolate-protected gold clusters and construct the diamond-like Au cluster crystal. Thisnew concept shows new insights in understanding the stability of clusters and designing thecluster-assemblingmaterials.(Unusual)HypervalenceMaartenGoestenCornellUniversity,USAHypervalenceisperhapsasoldastheoctetrule,andthroughoutthedecades,theoryhastakendifferentpathstothinkofit.Thereappearsroomforasemanticdiscussiononhypervalence.Andin this lecture, we make an attempt. We discuss the bonding traits that we associate withhypervalence, andhow those translate to trends in thePeriodicTable.Butpredominantly,weinvestigatethebordersofourthinkingonhypervalence.There,wediscussthreecasestudies:(i)six-coordinate group 13 complexes, (ii) fluoride in a silicate double-4-ring, and (iii) a [CsO4]+cation.ChemicalEvolutioninStructuredEnvironmentsDmitryZubarevIBMResearch,Almaden,USAInthistalkIwilldiscusstwofacetsofthecomputationalreconstructionofprebiologicalreactionnetworks. One is prediction/educated guessing of the missing parts of reaction networksinformed by the observed reactions. The other is constraints imposed by the structuredenvironments hosting reaction networks on the outcomes of chemical reactions. ReactionnetworkproposedbyJohnSutherlandwillbeoursandbox.

Page 33: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

33

One-ElectronImagesinRealSpace:NaturalAdaptiveOrbitalsÁngelMartínPendásandEvelioFranciscoDpto.QuímicaFísicayAnalí[email protected] introduce a general procedure to construct a set of effective one-electron functions inchemicalbondingtheorywhichremainphysicallysoundbothforcorrelatedandnon-correlatedelectronicstructuredescriptionsandthatareabletocaptureinter-particlecorrelationsbeyondthefirst-orderdensitymatrix.Thesefunctions,whichwecallnaturaladaptiveorbitals(NAdOs)[1,2],decomposethen-centerbondingindicesusedinrealspacetheoriesofthechemicalbondintoone-electroncontributions.Forthen=1case,theycoincidewiththedomainnaturalorbitals[3]usedinthedomain-averagedFermiholeanalysisintroducedbyR.Ponec.Weexaminetheirinterpretation in the two-center case, and showhow they behave and evolve in simple cases.Orbitalpicturesobtainedthroughthistechniqueconvergeontothechemist'smolecularorbitaltoolbox if electron correlationmaybe ignored, andprovide new insight if itmaynot.Naturaladaptiveorbitalsareendowedwithuniquefeatures,providingbothqualitativeandquantitativeimagesofchemicalbondingwhenelectroncorrelationplaysasignificantrole.Anapplicationtotheconundrumofbondinginthedicarbonmoleculeisalsooffered.[1]E.Francisco,A.MartínPendás,M.García-Revilla,R.ÁlvarezBoto.Comput.Theor.Chem.1003(2013)71[2]M.Menéndez,R.ÁlvarezBoto,E.Francisco,A.MartínPendás.J.Comput.Chem.10.1002/jcc.23861(2015)[3]R.Ponec.J.Math.Chem.21(1997)323ComputationalStudyoftheFormationofPrebioticMoleculesinAstrophysicalEnvironments:MixedIcesandGas-PhaseConditionsTimothyJ.LeeSpaceScienceandAstrobiologyDivision,NASAAmesResearchCenterInrecentyears,ourgrouphasstudiedtheformationmechanismsofthevariousRNAandDNAbases(Uracil,Cytosine,Thymine,Guanine,andAdenine)inmixedwatericesseededwitheitherpyrimidineorpurineandirradiatedunderastrophysicalconditions.Ourcomputationalstudieshave been used to interpret the results from laboratory experimental studies to help explainwhichbasesarefound,whatotherproductsaresynthesized,andtheirrelativeabundances.Oneinterestingconclusion fromourwork is thatonlycondensed-phase formationmechanismsarefound to be feasible with these multistep reaction mechanisms. We will describe our latestresearch in thisseriesofstudiesanddiscusswhatourresultsmaymean for theoriginsof lifestudies. Our group has also been actively studying the formation of larger ringed organiccompoundsstartingfromsmallC2organicspecies inthegas-phase,asoccurs intheoutflowofcarbonstarsor inthe interstellarmedium. Mostof thesestudieshavealsobeenperformedincollaborationwith laboratoryexperiments. Wewill alsodiscuss the latest fromourgroup forthisseriesofstudies.

Page 34: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

34

MoleculesasNetworksCherifMattaMountSaintVincentUniversity,Canada Chemical graph theory (CGT) represent the molecular graph using connectivity matricesfollowed by the extraction of matrix invariants to be used as molecular descriptors inQSAR/QSPR studies. Using similar techniques,matrices built from the complete set of QTAIMlocalizationanddelocalizationindices(LIsandDIs)representmoleculesasa“fuzzy,complete”networksofinteractingatoms.Inamolecularnetwork,anedgeexistsbetweenanypairofatomsweightedbytheDIbetweenthem.Thisfuzzyandcompletematrixrepresentationofamoleculeis termed the (electron) "localization-delocalization matrix (LDM)”. LDMs are powerfulQSAR/QSPRmodelingtoolwithapplicationsrangingfrompredictingphysicochemicalpropertiesof homologous series of molecules, corrosion protective abilities (and identifying activeprotective species), ribotoxicity, pKa's, aromaticity, andmore. LDMsof largemolecules canbereconstructed from kernel fragments (within the KEM scheme) if a geometry is availablewhetherfromacomputationaloptimizationorfromanX-raydiffractionexperiment.

References[1]Matta,C.F.J.Comput.Chem.2014,35,1165.[2] Cook, R.; Sumar, I.; Ayers, P. W.; Matta, C. F. Electron Localization-DelocalizationMatrices (LDMs):TheoryandApplications;SpringerInternationalPublishingAG:Cham,Switzerland,(toappear)2017.[3]Huang,L.;Bohorquez,H.;Matta,C.F.;Massa,L.Int.J.QuantumChem.2011,111,4150.[4]Huang,L.;Massa,L.;Matta,C.F.Carbon2014,76,310.[5]Timm,M.J.;Matta,C.F.;Massa,L.;Huang,L.J.Phys.Chem.A2014,118,11304.

Page 35: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

35

Generation,ReactivityPatterns,andBondinginSingletPhosphinidenesChristopherC.CumminsMIT,USATheparentphosphinidenemolecule,PH,hasanelectroncountofsixatphosphorusandatripletgroundstate.Thisreactive intermediate is thusaphosphorusanalogofmethylene,CH2,and itshould be remembered that phosphorus has similar electronegativity to that of carbon, withwhich it shares a diagonal relationship, andhas thus been called “the carbon copy”. Carbeneshavebeen stabilized famously in the singlet statebyplacingpi-donor substituentsadjacent totheotherwiseelectron-deficientcarboncenter,creatingtheclassofmoleculesnowreferredtoasN-heterocycliccarbenes,NHCs.Asimilarapproachcanbetakeninordertostabilizethesingletstateofphosphinidenes,andthisisanactivelyemergingareaofresearch.Bertrandhasreportedon the synthesis and reactivity patterns of an isolable phosphinophosphinidene encaged bysterically demanding organic residues, and we are working on the thermal generation ofaminophosphinidenesusinganewclassofanthracene-basedmolecularprecursors.Iwillreporton our progress directed at phosphinidene transfer to metal complexes and to unactivatedolefins, as well as on our current best understanding of electronic structure and chemicalbondinginthesesystems.Bonding,Localizationvs.Delocalization,andMolecularPropertiesJochenAutschbachUniversityatBuffalo,SUNY,USASome molecular properties depend very strongly on the extent of delocalized bonding. Forexample,linearandnon-linearopticalpropertiesoforganicpichromophoresmaybesensitivetothe extent of pi delocalization. For the purpose of this talk, covalent ligand tometal donationbonding isalsoconsideredasa formofdelocalization(namelyofa ligand lonepair). InKohn-ShamDFTcalculations,theextentofdelocalizationmaydependgreatlyonthefunctionalparametrization. WewillpresentselectedcasesforwhichtheKohn-Shamdelocalizationerrorhasbeenquantifiedandrelatedtotheextentofdelocalizationinorganicpisystemsandmetalcomplexes.Anover-orunderestimationoftheextentofdelocalizationcanhavedramaticeffectsonmolecular optical and spectroscopic properties.Wewill also briefly discussmetal - ligandcovalencyinlanthanidecomplexesandspin-orbiteffectsonactinide-ligandbonds.

Page 36: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

36

ProbingtheStructureandSolvationofCatalyticReactionIntermediatesEtienneGarandDepartmentofChemistry,UniversityofWisconsin-Madison,USA Understanding reaction pathways andmechanisms is vitally important for the rationaldesignofcatalysts.Towardsthatend,wedevelopedamethodbasedonauniquecombinationofmassspectrometryandcryogenic ionvibrationalspectroscopytocaptureandcharacterize thereactioncomplexesformedduringhomogeneouscatalyticprocesses.Inourapproach,anin-lineelectrochemicalflowcellisincorporatedintoanelectrosprayionizationsource,therebyallowingus to controllably form, andmass spectrometrically isolate, theproduct of each catalytic step.Moreover, the structures of these isolated ions canbe directly probed in detail using infraredpredissociationspectroscopy. Inaddition toexperimental considerations, this talkwillpresentthe application of our approach to model systems as well as to the study of homogeneouscatalyticwater oxidation by the singlemetal center [Ru(tpy)(bpy)(H2O)]2+complex. This talkwillalsopresentrecenttechnicaldevelopmentsthatgaveusthecapabilitytoperformcontrolledgas-phasechemistryandclusteringinaseparatetemperaturecontrollediontrap.Thisallowsustoaccessunstablereactivespeciesviacontrolledion-moleculereactionsaswellasmicrosolvatedcomplexes.Organolanthanide Radicals Formed by Metal-Mediated Bond Activation ofSmallHydrocarbonsDong-ShengYangDepartmentofChemistry,UniversityofKentucky,Lexington,KY40506-0055USAHydrocarbon compounds are the most abundant, low-cost stock for functionalized organicchemicals.Becauseoftheirchemicalinertness,thetransformationofthehydrocarbonstovalue-added products requires the activation of thermodynamically stable carbon-hydrogen andcarbon-carbonbonds.Metal-mediatedbondactivationcircumventsthisproblembystimulatingthe inert hydrocarbons to react with other molecules. Organometallic radicals formed in theentrance channel and subsequent steps are transient and reactive and play essential roles insuchactivationreactions.Inourwork,metal-hydrocarbonreactionsarecarriedoutinapulsedsupersonicmolecular beam source, and reaction intermediates andproducts are identified bytime-of-flight mass spectrometry and investigated by mass-analyzed threshold ionizationspectroscopy and quantum chemical calculations. In this talk, we will discuss lanthanide-hydrocarbon radicals formed by metal association and insertion, dehydrogenation, carbon-carbonbondbreakageandcouplingofsmallalkanes,alkenes,andalkynes.Thediscussionwillincludethebondingandstructures,electronicstatesandenergies,andformationmechanismsoftheorganolanthanideradicals.

Page 37: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

37

TBAAngelaWilsonMichiganStateUniversity,USACovalencyinActinide-LigandBondsPingYang,EnriqueR.Batista,StoshA.KozimorLosAlamosNationalLaboratory,LosAlamos,NewMexico,87545Email:pyang@lanl.govThecomplicatedelectronicstructureofactinidecomplexesleadstotheirversatilityofchemicalreactivity, spectralandmagneticproperties, anddynamicalbehaviors.As the largestdomesticsourceof low-carbonelectricity,nuclearenergyrepresentsacritical toolavailable tomeet thedemandofincreasingenergysupplyandreducinggreenhousegasemission.Itisinstrumentaltodevelopmoreefficientstrategiesforselectiveseparationsoastoallowforthereductionoftheneedforlong-termwastestorage.Wewillshowthatcomputationalchemistrymodelingcanbeused as an effective tool to provide a first-principle description yielding insight into thesespectroscopic anddynamical properties of actinide complexes.Wewill discuss actinide-ligandbondingacrosstheseriesandtheexcitationofligandbasedcoreelectronsusingtime-dependentdensity functional theory. The simulated spectra are found in good agreementwith the high-qualitydirectexperimentalprobingofthebondingusingK-edgeX-rayAbsorptionSpectroscopy,lendingsupporttothecomputationaldescriptionofchemicalbonding.[1]MEFieser,MGFerrier,JSu,ERBatista,SKCary,JWEngle,WJEvans,JSLezamaPacheco,SAKozimor,ACOlson,AJRyan,BWStein,GLWagner,DHWoen,TVitova,PYang,ChemSci.InPress.(2017)[2]M.Sturzbecher-Hoehne,PYang,AD’Aléo,RJAbergel,DaltonTransactions,45,9912-9919(2016)[3]ERBatista,RLMartin,PYang,ComputationalMethodsinLanthanideandActinideChemistry,375-400(2015)[4]SGMinasian,JMKeith,ERBatista,KSBoland,JABradley,SRDaly,KAKozimor,WWLukens,RLMartin,DNordlund,GTSeidler,DKShuh,DSokaras,TTyliszczak,GLWagner,TCWeng,PYang,J.Am.Chem.Soc.135,1864-1871(2013)[5]LPSpencer,PYang,SGMinasian,REJilek,ERBatista,KSBoland,JMBoncella,SDConradson,DLClark,TWHayton, SAKozimor,RLMartin,MMMaclnnes,ACOlsen,BL Scott,DK Shuh,MPWilkerson, J.Am.Chem.Soc.135,2279-2290(2013)[6] SGMinasian, JMKeith, ERBatista, KS Boland, DL Clark, SD Conradson, KAKozimor, RLMartin, DESchwartz,DKShuh,GLWagner,MPWilkerson, LEWolfsberg,PYang J.Am.Chem.Soc.134,5586-5597(2012)

Page 38: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

38

TBAAnneAndrewsUniversityofCalifornia,LosAngeles,USA ZintlPhaseswithRare-EarthElementsSvilenBobevDepartmentofChemistryandBiochemistry,UniversityofDelaware,Newark,Delaware19716,[email protected] thealkalioralkaline-earthmetalsand theearlypost-transitionelements.Theelectropositivemetalsarethe“cations”andtheydonatetheirvalenceelectronstotheelectronegativeelementsfromgroups13,14and15,whichinturn,formcovalentbondstoform the anionic building blocks of the resultant structure. The electron transfer is typicallyconsideredtobe“complete”,andallconstituentatomsshouldattainclosed-shellconfigurations.Many known solid-state compounds with a general formula AE14MPn11 (AE = alkaline-earthmetal, Eu, andYb;M =Group13 elementsAl–In, andPn =Group15 elementsP–Bi) are Zintlphases.UsingthearchetypeCa14AlSb11asanexample,thisrelativelycomplicatedformula(andbondingarrangement),achievesperfectcharge-balancepertheZintlconceptasfollows:14Ca2+cations,4isolatedSb3−ions,one[AlSb4]9−tetrahedron,anda[Sb3]7−linearanion.Surprisingly,thetrivalentAlinthisstructurecanbereplacedbyMn,whichisnominallystabilizedasMn(II),i.e.,a3d5 ion. In fact, there are a number ofmanganese-bearing analogues already known, namelyAE14MnPn11.Whileinitiallythelattercompoundswerebelievedtobeisotypicandisoelectronicto Ca14AlSb11, subsequent studies showed them to exhibit metal-like electrical conductivities.ThesefindingsareincontrastwiththeexpectedsemiconductingbehaviorpredictedbytheZintlconcept, raising doubts over the applicability of the simple rules for electron counting in thecitedexamples.Apparently,AE14MnPn11arenotvalenceprecisecompounds.Our prior work on related compounds has shown that charge balancing issues also exist forAE14MPn11 (M = Zn andCd),where thed10metal atoms are clearlydivalent. The structure inquestionmustbeveryflexibleandcouldbemodulatedinavarietyofways,viasubstitutionsofbothcationsandanions.Forexample,theseeminglytrivialsubstitutionofAl3+attheMnsiteinYb14Mn1−xAlxSb11, or via substitution of trivalent RE3+ cations (RE = rare-earth metals) inYb14−xRExMnSb11,bothcasesofelectrondoping, leads toamarkeddecrease in theholecarrierconcentration. In thecurrent study, replacementofoneAE2+byoneRE3+ ion isused tomakeintrinsic semiconductors. The report will focus on the syntheses, structures, and physicalpropertiesofrare-earthmetalsubstitutedseriesCa14−xRExMnPn11(RE=La−Nd,Sm,Gd−Dy;x≈1,Pn=SborBi),demonstrating that the facileexchangeof trivalentRE3+ forCa2+. Theseresultsindicate that the electronic transport properties can be continuously varied, hence, thesematerialscouldbeofrelevancetothedevelopmentofnewthermoelectrics.

Page 39: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

39

TheoreticalPredictionsofSuperconductingHydridesUnderPressureEvaZurekDepartmentofChemistry,UniversityatBuffalo,SUNY,331NSC,Buffalo,NY14260,USAThepressurevariableopensthedoortowardsthesynthesisofmaterialswithuniqueproperties,ie.superconductivity,hydrogenstoragemedia,high-energydensityandsuperhardmaterials,toname a few. Under pressure elements that would not normally combine may form stablecompoundsormaymixinnovelproportions.Asaresult,wecannotuseourchemical intuitiondevelopedat1atmtopredictphasesthatbecomestablewhentheyarecompressed.ToenableoursearchfornovelBCS-typesuperconductorsthatcanbesynthesizedunderpressurewehavedeveloped XtalOpt, an open-source evolutionary algorithm for crystal structure prediction.XtalOpt has been employed to find the most stable structures of hydrides with uniquestoichiometriesthataresuperconductingunderpressure.Herein,wedescribeourpredictionsofthe hydrides of phosphorus, scandium and uranium at pressures that can be achieved indiamondanvilcells.Theelectronicstructureandbondingofthepredictedphasesisanalysedbydetailedfirst-principlescalculations.Accessing Metastable States with Pressure: Synthetic Pathways to NewMaterialswithExceptionalPropertiesTimothyA.Strobel,GeophysicalLaboratory,CarnegieInstitutionofWashington,Washington,DC,USAE-mail:[email protected] allotropes and/or chemical compounds can be formed under various pressure /temperatureconditions,andsomeofthesecouldremainmetastableunderstandardconditionsfortimescalesas longastheageof theuniverse(in fact it isestimatedthat50%ofallknowninorganic compounds aremetastable ones!). But the number of known allotropes/compoundspales in comparisonwith the number of hypothetical oneswith energetic feasibility. For anygiven thermodynamic state, thousands of energetically competitive structures are plausible, asubset of which will exhibit mechanical stability. Further subsets of these structures offerenticing physical properties that differ from those of thermodynamic ground states. Here,wedelineate thermodynamic andkinetic synthesismethods (with an emphasis onhighpressure)anddiscuss strategies and examples for accessing these states experimentally.Wediscuss thesuccessful experimental realization of new forms of silicon and carbon and presentdevelopmentsincomputationalpathwaypredictiontoolstoguidesyntheticefforts.

Page 40: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

40

Intramolecular Interactions from X-ray Diffraction Data as a Tool ofUnderstandingCrystalPropertiesTatianaTimofeeva,1BorisAverkiev,1VictorKhrustalev,2KonstantinLyssenko21DepartmentofChemistry,NewMexicoHighlandsUniversity,LasVegas,NM,USA2InstituteofOrganoelementCompounds,RussianAcademyofSciences,Moscow,RussiaMany properties of molecular crystalline materials are defined by the molecular packing incrystals, which, in its turn, is defined by how these molecules interact with each other. Thisconcept will be applied for several phenomena such as formation of different polymorphs oforganic materials, formation of high density materials, and formation of acentric crystallinematerials. Investigation of intermolecular interactions is based on high-resolution lowtemperatureX-raydiffractiondataandquantumchemicalcomputationstoanalyzetheelectrondensitydistributionintheareasofinteractionsandhydrogenbonds,anditsinterpretationintheframeworkofBader’sAtoms inMolecule(AIM)theory.Asanexampleof formationofacentriccrystal, an organic nonlinear optical (NLO) materials tosylate salt of N,N-dimethylamino-N’-methylstilbazolium (DAST) will be considered to demonstrate how NLO properties of thismaterialareconnectedwith its crystal structureorganization.Two furazanderivativeswillbepresentedas examplesofmolecularorganization in crystals of high-densityorganicmaterials.Molecular packing in organic of polymorphs will be discussed on examples of severalpharmaceuticalmaterials.ChemistryinDenseSolidMixturesChoong-ShikYooDepartmentofChemistryandInstituteforShockPhysics,WashingtonStateUniversity,Pullman,Washington99164Theapplicationofcompressionenergycomparabletothatofchemicalbonds,butsubstantiallygreaterthanthoseofdefectsandgrainboundariesinsolidsallowsustopursuenovelconceptsofhigh-pressure chemistry (or barochemistry) in materials development by design. At suchextreme pressures, simple molecular solids covert into densely packed extended networkstructures that can be predicted from first principles. In recent years, a significant number ofnew materials and novel extended structures have been designed and discovered in highlycompressedstatesof the first-andsecond-rowelementalsolids, includingLi,C,H2,N2,O2,CO,CO2,andH2O.Theseextendedsolidsareextremelyhard,havehighenergydensity,andexhibitnovelelectronicandnonlinearopticalpropertiesthataresuperiortootherknownmaterialsatambientconditions.However,thesematerialsareoftenformedatformidablepressuresandarehighlymetastableatambientconditions;onlya fewsystemshavebeenrecovered, limiting thematerials within a realm of fundamental scientific discoveries. Therefore, an exciting newresearch area has emerged on the barochemistry to understand and, ultimately, control thestability, bonding, structure, and properties of low Z extended solids. In this paper, we willpresent our recent research to develop hybrid low Z extended solids amenable to scale up

Page 41: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

41

synthesis and ambient stabilization, utilizing kinetically controlled processes in dense solidmixturesanddiscussthegoverningfundamentalprinciplesofbarochemistry.* This work was performed in support of the NSF (DMR-1203834), DTRA (HDTRA1-12-01-0020), andDARPA(W31P4Q-12-1-0009).ChemicalBondinginTwo-DimensionalCrystalsYuJing,AgnieszkaKuc,YandongMa,ThomasHeine*Wilhelm-Ostwald-InstituteofPhysicalandTheoreticalChemistry,LeipzigUniversity,04316Leipzig,GermanyEmail:[email protected] on two-dimensional crystals (2DC) has skyrocketed since the discovery of grapheneand its extraordinary properties. Soon after, it has been shown that virtually any layeredmaterial canbeexfoliated to itsmonolayer form, andevenmore2DCcanbeproducedbyon-surfacesynthesis.Strongquantumconfinement is inherent inmany2DC.Creationof theDiracpoint in graphene, the change from indirect to direct band gap in MoS2 and other Group 6transition metal dichalcogenides (TMDC) and the appearance of giant spin orbit splitting inGroup6TMDCarestrikingexamplesfromtheliterature.In my talk I will extend this line of examples to systems that undergo semiconductor-metaltransitionsuponchangeofthenumberoflayers.Iwillfurtherrationalizethenatureofinterlayerinteractioninthesesystems,showingthattheyindeedbaseonquantumconfinement.Somenew,unexpected 2DC based on natural minerals (covellite), on arsenic-type layered compounds(GeP3)andonchalcophosphideswillbediscussed.Finally,Iwilldiscussontheinterplayofmagnetismandtopologicalstatesandthelatticetypein2DC. Iwill showhow topological states (Group6TMDC)anddiagmagnetism(Group5TMDC)canbeturnedonandofbyasimpleStone-Wales-likegeometricaltransformation,andshowthattopological states in 2DC are not restricted to honeycomb lattices, but are also possible, forexample,inpenrose-tilecrystals.TBADylanJayatilakaUniversityofWesternAustralia,Australia

Page 42: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

42

Long-Bonding Interaction Between Two Radicals as a Source of NovelMoleculesMaratR.TalipovDepartmentofChemistry&Biochemistry,NewMexicoStateUniversity,USADiscovery and spectroscopic characterization of novel few-atomic molecular species is ofessential importance for the fieldsofastrochemistryandatmosphericchemistry.Furthermore,someofthesmallmoleculessuchasnitricoxide(NO),nitroxyl(HNO),nitrosothiol(HSNO)havebeen recognized as being important for biochemical processes. At the same time, it is wellpossiblethatmanyotherpotentially importantmoleculeshavenotbeenyetdiscoveredsimplybecause it is difficult to predict their existence based on the current theories of chemicalbonding.Forexample,werecentlyinvestigatedthemechanismofinteractionoftripletdiatomicnitreneHNwithmolecularoxygenandfoundthatoneofitsintermediates,singletHO—ON,couldexist as a stable molecule even though its O–O bond is rather long (1.9 Å) and weak (~8kcal/mol)[1,2].Webelievethatthenewlydiscovered(boththeoretically[2]andexperimentally[3])HO—ONrepresents the first exampleofmolecules that could existdue to aunique ‘long-bonding’ type of chemical bonding where two radical-bearing atoms are separated by a lonepair-bearingatom.Thus,onecouldenvisiontheexistenceofother(yetundiscovered)molecularspeciesinwhichtworadicalmoietiesareboundtogetherbyasimilarbondingpattern.Thistalkwilladdresstheproblemsofelectronicstructure,thermodynamicstability,andreactivityofsuchmolecularspecies.Relevantpublications:1)M.R.Talipov,S.L.Khursan,R.L.Safiullin,“RRKMandabinitioinvestigationoftheNH(X)oxidationbydioxygen”;J.Phys.Chem.A,2009,113,6468.2)M.R.Talipov,Q.K.Timerghazin,R.L.Safiullin,S.L.Khursan,“NoLongeraComplex,NotYetaMolecule:AChallengingCaseofNitrosylO-Hydroxide,HOON”;J.Phys.Chem.A,2013,117,679.3)K.N.Crabtree,M.R.Talipov,O.Martinez,Jr.,G.D.O’Connor,S.L.Khursan,M.C.McCarthy“DetectionandStructureofHOON:MicrowaveSpectroscopyRevealsanO–OBondExceeding1.9Å”;Science,2013,342,1354.TheBrightestofVibrationalTransitions:Proton-BoundComplexesRyanC.FortenberryDepartmentofChemistryandBiochemistry,GeorgiaSouthernUniversityThesearch fornewmolecules inspacehasstagnated inmanyregards.2016reportedoneandonlyonenewmoleculardetectionwithonlyahandfulofdetectionsin2015.WithALMAonline,thenumberof rotational linesobservedhasonly increasedbutpotentially served to inundaterotational analyses of molecular detection. However, the upcoming launch of JWST and thepresenceofSOFIAmeanthatnovelmoleculardetectionsmaybeadditionally-servedbyinfrared(IR)observationsofmolecularvibrations.Thebrightestofvibrationaltransitionsoriginatewith

Page 43: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

43

proton-bound complexes. When a single proton has two ligands, the resulting vibrationalfrequency of the proton shuttling back and forth between the two displaces nearly all of themolecularchargewhileverylittleofthemassmoves.Consequently,significantintensitiesarisefromthesevibrationalmotionsimplyingthatonlyrelativelysmallcolumndensitiesarerequiredforobservabletransitions.Ourworkhasshownthatsuchtransitionscanbefoundfromthefar-IRevenuntothenear-IRandeverywhereinbetweendependingupontheligands.Ligandsthusfar explored include nitrogen molecules, carbon monoxide, and even noble gas atoms. Themethods employed have previously produced vibrational frequencies to within 1 cm-1 ofexperimentinmanycases.Finally,proton-boundcomplexesmaybekeyreservoirsofcarbonandnitrogen in protoplanetary disks and may also be another byproduct of interstellar H3+chemistry.HomocatenationAlexanderI.BoldyrevDepartmentofChemistryandBiochemistry,UtahStateUniversity,Logan,Utah,USAInstituteofPhysicalandOrganicChemistry,SouthernFederalUniversity,Rostov-on-Don,RussianFederation

Homocatenation is an ability of atoms to form long chains. Carbon is themost famouselementcapableofformingextendedCnH2n+2chains.OtherGroup14congenersalsoformchains,thoughnotas longascarbonduetothedecreasinghomonuclearsigmabondenthalpies. Ithasbeen shown before that atoms by acquiring an extra electron form compounds, which havegeometricandelectronicstructuresofneighboringatoms.1Using thisconcept,whichhasbeencalledanelectronictransmutation,weexploredapossibilityofhomocatenationofelementsfromGroups13and15.WehaveshownthatboronavoidshomocatenationintheBnHn+2chains.2WehavealsotestedthisconceptontheexampleofLinBnH2n+2species,whichwereexpectedtoformstable CnH2n+2 like-chains.Using the Coalescence-Kick (CK)method,we found that indeed, theglobalminimumstructuresof theLi2B2H6andLi3B3H8clustershavetheethane-likeB2H62-andpropane-likeB3H83- cores, respectively.1 Ina similarmanner,wehave further tested ifwe can“transmutate”Al-intoSi.TheCKsearchesrevealedthattheLi2Al2H6andLi3Al3H8moleculeshavethe ethane-like Al2H62- and propane-like Al3H83- cores, respectively.3 This prediction wassubsequently confirmed experimentally by the Bowen group4 in the example of the Li2Al3H8-anion, produced in amolecular beam. Theoretical results confirmed that the globalminimumstructureoftheLi2Al3H8-anionadoptsthepropane-likeAl3H83-core.Importantly,Jonesandco-workershaverecentlyreportedthesynthesisofthesolid-statecompoundcontainingtheethane-like Al2H62- core.5 We have also probed the viability of this concept in the example ofphosphorous.WehavefoundthatLi5P5,Li6P6,andLi7P7clustersadoptdoublehelixgeometricalstructures.FurtherextensionoftheseclusterstoaninfiniteLiPchainwasfoundtopreservethedoublehelixstructure.6Thus,wehaveconfirmedthat theP-chaindoesmimicsulfurstructureunder high pressure. Nilges and co-workers7 have recently reported a synthesis of the firstinorganicdoublehelix compound composedof twohelical chains:P- helix andSnI+helix. Fewotherresults,whicharestillinprogress,willalsobediscussed.

Page 44: Program 2017 AA IP - UCLAana/program_2017.pdf · were used to fabricate field effect transistors and sensors. A selection of these features are presented [2-4]. Fig. 1. Double helical

44

TheauthorthankstheMinistryofEducationandScienceoftheRussianFederation(megagrantoftheRussianGovernment to support scientific researchunder thesupervisionof the leadingscientistatSouthernFederalUniversity,no.14.Y26.31.0016)andtheNationalScienceFoundationoftheU.S.(grantCHE-1361413).1.J.K.Olson,A.I.Boldyrev,Chem.Phys.Lett.,2012,523,83.2.E.Osorio,J.K.Olson,W.Tiznado,A.I.Boldyrev,Chem.Eur.J.,2012,18,9677.3.J.T.Gish,I.A.Popov,A.I.Boldyrev,Chem.Eur.J.,2015,21,5307.4. I.A.Popov,X.Zhang,B.W.Eichhorn,A. I.Boldyrev,K.H.Bowen,Phys.Chem.Chem.Phys.,2015,17,26079.5. S. J. Bonyhady, N. Holzmann, G. Frenking, A. Stasch, C. Jones, Angew. Chem. Int. Ed. 2016,10.1002/anie.201610601.6.A.S.Ivanov,A.J.Morris,K.V.Bozhenko,C.J.Pickard,A.I.Boldyrev,Angew.Chem.Int.Ed.,2012,51,33,8330.7.D.Pfister,K.Schäfer,C.Ott,B.Gerke,R.Pöttgen,O.Janka,M.Baumgartner,A.Efimova,A.Hohmann,P.Schmidt, S. Venkatachalam, L. vanWüllen,U. Schürmann, L.Kienle, V.Duppel, E. Parzinger,B.Miller, J.Becker,A.Holleitner,R.Weihrich,T.Nilges,Adv.Mater.2016,28,9783.