products of cycles - mit mathematicsrstan/transparencies/cycleprod.pdf · a simple question sn:...

88
Products of Cycles Richard P. Stanley M.I.T. Products of Cycles – p.

Upload: others

Post on 31-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Products of CyclesRichard P. Stanley

M.I.T.

Products of Cycles – p. 1

Page 2: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A simple question

Sn: permutations of 1, 2, . . . , n

Let n ≥ 2. Choose w ∈ Sn (uniform distribution).What is the probability σ2(n) that 1, 2 are in thesame cycle of w?

Products of Cycles – p. 2

Page 3: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A simple question

Sn: permutations of 1, 2, . . . , n

Let n ≥ 2. Choose w ∈ Sn (uniform distribution).What is the probability σ2(n) that 1, 2 are in thesame cycle of w?

Products of Cycles – p. 2

Page 4: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “fundamental bijection”

Write w as a product of disjoint cycles, leastelement of each cycle first, decreasing order ofleast elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining w ∈ Sn

(one-line form):

68427315.

The map f : Sn → Sn, f(w) = w, is a bijection(Foata).

Products of Cycles – p. 3

Page 5: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “fundamental bijection”

Write w as a product of disjoint cycles, leastelement of each cycle first, decreasing order ofleast elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining w ∈ Sn

(one-line form):

68427315.

The map f : Sn → Sn, f(w) = w, is a bijection(Foata).

Products of Cycles – p. 3

Page 6: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “fundamental bijection”

Write w as a product of disjoint cycles, leastelement of each cycle first, decreasing order ofleast elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining w ∈ Sn

(one-line form):

68427315.

The map f : Sn → Sn, f(w) = w, is a bijection(Foata).

Products of Cycles – p. 3

Page 7: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

w = 68427315

Note. 1 and 2 are in the same cycle of w⇔ 1 precedes 2 in w.

⇒ Theorem. σ2(n) = 1/2

Products of Cycles – p. 4

Page 8: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

w = 68427315

Note. 1 and 2 are in the same cycle of w⇔ 1 precedes 2 in w.

⇒ Theorem. σ2(n) = 1/2

Products of Cycles – p. 4

Page 9: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

w = 68427315

Note. 1 and 2 are in the same cycle of w⇔ 1 precedes 2 in w.

⇒ Theorem. σ2(n) = 1/2

Products of Cycles – p. 4

Page 10: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

α-separation

Let α = (α1, . . . , αj) be a composition of k, i.e.,αi ≥ 1,

∑αi = k.

Let n ≥ k. Define w ∈ Sn to be α-separated if1, 2, . . . , α1 are in the same cycle C1 of w,α1 + 1, α1 + 2, . . . , α1 + α2 are in the same cycleC2 6= C1 of w, etc.

Example. w = (1,2, 10)(3, 12, 7)(4, 6,5, 9)(8, 11)is (2, 1, 2)-separated.

Products of Cycles – p. 5

Page 11: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

α-separation

Let α = (α1, . . . , αj) be a composition of k, i.e.,αi ≥ 1,

∑αi = k.

Let n ≥ k. Define w ∈ Sn to be α-separated if1, 2, . . . , α1 are in the same cycle C1 of w,α1 + 1, α1 + 2, . . . , α1 + α2 are in the same cycleC2 6= C1 of w, etc.

Example. w = (1,2, 10)(3, 12, 7)(4, 6,5, 9)(8, 11)is (2, 1, 2)-separated.

Products of Cycles – p. 5

Page 12: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Generalization of σ2(n) = 1/2

Let σα(n) be the probability that a randompermutation w ∈ Sn is α-separated,α = (α1, . . . , αj),

∑αi = k.

Similar argument gives:

Theorem.

σα(n) =(α1 − 1)! · · · (αj − 1)!

k!.

Products of Cycles – p. 6

Page 13: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Generalization of σ2(n) = 1/2

Let σα(n) be the probability that a randompermutation w ∈ Sn is α-separated,α = (α1, . . . , αj),

∑αi = k.

Similar argument gives:

Theorem.

σα(n) =(α1 − 1)! · · · (αj − 1)!

k!.

Products of Cycles – p. 6

Page 14: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random n-cyclesin Sn, n odd. The probability π2(n) that uv is(2)-separated (i.e., 1 and 2 appear in the samecycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

π(1,1)(n) = 1 −1

2=

1

2.

Products of Cycles – p. 7

Page 15: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random n-cyclesin Sn, n odd. The probability π2(n) that uv is(2)-separated (i.e., 1 and 2 appear in the samecycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

π(1,1)(n) = 1 −1

2=

1

2.

Products of Cycles – p. 7

Page 16: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n = 3 and even n

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?

Probability π2(n) that uv is (2)-separated:

n 2 4 6 8 10π2(n) 0 7/18 9/20 33/70 13/27

Products of Cycles – p. 8

Page 17: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n = 3 and even n

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?

Probability π2(n) that uv is (2)-separated:

n 2 4 6 8 10π2(n) 0 7/18 9/20 33/70 13/27

Products of Cycles – p. 8

Page 18: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n = 3 and even n

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?

Probability π2(n) that uv is (2)-separated:

n 2 4 6 8 10π2(n) 0 7/18 9/20 33/70 13/27

Products of Cycles – p. 8

Page 19: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Theorem on (2)-separation

Theorem. We have

π2(n) =

12 , n odd

12 −

2(n−1)(n+2) , n even.

Products of Cycles – p. 9

Page 20: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Sketch of proof

Let w ∈ Sn have cycle type λ ` n, i.e.,

λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,∑

λi = n,

cycle lengths λi > 0.

type((1, 3)(2, 9, 5, 4)(7)(6, 8)) = (4, 2, 2, 1)

Products of Cycles – p. 10

Page 21: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Sketch of proof

Let w ∈ Sn have cycle type λ ` n, i.e.,

λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,∑

λi = n,

cycle lengths λi > 0.

type((1, 3)(2, 9, 5, 4)(7)(6, 8)) = (4, 2, 2, 1)

Products of Cycles – p. 10

Page 22: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Given type(w) = λ, let qλ be the probability thatw is 2-separated.

Easy:

qλ =

∑(λi

2

)(n2

) =

∑λi(λi − 1)

n(n − 1).

E.g., q(1,1,...,1) = 0.

Products of Cycles – p. 11

Page 23: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Given type(w) = λ, let qλ be the probability thatw is 2-separated.

Easy:

qλ =

∑(λi

2

)(n2

) =

∑λi(λi − 1)

n(n − 1).

E.g., q(1,1,...,1) = 0.

Products of Cycles – p. 11

Page 24: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Given type(w) = λ, let qλ be the probability thatw is 2-separated.

Easy:

qλ =

∑(λi

2

)(n2

) =

∑λi(λi − 1)

n(n − 1).

E.g., q(1,1,...,1) = 0.

Products of Cycles – p. 11

Page 25: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Let aλ be the number of pairs (u, v) of n-cycles inSn for which uv has type λ (a connectioncoefficient).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.

Easy: π2(n) = 1(n−1)!2

∑λ`n aλqλ.

Products of Cycles – p. 12

Page 26: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Let aλ be the number of pairs (u, v) of n-cycles inSn for which uv has type λ (a connectioncoefficient).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.

Easy: π2(n) = 1(n−1)!2

∑λ`n aλqλ.

Products of Cycles – p. 12

Page 27: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Let aλ be the number of pairs (u, v) of n-cycles inSn for which uv has type λ (a connectioncoefficient).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.

Easy: π2(n) = 1(n−1)!2

∑λ`n aλqλ.

Products of Cycles – p. 12

Page 28: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The key lemma

Let n!/zλ = #{w ∈ Sn : type(w) = λ}. E.g.,

n!

z(1,1,...,1)= 1,

n!

z(n)= (n − 1)!.

Lemma (Boccara, 1980).

aλ =n!(n − 1)!

∫ 1

0

i

(xλi − (x − 1)λi

)dx.

Products of Cycles – p. 13

Page 29: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A “formula” for π2(n)

π2(n) =1

(n − 1)!2

λ`n

n!

(∑

i

λi(λi − 1)

n(n − 1)

)

·(n − 1)!

∫ 1

0

i

(xλi − (x − 1)λi

)dx

=1

n − 1

λ`n

z−1λ

(∑

i

λi(λi − 1)

)

·

∫ 1

0

i

(xλi − (x − 1)λi

)dx.

Products of Cycles – p. 14

Page 30: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The exponential formula

How to extract information?

Answer: generating functions.

Let pm(x) = xm1 + xm

2 + · · · ,

pλ(x) = pλ1(x)pλ2

(x) · · · .

“Exponential formula, permutation version”

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Products of Cycles – p. 15

Page 31: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The exponential formula

How to extract information?

Answer: generating functions.

Let pm(x) = xm1 + xm

2 + · · · ,

pλ(x) = pλ1(x)pλ2

(x) · · · .

“Exponential formula, permutation version”

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Products of Cycles – p. 15

Page 32: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The exponential formula

How to extract information?

Answer: generating functions.

Let pm(x) = xm1 + xm

2 + · · · ,

pλ(x) = pλ1(x)pλ2

(x) · · · .

“Exponential formula, permutation version”

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Products of Cycles – p. 15

Page 33: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “bad” factor

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Compare

π2(n) =1

n − 1

λ`n

z−1λ

(∑

i

λi(λi − 1)

)

·

∫ 1

0

i

(xλi − (x − 1)λi

)dx.

Bad:∑

λi(λi − 1)

Products of Cycles – p. 16

Page 34: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “bad” factor

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Compare

π2(n) =1

n − 1

λ`n

z−1λ

(∑

i

λi(λi − 1)

)

·

∫ 1

0

i

(xλi − (x − 1)λi

)dx.

Bad:∑

λi(λi − 1)

Products of Cycles – p. 16

Page 35: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The “bad” factor

exp∑

m≥1

1

mpm(x) =

λ

z−1λ pλ(x).

Compare

π2(n) =1

n − 1

λ`n

z−1λ

(∑

i

λi(λi − 1)

)

·

∫ 1

0

i

(xλi − (x − 1)λi

)dx.

Bad:∑

λi(λi − 1)

Products of Cycles – p. 16

Page 36: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A trick

Straightforward: Let `(λ) = number of parts.

2−`(λ)+1

(∂2

∂a2−

∂2

∂a∂b

)pλ(a, b)|a=b=1 =

∑λi(λi−1).

Exponential formula gives:

∑(n − 1)π2(n)tn = 2

∫ 1

0

(∂2

∂a2−

∂2

∂a∂b

)

exp

[∑

k≥1

1

k

(ak + bk

2

)(xk − (x − 1)k)tk

]∣∣∣∣∣a=b=1

dx.

Products of Cycles – p. 17

Page 37: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A trick

Straightforward: Let `(λ) = number of parts.

2−`(λ)+1

(∂2

∂a2−

∂2

∂a∂b

)pλ(a, b)|a=b=1 =

∑λi(λi−1).

Exponential formula gives:

∑(n − 1)π2(n)tn = 2

∫ 1

0

(∂2

∂a2−

∂2

∂a∂b

)

exp

[∑

k≥1

1

k

(ak + bk

2

)(xk − (x − 1)k)tk

]∣∣∣∣∣a=b=1

dx.

Products of Cycles – p. 17

Page 38: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Miraculous integral

Get:

∑(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3dx

=1

t2log(1 − t2) +

3

2+

−12 + t

(1 − t)2

(coefficient of tn)/(n − 1):

π2(n) =

{12 , n odd

12 −

2(n−1)(n+2) , n even.

Combinatorial proof open, even for n odd.

Products of Cycles – p. 18

Page 39: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Miraculous integral

Get:

∑(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3dx

=1

t2log(1 − t2) +

3

2+

−12 + t

(1 − t)2

(coefficient of tn)/(n − 1):

π2(n) =

{12 , n odd

12 −

2(n−1)(n+2) , n even.

Combinatorial proof open, even for n odd.

Products of Cycles – p. 18

Page 40: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Miraculous integral

Get:

∑(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3dx

=1

t2log(1 − t2) +

3

2+

−12 + t

(1 − t)2

(coefficient of tn)/(n − 1):

π2(n) =

{12 , n odd

12 −

2(n−1)(n+2) , n even.

Combinatorial proof open, even for n odd.

Products of Cycles – p. 18

Page 41: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated forrandom n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).

First step: generalize

2−`(λ)+1

(∂2

∂a2−

∂2

∂a∂b

)pλ(a, b)|a=b=1 =

∑λi(λi−1).

Products of Cycles – p. 19

Page 42: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated forrandom n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).

First step: generalize

2−`(λ)+1

(∂2

∂a2−

∂2

∂a∂b

)pλ(a, b)|a=b=1 =

∑λi(λi−1).

Products of Cycles – p. 19

Page 43: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated forrandom n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).

First step: generalize

2−`(λ)+1

(∂2

∂a2−

∂2

∂a∂b

)pλ(a, b)|a=b=1 =

∑λi(λi−1).

Products of Cycles – p. 19

Page 44: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case α = (3)

3−`(λ)+1

(∂3

∂a3− 3

∂3

∂a2∂b+ 2

∂3

∂a∂b∂c

)pλ(a, b, c)|a=b=c=1

=∑

λi(λi − 1)(λi − 2)

Theorem.

π3(n) =

13 + 1

(n−2)(n+3) , n odd

13 −

3(n−1)(n+2) , n even

Products of Cycles – p. 20

Page 45: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case α = (3)

3−`(λ)+1

(∂3

∂a3− 3

∂3

∂a2∂b+ 2

∂3

∂a∂b∂c

)pλ(a, b, c)|a=b=c=1

=∑

λi(λi − 1)(λi − 2)

Theorem.

π3(n) =

13 + 1

(n−2)(n+3) , n odd

13 −

3(n−1)(n+2) , n even

Products of Cycles – p. 20

Page 46: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

π(1k)(n)

Theorem. Let n ≥ k ≥ 2. Then

π(1k)(n) =

1

k!, n − k odd

1

k!+

2

(k − 2)!(n − k + 1)(n + k), n − k even

Combinatorial proof, especially for n − k odd?

Products of Cycles – p. 21

Page 47: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

π(1k)(n)

Theorem. Let n ≥ k ≥ 2. Then

π(1k)(n) =

1

k!, n − k odd

1

k!+

2

(k − 2)!(n − k + 1)(n + k), n − k even

Combinatorial proof, especially for n − k odd?

Products of Cycles – p. 21

Page 48: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A general result

Recall: σα(n) = probability that a randompermutation w ∈ Sn is α-separated= (α1 − 1)! · · · (αj − 1)!/k!.

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n) = σα(n) + O(1/n).

Products of Cycles – p. 22

Page 49: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A general result

Recall: σα(n) = probability that a randompermutation w ∈ Sn is α-separated= (α1 − 1)! · · · (αj − 1)!/k!.

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n) = σα(n) + O(1/n).

Products of Cycles – p. 22

Page 50: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A general result

Recall: σα(n) = probability that a randompermutation w ∈ Sn is α-separated= (α1 − 1)! · · · (αj − 1)!/k!.

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n) = σα(n) + O(1/n).

Products of Cycles – p. 22

Page 51: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Not the whole story

π(2,2,2) =

1720 −

n2+n−3220(n−3)(n+4)(n−5)(n+6) , n even

1720 −

n2+n−2620(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =

1120 −

n4+2n3−38n2−39n+2345(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1120 −

3n2+3n−5810(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formulaor generating function?

Products of Cycles – p. 23

Page 52: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Not the whole story

π(2,2,2) =

1720 −

n2+n−3220(n−3)(n+4)(n−5)(n+6) , n even

1720 −

n2+n−2620(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =

1120 −

n4+2n3−38n2−39n+2345(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1120 −

3n2+3n−5810(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formulaor generating function?

Products of Cycles – p. 23

Page 53: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Not the whole story

π(2,2,2) =

1720 −

n2+n−3220(n−3)(n+4)(n−5)(n+6) , n even

1720 −

n2+n−2620(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =

1120 −

n4+2n3−38n2−39n+2345(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1120 −

3n2+3n−5810(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formulaor generating function?

Products of Cycles – p. 23

Page 54: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n-cycle times (n − j)-cycle

Let λ ` n, 0 ≤ j < n. Let aλ,j be the number ofpairs (u, v) ∈ Sn × Sn for which u is an n-cycle, vis an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

Easy case: j = 1

Products of Cycles – p. 24

Page 55: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n-cycle times (n − j)-cycle

Let λ ` n, 0 ≤ j < n. Let aλ,j be the number ofpairs (u, v) ∈ Sn × Sn for which u is an n-cycle, vis an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

Easy case: j = 1

Products of Cycles – p. 24

Page 56: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n-cycle times (n − j)-cycle

Let λ ` n, 0 ≤ j < n. Let aλ,j be the number ofpairs (u, v) ∈ Sn × Sn for which u is an n-cycle, vis an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

Easy case:

Easy case: j = 1

Products of Cycles – p. 24

Page 57: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

n-cycle times (n − j)-cycle

Let λ ` n, 0 ≤ j < n. Let aλ,j be the number ofpairs (u, v) ∈ Sn × Sn for which u is an n-cycle, vis an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

Easy case: j = 1

Products of Cycles – p. 24

Page 58: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case j = 1

αλ,1 =n!(n − 2)!

∫ 1

0

d

dx

i

(xλi − (x − 1)λi

)dx

=

{2n!(n−2)!

zλ, λ odd type

0, λ even type.

In other words, if u is an n-cycle and v is an(n − 1)-cycle, then uv is equidistributed on oddpermutations.

Bijective proof known (A. Machì, 1992).

Products of Cycles – p. 25

Page 59: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case j = 1

αλ,1 =n!(n − 2)!

∫ 1

0

d

dx

i

(xλi − (x − 1)λi

)dx

=

{2n!(n−2)!

zλ, λ odd type

0, λ even type.

In other words, if u is an n-cycle and v is an(n − 1)-cycle, then uv is equidistributed on oddpermutations.

Bijective proof known (A. Machì, 1992).

Products of Cycles – p. 25

Page 60: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case j = 1

αλ,1 =n!(n − 2)!

∫ 1

0

d

dx

i

(xλi − (x − 1)λi

)dx

=

{2n!(n−2)!

zλ, λ odd type

0, λ even type.

In other words, if u is an n-cycle and v is an(n − 1)-cycle, then uv is equidistributed on oddpermutations.

Bijective proof known (A. Machì, 1992).

Products of Cycles – p. 25

Page 61: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Explicit formula

Let u ∈ Sn be a random n-cycle and v ∈ Sn arandom (n − j)-cycle. Let πα(n, j) be theprobability that uv is α-separated.

Theorem.

πα(n, 1) =(α1 − 1)! · · · (α` − 1)!

(j − 2)!

×

(1

j(j − 1)+ (−1)n−j 1

n(n − 1)

)

Products of Cycles – p. 26

Page 62: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

General j

Recall (Boccara):

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

= c(n, j)dj−1

dxj−1

i

(xλi − (x − 1)λi

)dx

∣∣∣∣∣

1

0

Products of Cycles – p. 27

Page 63: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

General j

Recall (Boccara):

aλ,j =n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

i

(xλi − (x − 1)λi

)dx.

= c(n, j)dj−1

dxj−1

i

(xλi − (x − 1)λi

)dx

∣∣∣∣∣

1

0

Products of Cycles – p. 27

Page 64: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Taylor series

aλ,j = c(n, j)dj−1

dxj−1

i

(xλi − (x − 1)λi

)dx

∣∣∣∣∣

1

0

Can treat all j ≥ 1 at one time using

j≥0

dj

dxjf(a)

xj

j!= f(x + a).

Products of Cycles – p. 28

Page 65: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Taylor series

aλ,j = c(n, j)dj−1

dxj−1

i

(xλi − (x − 1)λi

)dx

∣∣∣∣∣

1

0

Can treat all j ≥ 1 at one time using

j≥0

dj

dxjf(a)

xj

j!= f(x + a).

Products of Cycles – p. 28

Page 66: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Some results

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n, j) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n, j) = σα(n, j) + O(1/n).

Probably O(1/n2).

Products of Cycles – p. 29

Page 67: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Some results

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n, j) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n, j) = σα(n, j) + O(1/n).

Probably O(1/n2).

Products of Cycles – p. 29

Page 68: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Some results

Theorem. Fix m ≥ 0, and let α be a compositionof k. Then there exist rational functions Rα(n)and Sα(n) of n such that for n sufficiently large,

πα(n, j) =

{Rα(n), n evenSα(n), n odd.

Moreover, πα(n, j) = σα(n, j) + O(1/n).

Probably O(1/n2).

Products of Cycles – p. 29

Page 69: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case α = (1, 1)

Theorem.

π(1,1)(n, j) =1

2+

j(n−j+1)(n−1) , n − j odd

2(n−j+1)−j(n−j)(n−j+1)(n−j+2)(n−1) , n − j odd

Note the case j = 0 and n odd: π(1,1)(n) = 1/2

(Bóna’s conjecture).

Products of Cycles – p. 30

Page 70: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case α = (1, 1)

Theorem.

π(1,1)(n, j) =1

2+

j(n−j+1)(n−1) , n − j odd

2(n−j+1)−j(n−j)(n−j+1)(n−j+2)(n−1) , n − j odd

Note the case j = 0 and n odd: π(1,1)(n) = 1/2

(Bóna’s conjecture).

Products of Cycles – p. 30

Page 71: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Open problems

Many additional open problems remain, e.g.:

Combinatorial proofs

Nice denominators

Product of (n − 1)-cycle and (n − 1)-cycle, forinstance

Products of Cycles – p. 31

Page 72: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Some data

Pn + 12 = probability that uv is (2)-separated,

where u, v are (n − 1)-cycles in Sn

n 3 4 5 6 7Pn 1/6 -1/8 1/25 -19/432 19/980

Products of Cycles – p. 32

Page 73: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

II. Number of cycles

κ(w) : number of cycles of w

Pλ(q) =∑

type(w)=λ

qκ((1,2,...,n)·w).

(a)n = a(a − 1) · · · (a − n + 1)

Ef(q) = f(q − 1)

Products of Cycles – p. 33

Page 74: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Formula for Pλ(q)

Let

gλ(t) =1

1 − t

j=1

(1 − tλj).

Theorem. Pλ(q) = z−1λ gλ(E)(q + n − 1)n

Proof based on symmetric functions. Equivalentto a result of D. Zagier (1995).

Products of Cycles – p. 34

Page 75: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Formula for Pλ(q)

Let

gλ(t) =1

1 − t

j=1

(1 − tλj).

Theorem. Pλ(q) = z−1λ gλ(E)(q + n − 1)n

Proof based on symmetric functions. Equivalentto a result of D. Zagier (1995).

Products of Cycles – p. 34

Page 76: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

An example

λ = (5, 2, 2, 1), zλ = 40

P5221(q) = 360q7 + 13860q5 + 59220q3 + 17280q

approximate zeros of P5221(q):

±5.80i, ±2.13i, ±0.561i, 0

Products of Cycles – p. 35

Page 77: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

An example

λ = (5, 2, 2, 1), zλ = 40

P5221(q) = 360q7 + 13860q5 + 59220q3 + 17280q

approximate zeros of P5221(q):

±5.80i, ±2.13i, ±0.561i, 0

Products of Cycles – p. 35

Page 78: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A lemma on zeros

Lemma. Let g(t) be a complex polynomial ofdegree exactly d, such that every zero of g(t) lieson the circle |z| = 1. Suppose that the multiplicityof 1 as a root of g(t) is m ≥ 0. LetP (q) = g(E)(q + n − 1)n.

(a) If d ≤ n − 1, then

P (q) = (q + n − d − 1)n−d Q(q),

where Q(q) is a polynomial of degree d − mfor which every zero has real part(d − n + 1)/2.

Products of Cycles – p. 36

Page 79: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Lemma (continued)

(b) If d ≥ n − 1, then P (q) is a polynomial ofdegree n − m for which every zero has realpart (d − n + 1)/2.

Products of Cycles – p. 37

Page 80: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

An application to Pλ(q)

`(λ) : number of parts of λ

Corollary. The polynomial Pλ(q) has degreen− `(λ) + 1, and every zero of Pλ(q) has real part0.

Products of Cycles – p. 38

Page 81: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Parity

Simple parity argument givesPλ(q) = (−1)nPλ(−q). Thus

Pλ(q) =

{Rλ(q

2), n even

qRλ(q2), n odd,

for some polynomial Rλ(q).

Reformulation of previous corollary: Rλ(q) has(nonpositive) real zeros.

⇒ The coefficients of Rλ(q) are log-concave withno external zeros, and hence unimodal.

Products of Cycles – p. 39

Page 82: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Parity

Simple parity argument givesPλ(q) = (−1)nPλ(−q). Thus

Pλ(q) =

{Rλ(q

2), n even

qRλ(q2), n odd,

for some polynomial Rλ(q).

Reformulation of previous corollary: Rλ(q) has(nonpositive) real zeros.

⇒ The coefficients of Rλ(q) are log-concave withno external zeros, and hence unimodal.

Products of Cycles – p. 39

Page 83: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Parity

Simple parity argument givesPλ(q) = (−1)nPλ(−q). Thus

Pλ(q) =

{Rλ(q

2), n even

qRλ(q2), n odd,

for some polynomial Rλ(q).

Reformulation of previous corollary: Rλ(q) has(nonpositive) real zeros.

⇒ The coefficients of Rλ(q) are log-concave withno external zeros, and hence unimodal.

Products of Cycles – p. 39

Page 84: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case λ = (n)

P(n)(q) =1

n(n + 1)((q + n)n+1 − (q)n+1).

c(n, k): number of w ∈ Sn with k cycles(signless Stirling number of the first kind)

Corollary. The number of n-cycles w ∈ Sn forwhich w · (1, 2, . . . , n) has exactly k cycles is 0 ifn − k is odd, and is otherwise equal toc(n + 1, k)/

(n+1

2

).

Combinatorial proof by V. Féray and E. A.Vassilieva.

Products of Cycles – p. 40

Page 85: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

The case λ = (n)

P(n)(q) =1

n(n + 1)((q + n)n+1 − (q)n+1).

c(n, k): number of w ∈ Sn with k cycles(signless Stirling number of the first kind)

Corollary. The number of n-cycles w ∈ Sn forwhich w · (1, 2, . . . , n) has exactly k cycles is 0 ifn − k is odd, and is otherwise equal toc(n + 1, k)/

(n+1

2

).

Combinatorial proof by V. Féray and E. A.Vassilieva.

Products of Cycles – p. 40

Page 86: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A generalization?

Let λ, µ ` n.

Pλ,µ(q) =∑

ρ(w)=λ

qκ(wµ·w),

where wµ is a fixed permutation of cycle type µ.

Does Pλ,µ(q) have purely imaginary zeros?

Alas, P332,332(q) = q8 + 35q6 + 424q4 + 660q2, fourof whose zeros are approximately

±1.11366 ± 4.22292i.

Products of Cycles – p. 41

Page 87: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

A generalization?

Let λ, µ ` n.

Pλ,µ(q) =∑

ρ(w)=λ

qκ(wµ·w),

where wµ is a fixed permutation of cycle type µ.

Does Pλ,µ(q) have purely imaginary zeros?

Alas, P332,332(q) = q8 + 35q6 + 424q4 + 660q2, fourof whose zeros are approximately

±1.11366 ± 4.22292i.

Products of Cycles – p. 41

Page 88: Products of Cycles - MIT Mathematicsrstan/transparencies/cycleprod.pdf · A simple question Sn: permutations of 1;2;:::;n Let n 2. Choose w 2 Sn (uniform distribution). What is the

Products of Cycles – p. 42