production of superheavy elements - physikalisches institutfschney/seminar.ss09/heusser… ·...

32
Production of superheavy elements Seminar: „Key experiments in particle physics“ 26.06.09 Supervisor: Kai Schweda Thorsten Heußer

Upload: others

Post on 10-May-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

Production of superheavy elements

Seminar: „Key experiments in particle physics“26.06.09

Supervisor: Kai SchwedaThorsten Heußer

Page 2: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 2

Outline

1. Introduction

2. Nuclear shell model

3. Production of superheavy elements (SHE's)

4. Experiments at Helmholtz Center for Heavy­     Ion Research (GSI), Darmstadt

5. Results on elements 111 and 112

6. Summary

Page 3: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 3

1. Introduction

● How many elements and nuclei (may) exist?● What are their properties?

Page 4: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 4

1. Introduction Table of nuclides

         Today's definition:„superheavy“ are nuclei with              Z ≥ 104 (Rutherfordium, Rf)

N

Z

Page 5: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 5

2. Nuclear shell model

● Magic numbers:  Z = 2, 8, 20, 28, 50, 82  N = 2, 8, 20, 28, 50, 82, 126

● Nuclei with certain proton and/or neutron numbers have remarkable            properties: 

• High excitation and separation energies for nucleons• Large number of stable isotopes and isotones

=> idea, that nucleons are                 arranged in shells

Energy of the first excited level

Page 6: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 6

2. Nuclear shell model Single-particle shell-model

 

● Single­particle distribution

Spherical potential (Woods­Saxon or harmonic oscillator), which is created by the other nucleons

● LS­coupling

The correct magic numbers are received by taking into account the coupling of     and     due to the strong potential.

WS                 WS and LS­coupling

(Jensen and Haxel, Goeppert­Mayer; 1948)

L S

Page 7: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 7

2. Nuclear shell model Nilsson-model

=b − a

R0

R0 =a b

2

=> spheroidal; deformation is described by  

Nilsson­model (1955)

● Most heavy nuclei are not spherical,            which is mainly due to the increasing           coulomb­force between the protons.

oblate                              prolate 

Page 8: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 8

2. Nuclear shell model Nilsson-model

Different theoretical methods agree with N = 184 for the next magic neutron number but the value for the next magic proton number is not as obvious (Z = 114, 120, 126).

Calculated single nucleon energies dependent on deformation parameters     and       (multipole expansion)

24

Page 9: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 9

3. Production of superheavy elements

● Heaviest (stable) natural element: Uranium (Z = 92)

● The next elements up to fermium (Z = 100) can be created      by neutron capture and following      ­ decay. 

● For elements with Z > 100 this process ends because of           short lifetimes due fission and     ­ emission. 

Page 10: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 10

3. Production of SHE's Nuclear fusion

Elements with Z > 100 can be obtained by fusion of heavy­ion projectiles and heavy­element targets.

a A C∗ B bGeneral reaction:

● Coulomb­barrier between projectile       and target has to be overcome

● Excitation energy of the Compound­nucleus       has to be reduced (by evaporation of                  neutrons) to prevent spontaneous fission

Two challenges:

>r

Page 11: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 11

3. Production of SHE's Hot fusion

Hot fusion led to the discovery of the elements nobelium (Z = 102) to seaborgium (Z = 106) at the Lawrence Berkeley National Lab, California (Seaborg, Ghiorso). 

● Light ions and actinoid targets (Z = 89 to Z = 99) are used

● Excitation energy of the Compound nucleus is about        40­50 MeV

● Evaporation of four or five neutrons reduces the excitation       energy of the Compound nucleus below the fission barrier

Page 12: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 12

3. Production of SHE's Cold fusion

With the technique of the Cold fusion, the elements bohrium (Z = 107) to Z = 112 (not yet named) were produced at GSI, Darmstadt (Armbruster, Münzenberg, Hofmann).

● Medium heavy projectiles like isotopes of Fe, Ni or Zn are                  accelerated and shot on lead (Z = 82) or bismuth (Z = 83)

● Excitation energy of the Compound­nucleus is only 10­15 MeV

● Evaporation of one neutron is necessary to prevent the Compound­     nucleus from spontaneous fission

Page 13: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 13

3. Production of SHE's Excitation energies

ECoul =q p q t

40Rp Rt

m = m p mt − mRP

The beam energy can be approximated with the Coulomb         energy

The mass­difference before and after the fusion is

=>  for the hot fusion on slide 11:  E∗= 55,7 MeV

E∗= EBeam mc2

Estimation of the excitation energy:

Page 14: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 14

3. Production of SHE's Excitation functions

● For cold fusion, the          highest cross section      was measured for           beam energies below      the fusion­barrier.

● The cross section is           very low and                      decreases with higher       Z (by a factor                     from Z = 104 to Z = 112)

104

Page 15: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 15

3. Production of SHE's Fusion initiated by transfer

● Transfer of some nucleons               (usually pairs) reduces the              Coulomb­barrier allowing the          fusion.

● Below the barrier, the kinetic energy (CMS) is converted into potential    energy until the reaction partners come to rest in the CMS.

● At this touching configuration, only nucleons on the outer surface        are in contact.

Page 16: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 16

3. Production of SHE's Decay properties of SHE's

● Superheavy elements exist only              because of nuclear shell­ corrections to   the Liquid­Drop­ Model.

They are a lot more stable against fission than predicted by the LDM.

● In the region of superheavy   elements,    ­ decay is the      dominant decay process. 

sf

Z

N

Calculated half­life and dominant decay­process

Fissility parameter X ∝Z 2

A

Page 17: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 17

3. Production of SHE's Alpha - decay

● Superheavy elements are     ­             emitter

● The energy of the    ­ particle    is discrete and characteristic    for each nuclei

=>   Measurements of     ­               decay chains allow for              the identification of the             original nuclei

Page 18: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 18

Next steps

● Creation of superheavy elements

=>  ion source      accelerator       target

● Separation and detection of the reaction products

=>  separation filter       detector system for    ­ decay

Page 19: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 19

4. Experiments at GSI

Helmholtz Center for Heavy­Ion Reasearch , Darmstadt

●  One of the few                       laboratories in the world,        where heavy ions can be       accelerated

●  research program:  

• Nuclear and atomic            physics• Plasma and materials        research• Medical and biophysics

(Gesellschaft für Schwerionenforschung, GSI)

Page 20: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 20

4. Experiments at GSI UNILAC

Universal Linear Accelerator 

● Ion source: Electron cyclotron                  resonance (ECR) causes ionisation of     atoms in a low pressure gas.                    Multiple ionisation is possible, e.g. 

● Accelerator: 

Fe858 , Zn1070 , Se1282

• particles from protons to uranium       with energies up to 11,4 MeV/u• about        particles/s in the                 target area (for cold fusion)

1013

Page 21: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 21

4. Experiments at GSI SHIP

 Separator for Heavy Ion reaction Products 

SHIP is a velocity filter, only particles with a certain velocity get through.

Length: about 11m Separation time: 1­2 μs

Page 22: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 22

4. Experiments at GSI SHIP

 Target 

● Thin foils of Pb (Z = 82) and Bi (Z = 83) targets are used              (cold fusion)

● Low melting points of both materials                => maximum beam intensity is limited to             currently              particles/s

● The reaction products show an angular           distribution caused by scattering in the           target and neutron evaporation

● Quadrupole lenses focus the beam

2×1012

Page 23: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 23

4. Experiments at GSI SHIP

 Velocity filter

Fmag = Fel ⇔ v =EB

● Momentum conservation: 

v RP =m p

m pmt

v p

● A combination of electric and          magnetic fields allow only               particles with a certain velocity to   pass.

● Independent of the electric charge and mass!

Electric deflectors:         Dipole magnets:            max 

± 330 kV0.7 T

Beam stop

=> slow beam particles may pass the velocity filter

Page 24: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 24

4. Experiments at GSI Detectors

 Time­of­flight detector● To distinguish between signals created by     ­ particles and signals        from beam particles 

● Consists of three pairs of thin               carbon foils

● Efficiency is nearly 100%

=> only anticoincident signals between Si ­ and TOF ­ detector           are taken into account

Page 25: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 25

4. Experiments at GSI Detectors

 Silicon detector

● Reaction products are stopped (Bethe­Bloch) in the detector

● Advantages of silicon: 

• High energy resolution:                                           for     ­ particles• Position senstive:   

●     ­ energies are measured 

E = 40 keV

x = 150m

Page 26: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 26

4. Experiments at GSI Background

 ● Up to              particles/s in target        area● Velocity filter suppresses the               original beam intensity by a factor                       (beam stop) 107

− 1 01 1

● Beam particles are deflected differently by an       additional bending magnet than the reaction         products 

2×1 01 2

=> background of about 1 particle/min is left

Page 27: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 27

5. Results on elements 111 and 112

 

The irradiation time was 17 days  =>  a total of only three decay­chains                                                              was measured

Page 28: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 28

5. Results on elements 111 and 112

● The beam energy was varied to obtain higher cross sections.            ● The measured half­life is                  .● In a second experiment in 2000, the results were reproduced (again    three decay­chains were measured) and officially confirmed.

1.5−0.52.0

ms

Page 29: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 29

5. Results on elements 111 and 112

 

The two measured decay chains of element 112 (not yet named) by using the reaction Zn70

Pb208 112277

1n

Page 30: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 30

5. Results on elements 111 and 112

Darmstadt, June 10, 2009

A New Chemical Element in the Periodic TableThe element 112, discovered at the GSI Helmholtzzentrum für Schwerionenforschung (Centre for Heavy Ion Research) in Darmstadt, has been officially recognized as a new element by the International Union of Pure and Applied Chemistry (IUPAC).

(www.gsi.de/portrait/Pressemeldungen/10062009­2_e.html)

Official naming of element 111 (roentgenium)

Page 31: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 31

6. Summary

● Experiments have shown that the cross section for the synthesis of      superheavy elements decreases almost continuously with higher Z                                                                                                                      => Improvements on beam, target and separator required to create           heavier elements

Page 32: Production of superheavy elements - Physikalisches Institutfschney/Seminar.SS09/Heusser… · Production of superheavy elements Seminar: „Key experiments in particle physics“

26.06.2009 Production of superheavy elements 32

References● The discovery of the heaviest elements,            S. Hofmann and G. Münzenberg,                     Rev. Mod. Phys., 72, 733­767, (2000)     ● On the spontaneous fission of nuclei with         Z near 114 and N near 184                                S. G. Nilsson and J.R. Nix                                Nucl. Phys. A115, 545­562, (1968)● Shell effects in masses and deformation           energies                                                            V. M. Strutinsky                                                 Nucl. Phys A95, 420­442, (1967)● Formation of superheavy elements in               cold fusion reactions                                         V. Yu. Denisov and S. Hofmann                        Phys. Rev. C61, 034606, 1­15, (2000)● The velocity filter SHIP, a separator of               unslowed heavy ion fusion products                 G. Münzenberg                                                 Nucl. Instr. Meth., 161, 65­82, 1979                           

● New results on elements 111 and 112               S. Hofmann et al.                                              Eur. Phys. J. A 14, 147­157, (2002)● Chemie superschwerer Elemente                      M. Schädel                                                        Angew. Chem., 118, 378­414, (2006)                  ● Kernphysik                                                        Bethge, Walter, Wiedemann                             3. Auflage, Springer, 2008● Teilchen und Kerne                                            Povh, Rith, Scholz, Zetsche                              6. Auflage, Springer, 2004● Experimentalphysik 4                                         Demtröder                                                         2. Auflage, Springer, 2005                                                                                                     ● www.gsi.de● www.transfermium.net● en.wikipedia.org