proceedings - international atomic energy agency...kek report 87-25 january 1988 a/d proceedings of...

112
KEK Report 87-25 January 1988 A/D Proceedings of the First Workshop on Control Systems held at KEK, November 26-27, 1987 edited by N. Kanaya, T. Katoh, S. Kurokawa, C. 0. Pak NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS Proceedings of KEKReport87 -25 January 1988 A/D theFirstWorkshopon ControlSystems heldatKEK November26-27 1987 editedby N. Kanaya T. Katoh S. Kurokawa C. O. Pak 1 NA TIONAL LABORATORY FOR HIGH ENERGY PHYSICS JI '

Upload: others

Post on 04-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • KEK Report 87 -25 January 1988 A/D

    Proceedings of

    the First Workshop on Control Systems

    held at KEK, November 2 6 - 2 7 , 1987

    edited by

    N. Kanaya, T. Katoh, S. Kurokawa, C. 0. Pak

    NATIONAL LABORATORY FOR HIGH ENERGY PHYSICS

    Proceedings of

    KEK Report 87 -25 January 1988

    A/D

    the First Workshop on Control Systems

    held at KEK, November 26-27, 1987

    edited by

    N. Kanaya, T. Katoh, S. Kurokawa, C. O. Pak

    、1

    NA TIONAL LABORATORY FOR

    HIGH 、ENERGY PHYSICS

    J晶

    I '

  • I*

    ©National Laboratory for High Energy Physics, 1988

    KEK Reports are available from: '

    Technical Information Office National Laboratory for High Ener;*y Physics 1-1 Oho, Tsukuba-Shi Ibaraki-ken, 305 JAPAN

    Phone: 0298-64-1171 Telex: 3652-534 (Domestic)

    (0)3652-534 (International) Cable: KEK0H0

    ,・

    。Nationa1Labora七oryfor High Energy Physics, 1988 KEK Reports are available from:

    Technica1 lnforma七ionOffice Na七ionalLabor‘a七oryfor High Ener:'y Physics 1-1 Oho, Tsukuba-Shi lbaraki-ken, 305 JAPAN

    Phone: 0298-64-1171 Te1ex: 3652-534 (Domestic)

    (0)3652-534 (lnterna七ional)Cable: KEKOHO

  • l±£a&£

    ft v^ i t t £> o $£! 88] #p ' > ; f A t #T? ( i f c L T t ' tLfi t t

  • ffiltt "> * f ^ V - * v g -J -J-fuyjA

    U.826B ^tft B3-)

    JT-60 W « * n a * * t t » t t B*BR*»W«0f TRISTANft!lffil>^f-A«5Hfc * » *Sft KEK mm') v n ^ * n y-v vowing stas K » aw ttttswR* > * - •; v^t-f # a h n'votmp* tu«r » E*tt»a-fc > * -HiSOR»naSoM85^o«iffl MM *5 KEK

    11^263 ^r& i6lI«v7.xAx?A(?tm) &m ttts jjaiuw&isasfff Control System of the Nobeyama Millimeter-Wave Array WXffl) &B3**-6B *K2tfJli£«ai3f TOPAZ «-3BW1->*-r A lUW 3EB1 KEK iookm2fl:as«->'r,7-«a'ma(7'-i'C*->xxA) *w jjfff ^sttfflWHaiBf «t*xn^#5^u-if--> r̂-t.iurjtBtaijo»iffiaxrA 85& Bf— H*K?;&flfiftBf JT-60 Magnet Power Surrly Overview Ots Control and Protection) feJII i l ^ 0 sWK^S/fSWf JT-60 «I»#

  • § A

    JT-60 «IM*«>Stt #** Sfcflc to 1 Present Status of the TRISTAN Control System /MR Bffffc to 5 Control System of the RIKEN Ring Cyclotron g;6i$ 2SW to 9 «%S©f5g-t> * - > ; v ^ ' f * n h n y e o W W , ' tU*& & to 13

    msoRtim& * - © & * • * - • A 9 4 Vf&WIOKtt &ffl *t& 38 KEK2.5GeV^iL-R&IE^' ;-ry * l tWP$0$ t t » » ft* to 41 Control System of Photon Factory Storage Ring ^h 157fE 44 M * S # f t > ^ ^ M t i ; W - > ^ f i . & # m- tt 49 Upgrade of the Control System for the KEK Proton Synchrotron 1$M UM 53

    JT-60 Plasma Control System HIM Sf— to . 5 7

    JT-60«JKO«5?(*oWffllfcfiy» *&&-fi|5 to 61 JT-60 mm&

  • J T-6 0 HmftoMVi.

    Status of JT-60 Control Systen

    Department of JT-60 Facility. Naka Fusion Research Establishnont, JAER1

    KIKUHA Toyoaki and Control Group

    Abstract

    JT-60 consists or more than ten components such as the tokamak machine, magnet power supplies and heating equipments which are separately operated in the preparatoty stages for plasma operation and organized to perform pulsive operation of plasma discharge. Therefore from the viev points of high reliability and high speed processing the JT-60 control system was consequently designed with the features of hierarchical structure, multi-computer control, CAMAC interfaces and protective interlock with relay logic. This paper reports an overview of its system configuration and functions and an evaluation of its performance on the basis of operational experience for the period over two years and a half.

    1 . liUDblC

    K!7r7'5 X - r S K ^ H J T - 6 0 l t , « » T * S J 1 S « : ( »

    flU ffiRIK fli/B'u'TjSS) JBSf iT fc f f l n -C , * H t t l £ * 2 c £ ttr5 3 : v 4 t f f i - i ) H , KS?r7'5 * T f t f t © a i K £ ^ 3 ft Bt && x f- A ©i&|8|jS leg

    **nsftHii . ft-?, iSW§«ltt£;Sj§ttT?*aa J T -

    ( i ) * - K 7 «f + - K ^ S C K J; a »s* ^ ^ - B . ; ? - i ' x?AijtjjtstiiaiticiatfauiicAt), ge^ttte

    # f a £ - e i i s J T - 6 0(M»£*'rAffifi£

    J T - 6 O M W S t t s 35 1 B E S t i -5 C» 3 t S $ • C A M A C ' ^ f i > ? -f i y 7" • •> X r A % T

    - 5 /C •? $]$|J JfJ •»:

    *©l j l t t - fc t t + l"£SU J t » « S ' X - ? A l t . 16f-y l-ffl*] ffllHJ i s a y t f j — ^ HIDIC-80E 7 &*CPU '< X , * # * *

    " fo J; # * • ? - * • 7 J - 0 . - I fcW+aia{I|5|»eJ:»} t l S L fc •* * * • 3 V h" * - * • i ' X f A T J S .

    J T - 6 0 fflftl & © •" - K 5 i T l O f i i l t O ! > c - 5 l J < ifi :$© C A M A C&ttKl J: S 4 v # - 7 * -f x © j $ / B r c * a „ 3 ^ 7" J/ X T A £0 33] Bfl f; IJ , INTEL 80 S 6 f HI DIC-08L t ^ -> ftllty h 7 - ( ? n 7 , D t 7 + 4 | i 1 C f t i i C A M A C JSft©n1Wj = y h o - 7 t L T i ' X f A | : H \ A t 0 5 o

    »a-*-a& > ' ( W i ' H i . c o i 8 £ , l " 4 I * " - f 9 * 4 J B t e ^ r t i ,

    UJffl © C A M A C K 5 - f ' < - £ r D # - H t SB US => ̂ r o -

    5 j i f f l U t C A M A CiBttfcffiSBl,*: [ "nJglSgJ • £ & #

    g?3J-*-a & * C , ' W 9 * 4 Siffl-ilHfcKj; B f • -^ -f 9 *

    /ll«Kr!. AfWUl««?ilW/»l^lN«.UaU4l-i. .

    3! 1 H J T - 6 OSIfflli'X-r AffifiE

    - 1 -

    JT-60 制御系の現状

    Status of JT・60Control Systeo

    日本原子力研究所 孤珂研究所 l T -60試験官官

    Dcpartoent of JT・60Fac IIlly. Naka Fus lon Rosearch I!st ab 11 shlllon t. JAERl

    木 村 重 秋 他、制御グループ

    X1NURA Toyoakl and Control Group

    些註~主

    JT-60 consists of問。rethan ten components such as tho tokamak machino. mngnat power supplies nnd henting equipmcnts which nrD sepnratcly oporntod ln tho propnrntoty stngos for plasmn operntion and orgnnized to perform pulsive oporation of plnsma discharge. Therefore from the vie... points of hi宮hrelinbility 8nd hi耳h spced processin官 thcJT・60 control system was conscqucntly dcsigned with the features of hierarchlcal structure. multi-computer control. CAMAC interfaces nnd protoctive intorlock with relay logic. This papcr reports an ovcrview of lt5 system configuration nnd functions and nn evaluation of its perfo~manc9 on the bnsis of operntionnl experience for the perlod ovor two yenrs nnd n hnlf.

    1. は Uめに

    臨界プラズマ試験装置 JT-60は、極めて大規摸な〈放

    置、空間、使用電力等〉道具立てを用いて、本質的民不安定

    なプラズ 7 を生成・維持し、臨界プラズ7 条件の途成という

    核融合炉の科学的実証のひとつのステソプを踏むことを目指

    ・すトカマク裂袋置である。このようなシステムの制御系に要

    求書れる特質は、先ず、商い信頼性と高速性である。 JT-

    60制御系は、これらを満たすよう次のような特徴を備える

    ものと Lた。

    < 1 )本体、 m源、加熱装置といった 10を鎧す主要装置・役備の制御系とこれらを統括する『全系制御設備J (以下「全系Jと称する。〉との階層構成をとる。これにより各サプシステム単独での鼠験・調J¥',!ilI!転と実験時の ζ れ

    らサブシステムを統合した運転を両立させている。

    ( 2)計算機制御を大帽に導入することにより、 JT-60

    が実験装置であるととから姿:脅される柔秋性や拡張性の

    ある制御系を実現 1.、また、多様なプラズマ制御の高速

    処理に対応出来る tのとした。、 (3 )センサや 7 ヲチュヱータと計算織!日iのデ -11伝送のイ

    ンター 7ェイスとし YCAMAC規格を奴周し、異なる

    メーカで製作古れる各寝置・設備の制御系聞の取り合い

    を採邸化して、制御系企体としての設計が明確l己進めら

    れるよう考慮した。

    (4) ハードワイヤード方式I己よる保護インターロソク・シ

    ステムを計算機とは独立区役l:tること l己より、安全性お

    よび機器の保護を信頼性の商いものとしている。

    本報告では、 JT -6 0制御系の構成および機能の概要を述べるととも l己、建設や実験運転の経験に基づいた位能評価

    を行なう。

    2. システム構成

    JT-60:tlJ御系は、第 1図に示すように、計算機・ CAMAC γステム、タイミング・システム、プラズマ制御用セ

    ンサの信号処j!l'回路、マンマシン・インターフェイス、およ

    び保縫イ:/~ーロック・システムから m成される。

    国 1-

    そのゆ微をなす「会系J計算機システムは、 16ピヲトの制御用ミエコンピュータ R1DIC-801!7台を CPUパス、共有メモ

    リおよび光データ・フリーウ....イと休する通信回線により結

    合 Lたマルチ・コンビ品 -j・システムである。

    JT-60:tilJ御系のハードワ εア上の特徴のひとつは、 l日述の CAMAC規格によるインターフェイスの採用にある。

    各サブシステムの制御系は、 INTEL8085や111D1C-08L といフ

    た16ピットマイデロプロセッサを備え、これらを CAMAC

    規格の補助コントローラとしてシステムに組込んでいる。

    『全系Jと各サブシステムのメッセージやデータの交換は、後述する各制御機能の目的に応じた極hの CAMACハイゥ

    z イを通 Uて行なわれ、通信?レートと呼..¥:CAMACタレ

    ートに挿入したメイル・ボックス・モジュールにより特徴づ

    けら札る。貫~ 2図に示すように、 「会系J計算機 l孟CAMAcドライバーのもとに、 「中央ハイウ品イ』で各通信クレート聞を結ぷ。各サブシステムは、それぞれ通信ヲレートを経

    由して独自のハイウェイを、さらに必要ならば、その下位に

    ドライパーを介して、 CAMACハイ世ェイを設け、多層ル

    ープを採る。運転監視データや放電結果データゆ収集,;:;,立、

    5 Mblt/sの転送速度を有するピット・シリアル・ハイウェイ

    が用いられる。この場合、 「中央ハイ守品イ Jにおいては、

    専用の CAMACドライパーと roポート付柿助コントローラJを周いた CAMAC!見絡を拡強した『可変tli長J転送方式を開発し、従来に綬ベて約2.5倍効率の良いデータ伝送を

    実現すると共に、ハイウ畠イ系の二重化により信順位の向上

    を図った。また、プラズマ制御のためには、パイト・シリ 7

    ル・ハイウェイやプランチ・ハイワ a イが用いられ、それぞ

    れDポート付デ品アルポート・メモリやプランチ・ハイウ孟

    イ・ポート付締助=ントローラといったメイルポックス・モ

    -プu,I].'2:闘と11制御I11・8闘争制御シス1'1.由)¥'IUからう11111..1:1.ので.ふIJ.I.み件11.ト..イグル岨IU::a.fA>olit2. Iftoイダ""峰崎::a"''''iU磁. 2~冷却島田.\U~回.lH^"hl向日目.自問崎加川油開且U鳳1偽川由.Utl闘をいう..

    気 1図 JT-60制御システム構成

  • 3t_

    3C

    3C

    _K_ 3(«£t—i>t>CMuc

    * i 3T

    wnd-bCT £u»

    3C ONIMlMMlNr

    -o—o-

    » • ? - # • • • *

    n«* www ] / r «*•»»»«

    — y —

    ^2: OCvtt CuuC

    1— —-fl"—1 1 1

    3*2 0 C AM A C y x ? A © « - I * i -V fl?l£

    i ? a - * i M C A y n v # Is M Rjfl6 tt C A M A C K f - f " -

    tj^AMtajfeaH^iSsraaSta&SEtt&^aftL-csgfiis K t s c fctf£< , S lWff i f f i ^ l fc^^fc»% * h ? i i u

    = y f c T » - * * « * . T ^ . 5 o L i > L . £ « » * ! » * K t t * f f f i

    B2Tl=A4o * f c , 7"? X-r&tfflOrt:*

    I-J; O i a U W t t T ' - ^ t o a ^ J f 5-5 •>. * I-ralffiaSli^e.fiRSo B S I U A M A

    o . # ices [yj«i!2£S passim s?-y-* y x | l | f f i ]R8 tE t« i * f t *£ fc i *T f f l ^ 6 t i i . * o tWE* i i > i i sosw; a v 9 * 1 6 4 + 5 J o , ^ . / « A X . •>• * * V - :? (CPG) . ^ i f t & S S t t f c S g WfRDK-f '< v I '&ttSrttft l L t J 4 i y

    * (TMG) > M i y r f i - i f £ y >j r ^ e

    V #" • h 7 ^ i v ? (TOT) *} J: 0 $ -f

    4 y ^ • P S / - v < ( T 0 R ) , £ t f l C N 7 r y - f y - * 5 ? . a -

    •MFIM) t * J o c n i l l g f t i C A M

    A c *s ' * - * {b f tn % 8ts«fr&»tt

    - A N ffi flft #* 5 7 -f V * • >« * A *S s *

    « 8 t - f v * - D „ * . i / ^ f A i t , 3t

    y * - o y ^S&SBJSo

    ttfe, J 6 K f f l l = * f c * I * ! t J * « • C A M A C l f f l o d - t e i S

    l=l±> * 7 r - f ' < - i t f f i * f t t K 5 o S f c . I S a i - f y ^ - o

    •y ? . * © « & " « • - K 7 " f + S ® J B 5 K R g © g ^ « s ' J V - K i

    3. jiiaiauB

    J T - 6 o o a e i i . t ( 0 i 8 l l i 5 r * ^ 7 X704BS l c f 5 J t 9 : o j ; 5 S H R 5 t I 5 o ft-f . 7" 7 7T -? £ Ul U i i

    300 •Coff l f f lTS[aiBl-«U5*n , K$»#ttt£?e-A;a;jSIigTBzg>£-fl.8|5

    c o — Steals©SSPB*B$IH1 x >r - A i o -5 ttiS> 6ffi i t l t fc, i/ioooe>*>«>a(3ti''-3giAT:i2;lBlfflicB5o c«)j;5 tt*aaaeJBsgBj«*ELT, au a fc i s *ASK, ae*ISli> Kc^SlW. 7*9 x*-ri|ijw% fej; iX(S5S-f y ^ - a

    35 1 « J T - 6 Oi&JffliSi• K • aeaifEa

    Stgi'-ot- (5»ifS) i:iSt/;«?l. tt**-~Oj4Bi

    ^^^*(t. 80mB). Dlv-OlJiK (»B*tt, 2800^3)

    n*»ai»±:—*•>* . v 7 t ? - / n > 7 (ssi»M»i»»t»«i:i4ff

    (fit). N - » h r ("-f^^-^KIcJ:***)* Jt), ifcHKt-fih, -Wffjh

    SMf-^oMTEftat/f-^ssaKti^weB, a«ifih u y K-ffaiaa ^?7Rr.(i-8«w. 2»s).?ft. 3**). ヲェーズ移行官J1.:ソフトランヂィン7.ディスラプシ gンリカバ寄

    安全 保担インFーロッ 7 保施方式:,、ードワイヤドリレーロジヲ 7.保縄項目散:約1∞保司動作"'肱電制御R常処理停止シーケンZに同じ

    保縄 非偲tlI司匹8蛤断 異常事怨丹原因同定と..,検聞所内耳rベレーPへ向指示{支援慣能}

    .JT-6O珂運転I!.実段位置に至るまで肉準備段階においてJ.憾なステップを踏むため, r運転毛-1-'J町慨土を噂入して全体的世遺伝管理を行う.全停止.運転事情.室温排気ベ』キング.降水素処理.恕電涜冷車偏.政電洗浄.実脆噂傭.実践的

    9つ肉O{:-!-'i>'T.畠. 同

    -2-

  • v * x x A i * -f

    J T - 6 0 O 1 8 M I U I » i S

    •cio»ra»i-cgi?fai*sfc'otL

    ©nam „ — & ©

    * < * $ #

    © S i f t * O fc t i c

    o c © i g

    c ft i it * © tf sa (3 u ** >\> ft«. »!*B©

    *(t-u> i t

    fcU 7 A - K 7° 7y Aj£

    7 r -f * -ft S

    LX's- T

    '* v 9®\®

    &* tarn cm 3 9 ftx Sets®

    x'j * - 9 ftrte t> ..

    li> tt3 Mbyte ©fflA''* !K Cf t i. y S+KC-fe y ? - © * M i R f f l 5 t f f -f > ® i a ^ i i L - T G S S f t , J T

    S f t T ^ S o

    »j|:)*V-**JU»/97 4 T ; a

    M * ft ft , . ,*~?

    5

    a , , r-°j i n=i (M«>-r>AMI)

    B Z Z > k«Rei>

    3t 3 1

    f S i S , C O K R

    ISSSft-cus,, S i c , SW

    ©roas'RjeT'-^ *» ^Faun

    4 . M 8 | ] £ © i B a a : f c g « g i a

    J T - 6 0 MBHSiO >X f- ABSJEii5!fi>fE8C-3V«-t\

    i*llC-3 t , x T * © — W i ^ a ^ 5 o

    u ^ ^ f f i r U f J S t t t S o J T - 6 0 T ? l i , & « K • K I B l i K

    g S ^ P i i e ) B < S = £ 3 S l g L T , M ^ w i ^ i c F S f f l f f i s S i ' . ^ ^ ffl^Si^RO, fiRSd*te**fcD L ^ L « i ! t o , C± (ft© T^sKJ i T t t o S l f t « > « I « i » i o B ) J 6 R I « 4 f ^ l i S C i t i S ^ f c o c o c t l i , J T - 6 0 ©*]?Jf?oSJf f i c i i , I R t J ^ v ^ ^ f r * B g s t i c L , M o B S t t i + ftKBJCi*1

    ffl3?T?*SC i S M L f c . t - > t . ife-f, C A M A C J H t S C i 3 - C > ^ - 7 * - f x c f f i m O f i a i S i i ' L , gflrSt «> *saMfc£BS#lc | i i£L;fco C f t & l i . J T - 6 0 t f t H i . ^ a ^ ^ O j g f f l a W ^ C A M A C y ^ f A l i : J ; S ? - ^ £ S © 2 £ i p s ? © S S a i ( 6 « f f f l S i J S ^ C AMACfllfiSEIx A H J ^ A

    S « , I C C O i ? S 1 8 * f t i : H l l A t , J T - 6 0 J i | » ^ 4 < * C 0 s t > 5 r t ? f l = K I L T s laWrtSB-PiaBf • > - * P J ) T 2 0 0 @ffi< ICfcJ; J i g / r ©f- x -, * • T ^ K,- U t ^ -^BSJIJ ^

    cAMAcsfsoiSHit, (Sis?^oaast*s r*a t o f t 4 i f i J ^ l i * : 4 * > o f c o L * > L . B S t t J ^ l M E M ^ a « « S < b l - t * t e L f c g toV^A5ftofcJalia.'S:•C*ao CTilf, S l f t i S r t i c f c i j a j K i ^ T ' - ^ A t B * ® V 7 ^ 7 ^ r o s a s t Kfe+t f t t f iRipf l : , * ja{ tAf0*l f tHTx S t o K C O ^ y-y h

    gi]© » n - J ? a K . M W ^ ^ ^ O f t ^ W t t t t B * ? ? < £ 7 r f i l f l r a ^ ^ l K f j I I S K J i ^ 7 X x V 7 -=£fSA-C9l tSSf t .

    3 S I S © 5 t i i J B o « g * T ? © I S & » f t » f c ! * f T t t 7 rigftiSf*8& « « 6 K K J l c 5 I S « * 5 n f c o

    J T - 6 0 * ] » 7 S « x ttM^Sg«*^E®*jaiSl=3+Kt«S ^ • S l - a f A L f c © A « l | T ? l i t t * T f f l M T * 5 o 7" 7 X rr © Da] ?S i i= l±Et»«As . i : .E^pI^ f t :SJRT?* Z Z t Itsmo ebb « * K * O f f « l t t A 5 ^ - K7-f + j f 5 i « - < T fc+iJK^fc*. 2 K S 5 ' * 7 - * J S 7 » : » i K H E t » i = l * x i ' X f A i t t o S S • K $ £ v > - > fc^frto fc2t^ffigttS:SiJ**fc-rc b Kti?> 5 . a t » « S - > x r A © a { R i S ^ ( i , j T - 6 0©]®^ ^ ' & f c S E ^ | 6 ® - t - z t * 5 5 o c:©Ci:lt,Witfs T W - > > - - f i ' ^ - 7 i ^ o f f i i o s n K S t i f t T i ^ o r^3Sj 3tjj«siii6tv h © 5 - n y f a - ^ t ? , ftfiOrt-yt*- 3 > t f * - ? f t a t •) |Wtttofcg5?4!iff l«S)l8 Jf J7 -f v K 7 « ^ t t t f i e i ±

    - 3 -

    ックの各機能が構築されている。

    3.2放t富市l御機館

    JT-60の実験放電l主、第 3図に示すように、放1¥1条件の作成.~量定、富士電の実行、結果ヂータの収集処理という手順をとる。放1¥1のシーケンス制御I主、計算機システムとタイ

    ミング・システムの組合せにより実行され、この bとでプラ

    ズ?の制御が行なわれる。 JT -60の実践2宣言itlま、自動運転の渇合設計上の目安として 10分周期で実行出来るものとした。

    放1¥1を実行するにあった弔ての機擦の動作条件を放電条件

    と呼.s:。その羽目 li3000にも及び、これらはその内容により、設備獄備条件、大局が:J1ikm条件および設備レベル条件と呼んで 3つに分類 Lていゐ。投俗筆備条件は、放司Zのタイプや使

    用笈E・投伐の指定を、大局的放1¥1条件11、主としてシーケンス上の時間条件、例えば、一巡のショットの練り返し回数、

    シヨソト時間関閥、 3台ある電動発電機の再加速開始時刻等の指定を、そして、設備レベル条件は、フィードパック制御

    ゲイン、滋場コイル電流などのプレプログラム波形、その他

    計算機や末綿の伺キの機器の動作条件を与える。これら 3舗の条件は、ある組み合わせのもとにファイル化され、放電の

    実行に当た「て適当なファイルを呼び出し、必要な修正を加

    えで、実行ファイルイとする。この場合、放電条件パラメータ

    には、線認の定格等から定主る ff容範図が与えられており、パラメータ樹立問の矛盾が無いか否かの合理性検査が行なわ

    れる。

    :TJ御系の放1¥1結果データは、約3Mbytcの置があり、これ‘らはシ冨ット後、 「会系」より計算センターの大型汎用計算

    機 (FACOMM380)'己、オンライン回線を通じて転送され、 JT -60制御系実験デー 9・ベースとして、各積解桁処理、放電記録、運転統計等に活用されている。

    注配2三司)E司珍P泊闘‘a帥.暗

    買l3図 JT-60放電制御機能プロッ♂図

    3. 3プラズマ制御機能

    JT-60プラズ?の主主111持続時聞は 5-10秒と従来の装置に絞べではるかに長〈、プラズ?の内部エネルギーも 20-

    30 MJ と極めて大きい。このような制御対象に対して、 「全系」の 3台の計算機を中心とした実時間・フィードパック制

    御系を構築した。下位 2台のフィードパック制御計算機は、ポロイダル磁揚コイル電源と共に、プラズマ電流や位置・形

    状とい勺た電磁流体的 (IIHD)平衡制御を司る。そのよ位の 1台の計算機l主、ガス注入袈置を用いたプラズ?の夜皮制御や

    加熱袋恒応よる制御を行なう他、英大なエネルギーを内在す

    るプラズマ放lItを安全に停止する機能を合わせ持つ。

    -3-

    3. (安全土保E軍機能

    これまでに述べた各機能を実現する上で、宣言会・保護とい

    う観点11iIi要である。鼠終的な保 ~il1 ハードワイヤ』ド方式

    によるインターロッテ・システムに費ねているが、この前段

    階で計算機シスすムによる積hのチ s マ空機能を備え、装置

    ・機~が重大な異常決悠に至るのを未然に防止している。運

    転状主主の維持検査や放電前後の袋置機器のチェッ夕、安全に

    放1ttを停止する稽々の方式が用意されている。さらに、異常

    主主怨が発生した織合には、その原因を収集データから Fault

    Flo・Dlagrn(FFD)に基づいて問定するためのオペレータに対する支疫機能を備えている。

    4. 制御系の迎設と運転経験

    JT-60 :t1H却系のンステム ml:i~と遺伝の U~ について、

    第 2表に慌要を示す。以下に、これらの経験から示唆される

    点についてその一端を述べる。

    大規mシステムの制御系の開発には、何らかの機能分割という手法が必要となる。 JT -6 0では、各事長置・紋備は異なるメーカで独立に製作されることとなった点と、規模の大

    きさや運転形態を考慮して、前主主のように階層構成という分

    割手法を採り、成功をおさめた。しかしながら、このため上

    位の「全系Jと下位の各設備制御系とのl双合関係が生じることとなヲた。このことは、 JT - 60の制御系の製作には、取り合い条件を明確にし、全体のm合性を十分に図ることが重要であることを怠味した。従って、先ず、 CAMAC規格によるインターフェイスの探用という特徴を生かし、設計の

    線踏化を協力に推進した。これらは、 JT-60で緩うあらゆる信号の適用基噂、 CAMACシステムによるデータ伝送の基単等の各寝苦直単容の制定や CAMAC梅成図、入出力点リスト等各種 7*-7・3 ト等の線憎化である。

    さらに、このような保障化に加えて、 JT-60lf;t/御系金体に係わる内容に関して、原研内部や原研・メーカ聞で200

    回近くにおよぶ酒々のチ品ツゴ7・アンド,・レピ品ーや取り合

    い調墜を実施し、全体のm合を図った。CAMAC規格の採用は、制御系の設計が「共通の言葉J

    で進められる利点は大きかった。しかし、取り合いに関する

    綴織化に終始したきらいがあ勺た点は残念である。例えば、

    各設備内における通信やデータ入出力のソフトウ晶アの設計

    にも十分な係筋化、共通化が図れれば、さらにこのメリット

    を生かせたことになったであろう。

    $1/御系の試験 11、各設備の単体試験、 「金系Jと各設備個別のリンケージ鼠験、制御系全体の総合的な確認を行なう

    f無負荷総合機能試験Jというステップを階んで実施され、実際の末織の機器までの総合動作確Uを行なう「実負荷総合

    機飽託験J,己引き継がれた。JT-60制御系は、核融合実験装置の制御系に計算機を

    大鋸に導入した我が国では初めての伊lである。プラズマの制御に I主計算機が必要不可欠な要紫であることは自明のことと

    なり、その信観性がハードワイヤ系と較べても十分高いため、

    史に高パワーを級う次期装置以降には、システム全体の安全

    .保護といった点からも益身震要な役割を果たすことになろ

    う。計算機システムの技術遊歩は、 JT -60制御系の設計当初と較べても目を見強るものがあり、今後も主主々発展する

    であろう。このことは、伊lえば、マンマシン・インターフェイスの機能に端的に表われている。 r全系J計算機は 16ピットのミニコンビュータで、最近のパーソナル・コンピ A ータ

    でも当たり前となった漢字処理機能やウインドウ表示機能は

    持ち合わせていない。

  • 382%. i T - 6 oi&jairsoai&sgiaegia

    Jits S 3 5 4 5 5 5 7 5 8 5 9 6 0 6 1 6 2

    JI-IO i tc ox

    ran MIS

    01

    MB no

    taft

    JT-IO WMKMB

    rmoi t ttMBB

    Ki t K I I —0——O—

    JT-SB t m i - j ? i f f » f - i

    t * s s s x a « » 7 - + -"»• • »•*-3*

    (SIJOME. ttHBllR&HSS)

    a «

    a a a

    ^?AorjgiGfcioTatgittctit, S L U O - K O I T O ?AK*j x x ASaStK * 5 o W i t f , £ & i $ © & 7 ! S & f t ® S S I : 5 £ A ; > J i i * £ t t » ; f j & g - * - 3 f P 3 6 T * S „ 3000931 S g i J / « 5 ^ - ^ « S feicfga

    > • 4 > ? -y s.-i x £ 8 5 f 6 - * - 5 & g - a s * 5 o c o f c a j l c i i , « - ® « ^ - K » * r o i S j R i c J a i T s P l ^ i f , 5 a ; K - y - # S 9 n> • •/ 7 -y >\, • ~7 a

    S 6 l = , $]?P3* €.11, SSK^f f i ,

    C n & l u O ^ T I i , J T - 6 0 K t J ^ T t o a * i i t ( S i t l t

    # N ft » £ ->- x T1 A f? 1= o

    5 *7fclf f l l l i tes t t xS*MT?iBg t tSEf f i i : iUSL, #24

    (1) iESU < $ * , e f f l f t l 55 (1986) 465 (2) I.Kondo et a l . ,Fus ion Engineering and Design 5

    (1987) 69

    (3) T.Kinura et a l . . Proceedings of 11th Symposium on Fusion Engineering, Austin (1985) 580

    - 4 -

    M2表 JT-60:lilJ御系のE主役過程と運転経過

    トミ 53 54 55 56 57 58 59 60 61 62 主It

    lf-‘' 本体 01 加問 IllI闘.fl'(:fト 本体現的 随意 11111 実峨 Ib白 寓蹟

    由工 開始 開始 以肌

    JT-IO n踊段It 田 作制御荊阿見 踊討n匝 プ m

    1 IIIIt は 蹟 , 峨)( 記

    町1 リン Ia白 マ 位

    体ケージ担健 制 申

    JT-IO制御システム作東チーム 田 a 晶 遭

    〈方針。決定、&備関白羽蟹〉 @

    総合調盤JA窃 制御ヲ-~ト J グ・グループ 占It

    E革1¥10制定、股傭聞取色調箆専】

    従勺て、彼自投合装置制御系のような長期間を必認とす Qシ

    ステムの開発にとって重要なことは、新しいハードウエアの

    導入にあるのではなく、実験や運転を推進する上でどのよう

    な機能が本質的に重要であるかを見極めるシステム綬計にあ

    る。例えば、実験時の放1lI条件の設定入力は大変な労力を妥

    する作業である。 3000項目を飽えるパラメータはさらにJC!理

    する必要があるし、また、運転員の労力を軽減するマンマシ

    ン・インターフェイスを構築する必要がある。このためには、

    君主・適なハードウ品?の選択に加えて、例えば、知識データペ

    ースの手法を採り入れ、運転経験の蓄積が可能な νステムの様策が必要となろう。さらに、プラズマ制御に関しても、IdHD平衡:IiIJ御に構造物の渦電流効果を厳密に考慮したり、温度、密度の制御 l己種々のパラメータを考慮した多変数フィードパ

    ック制御手法の擁立は重要な課題である。このような機能を

    実現するハードワ a アとしては、デジタル・シグナル・プロ

    セッサやアレイ・プロセッサといった高速処忍装置の応用も

    有効な手段のひとつである。

    s らに、 ~J御系のシステム開発という点からは、 E式験手法、品質管理、データ管理等の手法の確立は重要な&11!庖である。

    これらについては、 JT-60においてそのま式みがなされたが、核開生合システムの開発という点からはその絡についたば

    かりである。

    -4-

    5.まとめ

    J T -6 0制御系の現状についで、その構成および機絡を慨説した。この建設や速転の経験l主、今後の大型核融合実験

    装置の制御系の設計手訟の確立や被能開発に反映させる必要がある。

    次期装置ではl1l:水索、三重水量憶を悠焼するため高いフラッ

    クスの中佳子発生が運転に伴う。 ζ れは新たな要請号として今

    後、制御システムの関発で考慮すべき課庖である ω:;tも、プ

    ラズマ制御lま依然と Lて基本的で重要な課題が山積し、有効

    な加熱法やヂィスラプションの抑制法の確立等、枚掌にいと

    まがないが、これらを谷実に解決してい〈ことが重要である。

    室主主主E

    (1)近縁、鈴木、応用物llIl 55 (1986) 465

    (Z) 1. K口ndoet al. .Fuslon Engineerlng and Deslgn 5 (1987) 69

    (3) T. KI個uraet al..Proceedlngs oC 11th Symposlu皿 on

    Fuslon Engineering. Austin (1宮85) 580

  • Present Status of the TRISTAN Control System

    Haruyo Koiso and Shin-ichi Kurokawa

    National Laboratory for High Energy Physics, KEK

    Oho, Tsukuba, Ibaraki, Japan 305

    Abstract

    Twenty-five d i s t r i b u t e d minicomputers . Hi tach i HIDIC 80E's and HIDIC oOM's, are connected by op t i ca l f iber cables to form a 10-Hbps t o k e n - r i n g network. NODAL, a mul t i - compute r i n t e r p r e t e r language dev i s ed n t CERN SPS, has been implemented on HIPIC fiO's Kith enhancements such as a fas t execution speed, a dynamic l inkage scheme for external subroutines, e tc . A l l h i g h - l e v e l appl ica t ion programs were coded in NODAL, which have needed more than 35 man-year e f fo r t s . Accelerators are operated through s ix ive i d e n t i c a l operator 's consoles which cons is t s of two high-resolu t ion co lor graphic CRT terminals , a p a i r of touch p a n e l s and a VT100 t e r m i n a l used fo r i n t e r a c t i v e programing.

    1. Introduction

    TRISTAN, a 30 OeV x 30 GeV e l e c t r o n - p o s i t r o n c o l l i d i n g f a c i l i t y a t KEK, has seen i t s f i r s t e l e c t r o n -pos i t ron c o l l i s i o n s a t the world highest energy of 25 GeV in November 1986. The highly computerized cont ro l system of TRISTAN has contributed s ign i f i can t ly to the f a s t commissioning[l].

    As shown in F ig . 1, the a c c e l e r a t o r complex of TRISTAN c o n s i s t s of t h r e e major a c c e l e r a t o r s : a 400 m e l e c t r o n l i n a c , which a c c e l e r a t e s e l e c t r o n s and p o s i t r o n up to 2.5 GeV; an accumula t ion r i n g (AR), which accumulates e l ec t rons and posi trons, acce le ra tes them to 7 - 8 GeV, and f i n a l l y in jec ts them to the main r ing (MR); MR i s an e lec t ron-pos i t ron c o l l i d e r with the maximum a t t a i n a b l e energy of 33 GeV.

    This paper describes the overview of the TRISTAN cont ro l system. Since the l i n a c i s working a l so as an in jec to r to the photon factory r ing , i t i s con t ro l l ed by an independent system. The TRISTAN control system, therfore , covers AR and MR.

    2. System Architecture

    The s i z e and complex i ty of TRISTAN makes i t reasonable for us to adopt a scheme of the d i s t r ibu ted computer c o n t r o l . Twen ty - f ive minicomputers (eleven HIDIC 80E's and t h i r t e e n HIDIC 80H's) a r e l i n k e d t o g e t h e r by o p t i c a l - f i b e r c a b l e s t o form an N-to-N network (Data Freeway). Data Freeway i s a h igh-speed t o k e n - r i n g network f o r d i s t r i bu t ed i n d u s t r i a l control made by H i t a c h i , Ltd. The throughput of the network changes accord ing t o t he a v e r a g e message l engh th . F igure 2 shows the throughput a s "a func t ion of the message length. The maximum throughput i s near ly 1000 k b y t e / s e c [ 2 ] . F i g u r e 3 d e p i c t s t h e o v e r a l l configuration of the TRISTAN control system.

    The HIDIC 80E and HIDIC 80 H a r e 1 6 - b i t m i n i c o m p u t e r s w i t h 1-Mips computing power. Each minicomputer i s equipped wi th 512 kbyte memory, a magnetic disk d r ive with 17, 35 or 70 Mbyte capacity, a console typewriter, a s e r i a l or l i n e p r in t e r , and one

    w 500 V)

    •0 £ 400

    ~ 300 0.

    g» 200 0

    - 100

    ^^^ ^^__

    • /

    1 1 I

    256 512 768

    number of tronsmission words

    1024

    Fig. 1 Accelerator complex of TRISTAN. Fig. 2 Throughput of the present network.

    - 5 -

    Present Status of the TRISTAN Control Syste旬

    !laruyo Koiso回 dShin-ichi Kurokuwa

    Nlltional Laborlltロryfor H1gb Energy Physics. KEK

    Oho. Tsukuba. Ibar凶ci,.1apnn 305

    Abstract

    τ、.enty-five distributed四inicomputer唱 . H:l tachi H1DIC 80E's and HIDIC 80M・s. nrc connected by opticnl fiber cnblcs to fo['m n 10‘Mbps token-ring network. NODAL, a lDul ti-computer interpreter languuge deviscd nt CEAN SPS. has been implemented on HIDIC 80・S "'1 th enhrmcements such QS n rnst clCccution spcC'd. n dynnmic 1 Inkngc schc即日ror external subroutines, etc. Al1 high-level applicution progrSJIIs were coded in NODAL, which have needed回目 than35田an-yearefforts. Accelerntors are operated through sixive identical operator's consoles which consists of two high-resolution color graphic CRT ter田inn1s,n pair of touch punels nnd a VT100 terminal used for interactive progrSJlling・

    This paper describes the overview of the TRISTAN control system. Since the linnc is working n1so ns nn injector to the photon factory ring. it is contro11ed by an independent system. The τ~ISTAN control system, therfore, covers AR町、dMR.

    1.工ntroduction

    TRISTAN, a 30 GeV x 30 GeV electron-posttron cOl1iding facility at KEK, hns seen its first electron-positron collisions aιthe world highest energy of 25 GeV in Nロvember1986. The highly coIllPuterI7.ed cロntrolsystem of TRISTAN has contributed signifiCDntly to the fnst com田issioning[1].

    2. Syste田 Architec ture

    The size nnd cOIDp1exity of TRISTAN lIIakes i t reasonable for us to adopt a sche阻eof the distributed cOlllpute.r control. Twenty-five minicomputers (eleven HID工C 80B's and thirteen HIDIC 80,""s) are linked together by optical-fiber cables to fo1'皿 anN-to-N netwot'k (Datn Freeway). Data Freewny is a high-speed token-ring network for distributed industrial control made by Hitachi, Ltd. The throughput of the network changes according to the average lIIessage lenghth. Figure 2 shows the throughput as 'a function of the message length. 百1e回出imumthroughput 1s nearly 1000 kbyte/sec[2]. Figure 3 depicts the overall configuration of the TRIST~~ contro1 syste田.

    As shown in Fig. 1. the accelerator cOlllplex of TRISTAN consists of three majot' accelerators: a 400 m e1ectron linnc, which nccelerates electrons and positron up to 2.5 GeV; an accu図ulationring (AR), which nccumulates e1ectrons and positr口ns. nccelerates them to 7・8GeV, and finBlly 1njects them to the mBin ring (MR); MR is回 electron-posittoncollider with the mnximum attBinable enet'gy of 33 GeV.

    The H工D工C 80E and HIDIC 80 M 8re 16-bi t minicomputers with 1・Mips computing power. Ench minicomputer is equipped with 512 kbyte田e田ory. a magT、eticdisk drive with 17, 35 or 70 Mbyte cnpncity, a console typewriter. n Serial or 11ne pr1nter, and one

    ぬ24256 512 768

    number 01 fransmission words

    o

    ∞・∞∞∞

    m

    a

    u

    a

    'a

    内,

    h

    u

    H

    -U国師、司』ロ

    EMA--コ由民ZF20』五』

    o z00"'

    Fig‘2 Throughput of the present network.

    -5-

    Accelerntor complex of TRISTAN. Fig. 1

  • or two CRT terminals (DEC VT10O or equivalent). HIDIC 80E and HIDIC 80M are e s s e n t i a l l y the same minicomputer with the only d i f f erence that on HIDIC 80M a ^-Mbyte RAH i s i n s t a l l e d and i s used as an add i t iona l "disk" device; th i s has an access latency of 2 msec, which i s a substantial improvement over the 40 ms of a disk.

    The minicomputers are c l a s s i f i e d into two groups: the system computers are located in the central control room and each of them supports one of the c e n t r a l -control functions such as servicing an operator console (0P0-0P5), alarm-alerting (ALO and AL1), library (LBO).

    The f i f t e e n d e v i c e - c o n t r o l computers contro l hardware equipment such as magnets and power supplies (MGO-HG't), radiofrequency equipment (RF0-RF2), beam transport equipment (BTO and BTI), vacuum equipment (VAO and VA1), bean monitor equipment (BMO and BH1) and genera l purpose usage (GPO and GP1). Each d e v i c e -contro l computer has two CRT terminals attached: one l o c a t e d near the computer and the other located near the control led devices , connected by modems, for t e s t , maintenance and diagnosis.

    From each computer, exept LBO, a 2.5 Mbps b i t -s e r i a l CAMAC highway extends to the equipment. The to ta l number of the CAHAC crates i s I85.

    3 . KEK NODAL

    The amount of application programs necessary for operat ing large a c c e l e r a t o r s should be very l a r g e , since elaborate operation and thorough invest igat ion of a c c e l e r a t o r s are p o s s i b l e on ly by means of good operat ion programs. Usua l ly the speed of program development i s mainly determined by number of persons who can write programs multiplied by the eff ic iency of program production. In our laboratory the number of s taf f 13 limited; therfore we decided that noone works as a p r o f e s s i o n a l programer; i n s t e a d hardware e n g i n e e r s , machine o p e r a t i o n engineers and beam p h y s i c i s t s should make programs necessary for t h e i r jobs . This compel I s us to make the good software-d e v e l o p m e n t env ironment f o r n o n - p r o f e s s i o n a l programers. Our answer was to adopt the NODAL system which was devised and has been s u c c e s s f u l l y used in CERN SPS[3].

    One of the most prominent features of NODAL i s i t s multi-computer f a c i l i t y . The syntax of NODAL allows a program to be expressed as a number of separate parts which Can be executed on d i f f e r e n t computers on the network. Three multi-computer commands e x i s t in the NODAL: EXEC, IMEX and REMIT. REMIT i s used to return the answer to the computer which has issued the EXEC or IMEX command.

    I n the f i e l d of the d i s t r ibuted a c c e l e r a t o r c o n t r o l s , many problems which are inherent to the distribution of in te l l i gences should be overcome. For e x a m p l e , we h a v e t o t a k e i n t o a c c o u n t t h e synchronization 0 f two or more processes that run on d i f f erent computers. The multi-computer f a c i l i t y of NODAL enables us to cope with these problems very easi ly.

    The NODAL system for TRISTAN i s ca l l ed KEK NODAL. Though the specif icat ion of the language i s similar to the original SPS NODAL, the internal structure of i t i s different. I t was newly written for HIDIC 80's in PCL (a real-time FORTRAN on HIDIC 80's) and assembler.

    The KEK NODAL i s enhanced over the original NODAL by the following points:

    (1) The addition of a ful l - screen editing f a c i l i t y ,

    (2) The speedup of e x e c u t i o n by the c o m p i l e r -interpreter method,

    (3) P r o v i s i o n of a dynamic l inkage scheme for data modules and functions,

    and

    Ct) Provision of a multi-computer f i l e system.

    The d e t a i l s of the KEK NODAL i s given in Refs >t and 5.

    k. Linkage to the Central Computers

    Operation of complex accelerators necessitates the use o f l a r g e computing power for the purpose of modeling and simulation. To this end, the minicomputer network is Connected to large genera-purpose mainframe computers i n the computer center of KEK.

    operator̂ console KEK

    central computers

    • s .cc . ; ! control ! [__system__j

    - 6 -

    or two CRT terminBls (01お VT100or equivalent). HIDIC 80E and HIDIC 80101 are essentiB11y the some minicomputer wi th the only difference thBt on HIDIC 80101 a 4-Mbyte RAM is instB11ed Bnd is used as an additiona1 "disk" device; this has sn access 1Btency of 2田sec.which is a substantial i田prove田entover the 何回sof a disk.

    τ'he minicomputers are classified into two groups: 凶 esystem co回putersare 10cated in the centra1 contro1 room and each of the阻 supportsone of the centre1-contro1 functions such ss servicing an operator console (OPO-OP5). alarm-alerting (ALO and AL1). library (LBO).

    The fifteen device-control computers control haroware equipment such as magnets and power supp1ies (MGO-MG4). rBdiofrequency equipment (RFO・RF2).beBm trensport equip田ent(BTO and BT1). vacuum equip田ent(VAO and VA1). beam 1II0nitor equip園田t(BMO nnd BM 1) and general purpose usege (GPO and GP1). Each devjce-contro1 computer has two CRT terminals atteched: one locBted near the computer end the other loceted neBr the controlled devices. connected by modems. for test. maintennnce and diagnosis.

    Fr白血 eBch computer. exept LBO. a 2.5 Mbps b1t-seria1 CAMAC highway extends to the equipment. The totBl number of the CAMAC crates is 185.

    3. KEK NODAL

    τ官、ea皿ountof app1icBtion programs necessary for operating 1Brge Bcce1erators should be very large. since elaborBte operation and thorough investigation of acce1eretors arc possible only by meens of good operation progra田s. Usually the speed of progralll deve10p田ent1s main1y determined by number of persons who cnn wri te progre皿smu1 t1plied b~' the efUc1ency of program production. 工nour 1aboratory the number of stBff 15 1i田ited;therrore we decid~d that noone workS as a prロfessione1 programer; instead hardwBre engineers. machine operation engineers end bea皿physicists should皿akeprograms necessery for their jobs. This compel1s us to make the good sofむware-develop田ent environment for non-professional programers. Our Bnswer was to adopt the NODAL system which was devised and has been successfu11y used in CERN SPS[3J.

    Aαumulotion ring← -M仰向

    One of the回ostprominent features白fNODAL is its multi-Computer facility. The syntax of NODAL a110ws a progralll tO be expressed as a nu田berof separate parts which Can be executed on different computersロnthe network. Three lI1ul ti・C白血puterc口岡田andsexist in the NODAL: EXEC.工MEl(and REMIT. REMIT is used to return the snswel' to the computer which has issued the EXEC or IMEX cOll1msnd‘

    In th邑 fie1d of the distributed acce1erator contl'o1s. lI1any Prob1ems which al'e inherent to the distribution of inte11igences should be overcome. For ex'l悶P1e. we have to teke into account the 弓y',chroni:z:ation of two or more processes that run on differenむComputers. The mul ti-computer faci1ity of NODAL enab1es us to cope with these prob1e皿svery easi1y.

    The NODAL system for TRISTAN is cal1ed KEK NODAL. Though the specificetion of tl四 languB官eis similar to the original SPS NODAL. the internel struCl:ure of it is d1fferent. 工twag new1y written for HIDIC 80・sin PCL (a rea1-tillle FORTRAN on HIDIC 80・s)and assembler.

    百1eKEK NODAL is enhanced over the original NODAL by the following points:

    (1) The addition of a fUll-screen editing fBCil1ty.

    (2) The 5peedup of execution by the compiler・interpreter lI1ethod,

    (3) provision of a dynamic 1inkBge scheme for data 皿odulesand functions,

    a:1d

    (4) Provision of a mu1 ti-computer file system.

    The detai1S of the KEK NODAL is given in Refs 4 and 5.

    4. Linkage t。 包heCentre1 Computers

    Operation of comp1ex Bccelerators necessitates the use of' large co岡putingpower for the purpose of 血odelingand si皿uIBtion. To this end. the minicロmputernetwork i5 Connected to 1arge genere-purpose mainframe computers in the co回putercenter of KEK.

    .controlstotion (CSTl omoster stotion (MST)

    ____L_ー 『S.C.C. I control

    Fig. 3 Overall conf・igurationof the TRISTAN control System. しそy~t.!!~u

    -6-

  • The KEK cen t ra l computer system consis ts of three l o o s e l y coupled p r o c e s s o r s : M-680H, M-280H and S-810/10. These p roces so r s a r e connected to each o the r with c h a n n e l - t o - c h a n n e l adap te r s , and share magnetic disks. M-280H i s used for long batch Jobs. H-680H for TSS t e r m i n a l j obs and batch jobs , and S-810/10, which i s u supercomputer, i s used for vectorized batch jobs.

    The channel of M-680H i s extended by op t i ca l fiber cables from the computer center to the TRISTAN control b u i l d i n g , where i t i s connected to LBO (see Fig . k). From the view p o i n t of the TRISTAN minicomputer network, LBO works as a gateway t o the mainframe system. We " a l l t h i s linkage TRNET.

    The following advantages are ident i f ied i n using the c e n t r a l mainframe computers for a c c e l e r a t o r ope ra t ion . The f i r s t i s the c o n t i n u a t i o n of design works and acce le ra tor opearation. Lat t ice designs for a c c e l e r a t o r s a r e u s u a l l y c a r r i e d out by u s ing l a r g o general-purpose computers. Many programs used in the design s t age may a l s o be use fu l for ope ra t i on of the a c c e l e r a t o r s . The second advantage i s t h a t such computers have rich resources, such as large computing power, mass s t o r a g e and v a r i o u s p e r i p h e r a l d e v i c e s . For example, the HITAC H-680H has a computing power of 15 Mflops and 96 Mbyte memory.

    On the o t h e r hand, t he re a re d i sadvan tages in using general-purpose computers, t yp i ca l ly the slow and unpredictable response time due to sharing the CPU and other resources with other batch and TSS jobs. We have overcome t h i s d i f f i c u l t y by a s s ign ing a s p e c i a l p r io r i t y to acce le ra tor operation jobs.

    Large jobs for acce lera tor operation are submitted from the TRISTAN c o n t r o l sys tem t o t h e c e n t r a l .computers. A s e t of NODAL funct ions loaded on LBO i s .used for communicati t ion with the c e n t r a l computers. These f u n c t i o n s a l l o w us t o m a n i p u l a t e t h e communication with the c e n t r a l computers wi th in the framework of t he KEK NODAL s y s t e m . N o r m a l l y , appl icat ion programs run on the console computers, but s h o u l d they r e q u i r e t h e s e r v i c e of t h e c e n t r a l computers they can use the EXEC and IMEX commands to c a l l the network functions on LBO.

    The standard procedure of the use of TRNET i s the following:

    (1) The NODAL program on a console computer sends NODAL a r r a y s which con t a in s inpu t da ta to the mainframe computer. The contents of the arrays are stored in a f i l e of the cen t ra l computer.

    (2) The job i s submit ted on the mainframe computer from the NODAL programs.

    (3) The s t a t u s of t he job i s r e g u l a r l y checked by the NODAL program. When i t senses the end of the job, i t reads the output f i l e of the job.

    In order to guarantee the necessary response time, the submitted job i s put a t the top of the que and when i t i s made run, i t can u t i l i z e l a r g e amount of CPU power of the mainframe computer.

    =Ui« _y~ =LJ= main csnlnrt r»m

    optmlor'j consoli

    U J I I 1 I l E L T ^

    _rr:

    Fig. 5 The Plan view of the TRISTAN control room.

    5 . Operator Consoles and Control Room

    F igure 5 shows the p l a n view of the TRISTAN c o n t r o l room. There a r e s i x e q u i v a l e n t ope ra to r s console (OPC) uni ts arranged i n a l i ne . Each OPC unit i s connected t o one of the computers 0P0-0P5- I t c o n s i s t s of two 20" c o l o r g raph ic d i s p l a y monitors (GDM), a pa i r of touch-panels and ten 10" TV monitors. One VT100 terminal i s attached for in te rac t ive program development. Figure 6 shows a schematic diagram of one u n i t of OPC.

    The GDM's (Japan Radio Company Ltd. model NWX 235) a r e used t o d i s p l a y h i g h - r e s o l u t i o n graphic da t a . A GDM has a resolut ion of 1024(x) X 960(y) p ixe ls and has the funct ions of windowing, segmentation of images, movement, rotat ion and zooming of a segment, e tc . One can draw p i c t u r e s in 16 c o l o r s a t a t ime, out of a p a l l e t t e of 1)096 colors . The GDM i s connected to HIDIC 80 by an RS232C l i n k . S ix ty graphic func t ions a re implemen ted i n t h e KEK NODAL sys tem to s u p p o r t i n t e r a c t i v e graphics.

    The video monitor for touch-panels i s lk", 8-color TV moni tor . The E260-13SM type touch-panel made by E lograph ics Corp. i s used, which g ive s an o v e r a l l reso lu t ion of k mm in both axes.

    An o p e r a t o r can s e l e c t a program or a p iece of equipment us ing the le f t -hand touch-panel. Forty-two buttons can be displayed on th i s merai-selection panel. In each bu t ton o u t l i n e t h r e e l i n e s , of messages, each with up t o n ine c h a r a c t e r s pe r l i n e , can be w r i t t e n . These messages show program names, equipment names, measured v a l u e s , e t c . Since the number of bu t tons on th i s panel can be as large as k2. the number of touches to reach the desired action can be kept small .

    Two types of TV monitors are used: 10" TV monitors i n s t a l l e d in OPC u n i t s and 27" TV monitors p l aced i n f ron t of the conso le desks (see F igs . 5 and 6). The l a t t e r are used to display summary information of the a c c e l e r a t o r s . At p resen t s i x 27" TVs are used for d i s p l a y i n g (1) beam p r o f i l e s measured by screen

    S8IO/I0 •1000 m

    M680H = OCA H80E.

    OCA H CTCA \— BID= DFW

    KEK central computer | I TRISTAN control room building

    Fig. k The hardware s t ruc ture of TRNET.

    - 7 - *

    The KEK centra1 computer system consists of出国e100se1y cロupledprocessors: M・680H,M・280Hand 5・810/10. '!'hese processors are connected to each other w:lth channe1-t。旬channeladnpters, nnd shnre mngnet:lc d1sks. M-28口H1s used fo1' 10ng batch jロIbs, M・回OHfo1' T5S te1'mina1 jロbsand batch jobs, and 5-810/10, wh:lch 1s a supe1'compute1', 1s used fo1' vecto1':lzed batch jobs.

    The channe1 of M・680H1s extended by opt1ca1 f1be1' cebles fro田 thecomputer center to the TRI5TAN cont1'o1 build1ng・where1t 1s connected to LBO (see F1g. 4), Fro田 the v1ew po1nt of the TRI5TAN m1nicomputer network, LBO uorks as a gateway to the ma1nframe syste皿. We ~al1 th1s linkage TRNET.

    The fo1low1ng advantag田 are1dent1f1ed 1n us1ng the cent1'a1 田ainframe computers for accelerato1' oporation. The first 1s the continuat1on of design works and acce1e1'ato1' opea1'at1ロn. Latt1ce designs for accelerntors are usulllly cnrried out by uSing lllrgo E官nernl・p¥Jrpose computer・s. Mnny progrnms used 1n the des1gn stage may a1so be usefu1 for operat1on of the acce1erat白rs. The second advantage 1s that such Cロmputershave 1'ich resou1'ces, such as 1arge computing powe1'. mass storage and various pe1':lpheral dev1ces. For examp1e, the H1TAC M・680Hhas a computing power of 15 Mflops and 96 Mbyte memory.

    On the other hand, the1'e are d:lsadvantages 1n using genera1-purpose computers, typical1y the slow and unp1'ed1ctab1e response time due to sharing the CPU and othe1' 1'esou1'ces with other batch nnd .おSjobs. We have ove1'come th1s diff1cu1 ty by assigning a spec1a1 p1'ior1ty to nccele1'ato1' ope1'ation jobs.

    La1'ge jobs fo1' acce1erato1' ope1'ation a1'e submitted f1'o田 the TR工STAN cont1'o1 system to the cent1'a1 .co皿puters. A Set of NODAL functions 10日dedon LBO 1s .used for Communicat1t10n with the cent1'a1 compute1's. These funct10ns a110w us to manipu1ate the 巴ommunicationwith the cent~al computers with1n the f1'amework of the KEK NODAL syste田 No1'ma11y,app11cation p1'og1'ams run on the conso1e co田pute~s , but ehou1d they requ11'e the se1'v1ce of the cent1'a1 co回pute1'sthey can use the EXEC and IMEX commands to ca11 the netwo~k functions on LBO.

    The standard p1'ocedu1'e of the use of TRNET is the follow1ng: ・

    (1) The NODAL prog1'am on a conso1e computer sends NODAL a1'1'ays which contains input data to the田a1nfra皿ecompute1'. The contents of the ar1'ays 81'e stored 1n a file of位1ecent1'al compute1'.

    (2) The job 1s submitted on the ma1nf1'ame compute~ f1'om the NODAL p1'ograms.

    (3) The status of the job 1s 1'egu1且1'1ychecked by the NODAL prog1'am. When 1t senses the end of the job, 1t 1'eads the output f11e of the job.

    工norde1' to guarantee the necessa1'y 1'esponse time, the submitted job-is put at the top of the que and when 1t 1s made 1'un, it can ut111ze 1a1'ge amount of CPU powe1' of the mainframe co田puter.

    KEK cenlral compuler bulldlng

    同 In開 11.. 浦room

    丸刈|~

    z,'IV・8Fーー一一ーJ C=:-~-- 1 l r

    Fig. 5 The plan view of the TRISTAN ∞nt1'o1 ro白田.

    5. Ope1'ator Conso1es田 dCont1'o1 R回国

    F1gu1'e 5 shows the p1an v1ew of the TR工5TANcontro1 1'oom. The1'e a1'e s1x equ1va1ent ope1'ato1's console (OPC) units ar1'anged in a 1ine. EBch OPC un1t 1s connected to on9 of the compute~S OPO-OP5. 1t cons1stsロftwo 20" c01ロl'g1'aphic d1sp1ay mon1to1's (GDM), a pair白ftouch-pane1s nnd ten 10" TV mロn1tors.One VT100 term1nal 1s attached fo~ 1nte1'active progT・8血development. F1gure 6 shows a schematic diagram of one un1t of OPC.

    The GDM's (Jepan Radio Company Ltd. model附 X235) a1'e used tロd1sp1ayh1gh-1'eso1ution graph1c daむa. A GDM has a 1'eso1ution of 102押収)x 960(y) pixe1s and h回the funct:lons of w1ndow1ng. segmentat10n of images, 皿ovement,1'otat10n and zo口皿ingof a segment, etc. One can d1'aw p1ctures 1n 16 c010rs at a time, out of a pa11ette of 4096 co1ors. The GDM 1s connected to H1D1C 80 by an RS232C 11nk. 5ixty g~aphic functions a1'e 1mp1emented 1n the K8K NODAL system色。 support1nteractive graphics.

    The v1deo mon1tor for touch-pane1s is 14", 8・co10rTV mon1to1'. The 8260・135Mtype touchでpane1田adeby E1ograph1cs Co1'p. 1s used, which gives anロve1'al1reso1ution of 4 mm in b白thaxes.

    An ope1'ator can se1ect a prog1'am 01' a p1ece of equipment using the 1eft-h回、dtouch-pane1. Fo1'ty-two buttons can be disp1ayed on this menlj-se1ect1on p田 e1.1n each button out1ine th1'ee 1ines白'ofmessages, each w1th up to n1ne cha1'acte1's pe1' 11ne, can be w1'1tten. These messages show prog1'a皿 names,equipment names, measured values, etc. 5ince the numbe1' of buttons on this pane1 can be as 1arge凶句2,the number ofキロuchesto 1'each the desired act10n can be kept sma11.

    Two types of TV mon1tors are used: 10" TV monito1's 1nsta1led in OPC un1ts and 27" TV monito1's p1aced in front of the conso1e desks (see F1gS. 5 and 6). The 1atter 81'e usedじodisplay summa1'y 1nformat10n of the acce1erators. At present s1x 27" TVs are used for disp1ay1ng (1) beam p~of:l 1es meDsu1'ed by sC1'een

    DFW

    F1g. 4 百1ehardwa1'e structure of TRN町.

    -7-

  • TV monitor

    20" graphic display

    touch-panel

    Fig. 6 Schematic structure of one unit of the operator console.

    monitors in the beam transport l i n e s , (2) summary of AR s t a t u s , (3) summary of MR s t a t u s , (4) current and l i f e t i m e of beams in AR, (5) current and l i f e t i m e of beams in MR, and (6) current of each *l bunces in MR. Using the m u l t i p l e x i n g switch system we can d i s p l a y these informations a l s o on 10" smal l TV. Small TV's are a l so used to show other supplementary information.

    7. Program Development

    Our aim was to increase the number of persons who can write application programs and to make the software d e v e l o p m e n t environment which i s f r i e n d l y t o PYogramers. To t h i s end we have implemented NODAL on the minicomputer network and enhanced i t s functions over the original NODAL.

    The development of application programs began in 1983. At present, nearly 1000 NODAL programs, 100 data modules and 100 u t i l i t y functions have been developed. The t o t a l manpower suppl ied for these programs are est imated to be 35 man-years for NODAL programs and u t i l i t y funct ions and 5 man-years for data modules. The number o f NODAL programs are c o n t i n u o u s l y increasing.

    Acknowledgements

    The author wishes t h e i r thanks to Professors S. Ozaki, Y. Kimura and G. Horokoshi f o r t h e i r encouragement and support during the construct ion of the system. He i s a l s o gra te fu l t o the group members of the TRISTAN contro l group and the a c c e l e r a t o r development group.

    References

    [1] S. Ozaki: talk given at I987 Lepton-Photon Symposium, Hamburg.

    [2] H. Koiso, e t a l . : Performance of the TRISTAN Computer Control Network, IEEE Trans. Nucl. Sc. NS-32 (1985) 2068.

    [3] M.C. Crowley-Milling and O.C. Shering: "The NODAL System for the SPS", CERN 78-07 (1978).

    [I|] S. Kurokawa. e t a l . : KEK NODAL System. IEEE Trans. Nucl. Sc i . NS-32 (1985) 2071.

    [5] S. Kurokawa, e t a l . : The TRISTAN Control System, Nucl. Instrum. Methods A247 (1986) 29.

    At present the t o t a l number of s t a f f of the TRISTAN accelerator i s 85: among these, 25 persons can w r i t e NODAL programs and about h a l f of these persons have been making and are now making NODAL programs. These act ive members are mostly accelerator physicists; they are studying accelerators in order to attain good performances of the TRISTAN. The operation programs are f i r s t written as too l s of accelerator study; then they are brushed up during a c c e l e r a t o r s t u d i e s and eventual ly some of them are becoming used as programs for operation.

    - 8 -

    v' nu

    l

    nv s

    --

    Jnu

    pi--EE

    e

    t

    p

    m

    u

    V

    A

    d

    ""Ln"

    M

    T

    C

    vσm

    TB

    H

    rlg. 6 Schcmatic sl~ucture of one unit of the ope~ator cοnsoムO.

    monito~s in the beam transport 1ines. (2) summary of AR 号tatus,(3) summary of MR stntus, (4) cur~ent nnd 1ifet1me of beams 1n AR, (5) cu~rent and 11fetime of bea回sin MR. and (6) current of each 4 bunces in MR. Using the田u1tip1exing switch system we can disp1ay these informat10ns a1so on 10" s田a11TV. Smn11 TV's nre a1so used to show 口the~ supp1ementary information.

    7. Progra皿 Deve10pment

    Our aim was to increase the nu田berof persons who can write app1ication programs and to make the software deve10pment environment which is friend1y to programers. To this end we have 1皿p1ementedNODAL on the回inicomputernetwork and enhanced its functions over the origina1 NODAL.

    At present the tota1 number of staff of the TRISTAN acce1erator is 85: 凹 ongthese, 25 persons can write NODAL programs and about ha1f of these persons have been making and are now making NODAL programs. These active members are皿ost1yacce1erator physicists; they are studying accelerators 1n order to attain good performances of the TR工STAN. The operation programs are first written as to01s of acce1erator study; then they are brU5hed up during acce1erator studies and eventua11y 50田eof them are beco皿ingused as progrn皿Sfor operat1on.

    The dove10pment of npp1icntion progrnms began 1n 1983. At present, nearly 1000 NODAL programs, 100 data 皿odulesand 100 uti1ity functiロnshave been developed. The total manpower supplied for these programs are estimated to be 35 man-years for NODAL programs and utility functions and 5回目n-yearsfor oata田口dules.The number of NODAL programa are continuously increasing.

    Acknowledge皿ents

    The author wishes their thanks to PrロfessorsS. Ozaki, Y. Ki田ura and O. Horokoshi for their encourage皿entnnd support during the construction of the syste田 Heis a1so grateful to the group members of the TRISTAN contr白1 group Rnd the ncce1erator deve10pment group.

    References

    [1] S. Ozaki: ta1k given at 1987 Lepton-Photon Symposium, Ha皿burg.

    [2] H. Koiso, et 111.: Performance of the TRISTAN Compute~ Contro1 Network, IEEE T~ans. Nuc1. Sc. NS・32 (1985) 2068.

    [3] M.C. C~owley-Milling and 0ふ Shering:吋heNODAL Syste皿 forthe SPS", CERN 78・07(1978).

    [4] S. Kurokawa, et 81.: KEK NODAL System, IEEE Trnns. Nuc1. Sci. NS・32(1985) 2071.

    [5] S. Kurok脚色白ta1.: The TRISTAN Contro1 System, Nucl. Instrum. MethロdsA247 (1986) 29.

    -8ー

  • CONTROL SYSTEM OF THE RIKEN RING CYCLOTRON

    H.Takebe, T.Wada, M.Kase, T.Kambara and H.Kamitsubo Cyclotron Lab., RIKEN

    2-1 Hirosawa, Wako-shi, Saitama 351-01, JAPAN

    The RIKEN ring cyclotron system is controlled by means of three mini computers. A CAMAC serial crate network and a GP-IB are used for the control of accelerator devices. Two types of intelligent modules are used; one is a CAMAC module and the other is a local processing module for high speed control of the accelerator devices. Most operations are performed by touch panels. The operating system of the control computer is a combination of a real time and a UNIX system. A real-time computer network performs a high speed control of devices of the different computer, and also the unix network system performs an easier program development and a data backup.

    Introduction

    The RIKEN Acclerator Reserch Facility (RARF) consists of two injectors, heavy ion linac-AVF cyclotron and a K540 ring cyclotron(RRC). The ring cyclotron was completed in November 1986, and delivered beams to the experiments since May 19871M. At present, a heavy ion linac(R!LAC) is used as an injector for the RRC. The construction of another injector, a K70 AVF cyclotron, has been started and will be completed at the end of 1988 FY.

    This system is controlled by three mini computers.

    The parameter values are transferred between the accele-rator devices and computers through a CAMAC serial highway. Two types of intelligent modules(CIM, DIM) are used for high speed local control of the accelerator devices!2].

    Computer System

    Figure 1 shows the block diagram of control system. Three computers are of the same type, a 32-bit industrial computer MELCOM 350-60/500(M-60) of Mitsubishi Electric Corp.. The execution speed is about 3.7 MIPS.

    These computers are linked by using optical glass fiber cables (MDWS-60 data way). This network is a duplex system. The transmission rate of MDWS-60 is 15.36 Mbps.

    The computer #1 performs time consuming tasks such as orbit calculations and transport calculations using a field mapping data and the results are sent back to the control computer. The computer #1 is equipped with a CAMAC SHD and can be used as a back-up computer for the control compute. The computer #1 is also linked to the central computer of our institute (FACOM M-780) in order to process jobs in which larger memory and higher computation speed are necessary.

    A M350/6O-50O

    Program Develop. Computer #i

    Melnct DataWav Network ( 16Mbps/Optical)

    1™J

    M^n/w).wi

    SHD

    LINAC Control Computer #2 ,

    n UPA

    Radiation Monitor & Area Control

    GPIB

    I I I I 1 CAMAC Cralc for Testing

    MX3000

    M350/6O-SO0

    |SHD I

    1 1 1 Crate LINAC

    i l l

    RRC Control Computer ' n3 ''

    ID fSHD" RS232C

    UPA x7

    Voice Synthe A/Video Control

    Crate #5 Console.

    Crate HI RRC-W

    TraicST" RRC-E

    CAMAC Serial High Way (5Mbps/Optical) LratcW

    Junct ion Oaleti/ AVF

    Optical Fibers

    30m(Plastic) lOOm(Glass)

    Power Supply

    (Main/Trim) Power Supply

    T

    Beam Diagno,

    Vacuum System

    Sector Magnets Inj-Ext.Mag. R F S y s t c m Beam Transport

    Fig. 1. Block diagrams of control system.

    Magnets for Exper. Beam Transport

    rjjra;

    Power Supply

    ECR, P.I. sources. Beam Transport

    - 9 -

    CONTROL SYSTEM OF THE RIKEN R別 GCYCLOTRON

    H.Takebe, T.Wada, M.Kase, T.Kambara and H.Kamitsubo Cyclotron Lnb., RIKEN

    2・1Hirosawa. Wako-shi, Saitama 351-01, JAPAN

    The RIKEN ring cyclotron system is controlled by means of three mini compute時.A CAMAC serial crate network and a GP-lB are used for the con位。1of accelerator devices. Two types of intelligent modules are used; on巴 isa CAM.AC module and the other is a local processing module for high speed control of the accelerator devices. Most operations are performed by touch panels. The operating system of the control computer is a combination of a real time and a UNIX system. A renl-time computer nctwork pcrforms n high spced control of devices of the diffcrent computer. and also thc unix n巴lworksyslem performs an easier program development and a data backup.

    担江凶皿血B

    The RlKEN Acclerator Reserch Facility (RAR町 consistsof two injectors. h巴avyion linac-A VF cyclotron and a K540 ring cyclo町on(RRC).The ring cycIo町onwas completed in November 1986, and delivered beams to the experiments since May 1987[11. At present, a heavy ion linac(RILAC) is used as an injector for the RRC. The construction of another injector, a K70 A VF cyclo汀on.has been started and will be completed at the end of 1988 FY.

    This system is controlled by three mini computers.

    盟~監2盟Program Develop. Computer

    #1

    Scclor Magncls Inj.ExI.Mag. RF Systcm

    The parnmeter values are transferred between ~the_ acce!巴・rator devices and computers through a CAMAC serial highway. Twoザpesof intelligent modules(ClM, Pl~) ~!! used for high spced local control of the nccelerator devices[21.

    Comouler Svstem

    Figure 1 shows the block diagram of control system. Thre巴 computersare of the same ザpe,a 32ゐitindustrial computer MELCOM 350・60/500(M・60)of Mitsubishi Electric Corp.. The execution speed is about 3.7 MIPS.

    These compu臼rsare linked by using optical glass fiber cables (MDWS・60data way).. This network is a duplex system. The transmission rate ofMDWS-60 is 15.36 Mb~ps.

    The compuほr#1 performs time consuming tasks 5uch as orbit calculations and transport calculations using a field mapping data and the results are sent back to the control computer. The computer #1 is equipped with a CAMAC SHD and can be used as a back-up computer for the control compute. The computer #1 is also Iinked to the central computer of our institute (FACOM M・780)in order to process jobs in which larger memory and higher computation speed are necessary.

    B田mTra出port

    L悶 ACConttfcomputp

    Magnels for Exper. Be副首 Tranヰ町t

    ECR,P.I. sou同CS.BeamTransport

    Fig. 1. Block diagrarns of control system.

    -9-

  • The computer #2 controls RILAC through OP-IB using optical fiber Iinksl3].

    The computer #3 controls the ring cyclotron and AVF cyclotron through a CAMAC bit serial loop. The console devices such as touch panels and color displays are linked with the computer #3 without a CAMAC system. This computer is also linked with a computer MX-3000 (MITSUBISHI) of radiation safety control system[4). For radiation safety, MX-3000 has the highest priority in accelerator operation. Before starting operation, an operator should ask MX-3000 for the permission. If any erratic conditions occur in the safety system during operation, MX-3000 send back a beam-stop command to the #3 computer (M60) and also close a Faraday cup at the injection beam line independantly.

    Interface System

    Six CAMAC crates are distributed in four power supply rooms of ring cyclotron. One is installed within an operator's console. Because of a long distance ( 90m max.) between these rooms and the control computer, these CAMAC crates are linked by a bit serial loop of optical fiber cables; the transmission rate is 5 Mbps. A disadvantage of this optical loop is ti.Jt .1 has no bypass, function when any crate is covered off. Two types of intelligent modules are used for the interface between controlled device- and the CAMAC system. Each integrates a micro processor Intel 8031 (11 MHz), 8 KB EPROM, and 8 KB RAM. CIM is a CAMAC module and DIM is a terminal module to each controlled device and installed close to the devices. Twelve DIM's can be linked with one CIM. The CIM executes message transfer between the control computer and the DIM. Information is transfered between CIM and DIM through plastic optical fiber cables. The maximum length of this cable is 30 m when a plastic fiber is used, and 100 m for a glass fiber. DIM executes local sequence control, local surveyllance, function generation, and testing, thus reducing the load of the control computer. DIM has several digital input/output (DI/DO) ports and sixteen analog input (AI) ports. There are two types of ports depending on the usage. The DI/DO ports of DIM for power supply are of a 12V opto-coupled type. Figure 2 shows the block diagram of power supply control[5]. A DIM for beam diagnostics has TTL level DI/DO ports in order to carry on such high -peed exchange of data as that from a beam profile monitor o.- an emitance measuring system. For control ofmain differenU.il probes, a dedicated micro processor is linked with the DIM. Figure 3

    POWER SUPPLY

    r RADIAL PROBE

    COMMLUR

    laicmocK cainoiui

    VtttlUB STSTOI

    COHTJOLLEI

    _ LOG AW

    HAS

    SUPPLY

    _ | PIUEMTIC WIIT

    con«oui«

    RADIAL

    PROBE

    VACIRK

    STATIC*

    ruuiur CUP

    PROFILE

    WMT0«

    CONTROL

    CIKtTUir p PROFILE

    POIITOA

    SLII

    CONTROL CIRCUIT £•

    L

    PITTANCE

    KINITOI

    CONTROL

    CIRCUIT

    FJIITTAHCE "0NIT0R SI

    FJIITTAKCE

    KW110R IU

    Fig. 3. Block diagram of the circuits for the beam diagnostic system.

    shows electronics for the beam diagnostic equipment[6). For these diagnostics circuit the DI/DO ports are used as the data/control bus lines. It takes about 0.6 seconds to transfer the 1.4 KB data of a three-wire beam profile monitor. Since for the RF system high speed control is necessary, programmable controllers (PC) are introduced. DIM's are linked with these PC's. The status are read from the memory of PC's. A vacuum control system also uses PC. Vacuum gauges and the temperatures of cryo-pumps are read directly by DIM's. It takes about 2.6 seconds to read 40 vacuum gauges. For a cooling system, DIM only reads the status.

    The total numbers of CIM and DIM are 30 and 170, respectively. Additionally two crates and ten DIM's will be installed for the control of AVF cyclotron and for the control of devices of the extention of beam transport line.

    DIM

    To CIM

    a 1-15 cm-is cm-is .

    Fig. 2. Block diagram of power supply control.

    -10-

    The computer #2 controls RILAC through OP-IB using opticaI fiber ~ links(31. The computer #3 controls the ring cyclotron and A VF

    cyc[otron through a CAMAC bit serial loop. The console devices such ns touch panc1s and co10r displays are linkcd with the computcr #3 without a CAMAC system. This comPlltcr is nlso linked with n computer MX・3000(MIT~UBISHl) of radiation safety control syslem[4J. For radiation safety, MX・3000has thc highcst priority in accelerator operaliol1. sefore starting opc~ration: an ope~tor should ask MX・3000for the permission. If any erratic. conditions occur in the safety system during opera!ion, MX・3000send back a beam-slop commana 10 出e泊 comput巴r(M60) and a1so closc a Faraday cup at thc injection beam line independant1y.

    Inlerface Svstem

    Six CAMAC crates are distributed in four power supply rooms of ring cyclotron. Onc is installed within nn operator's conso1e. secause of a long di!.tance ( 90m max.) between thcse rooms and the controI computer, these CAMAC crates are linked by a bit serial loop of optical fiber cnbles; the trnnsmission rate is 5 Mbps. h. disndvantage of Ihis optical loop is t1..lt .t has no bypas!. function when any crate isηOl"ered off. Two types of intelligent modules are used for the interface betWeen con町olleddevice~ al¥d the CAMAC system. Each integrates a micro processor Intel 8031 (11 MHz), 8 KB EPROM, and 8 Ks RAM. CIM is a CAMAC module and D1M is a terminal modu1e to each controlled device and installed close to the devices. Twelve DIM's can be Iinked with one CIM. The CIM executes message transfer between the controI computer and the DIM. Information is transfered between CIM and DIM through plastic optical fiber cables. The maximum length of this cable is 30 m when a plastic fiber is uscd, and 100 m for a glass fiber. DIM executes 10caI sequence control, 10caI surveyllance, function genera_tion, and testlng, thus reducing the load of the control computer. DIM has several digital input/output (DIρ0) ports and sixteen ana10g input (AI) ports. There are tWO types of ports depending on th巴usage.The DIIDO ports of DIM for power supply are of a 12V opto・couplediype. Figure 2 shows thc block diagram of power supply contro1!51. A DIM for beam diagnostics has TTL level DI/DO ports in order to caηy on such high ;1peed exchange of data as that合oma beam profile monitor 0; an emitance measuring system. For control ofmain differenti:¥1 probes, a dedicated micro processor is Iinked with the DIM. Figure 3

    POWER SUPPL Y

    DIM

    ヲ 16ch An.1IoIO-IOV

    L Fig. 3. Block diagram of the circuits

    for the beam diagnostic system.

    shows elec甘onicsfor the beam diagnostic equipmentl61. For th巴sediagnostics circuit the DIIDO ports arc used as出edata!controI bus lines. It takes about 0.6 seconds to transfer the 1.4 KB data of a three-wire beam profile monitor. Since for the RF system high speed control is necessary, programmable controllers (PC) are in町oduced.DIM's are linked with these PC・s. The status are read from the memory of PC・s.A vacuum controI system a1so uses PC. Vacuum gauges and the temperatures of cryo・pumpsare read directly l>y DlM's. It takes about 2.6 seconds to rcad 40 vacuum gauges. For a cooling system, DIM only reads the status. The total numbers of CIM and DlM are 30 and 170,

    respeclively. Additionally two crat巴sand ten DIM・swill be installed for the control of A VF cyclotron and for the control of devices of the extention of beam汀ansportline.

    Fig. 2. B10ck diagram of power supp1y con町01.

    -10-

    http://differenU.il

  • Network and Diagnostics System

    Figure 4 shows the network system of the facility computers. Three computers for the RARF are linked by using optical glass fiber cables (MDWS-60). This network is a duplex system. Even in a failure of one line or failure/power-off of any one computer, the link can be retained automatically by adopting a loop back method. The transmission rate of MDWS-60 is 15.36 Mbps. These computers are also linked by as a UNIX network using RS-232C. This system performs a remote login and file transfer. A uucp command can transfer binary data or load module files, so that compile/link can be done in the computer #1 for execution in the #3. Library files have to be copied between them. The uucp special command (timer task) can copy some important directory from #3 to #1 computer at midnight(ex; backup). As a TCP/IP interface for an Ethenet are not available yet, the transfer speed is not enough.

    For a data terminal equipment (DTE), this system has other two types of networks; one is an Ethernet 'Mitsubushi; B-10) and the other is a digital private bran^n exchange (dPBX). The Ethernet with a transmission rate of 10 Mbps has four terminal interface adoptors(TIA's). Two of them are olaced close to computer #1 and #3, and the other two are closly to the CAMAC stations. Diagnosis is carried out by plugging a TSS terminal unit into a port of a nearest TIA. . The dPBX (FUJITSU; FETEX-3700) performs data communication (RS-232C,19.2kbps max.) just using a DA (data adopter) module adopting to the telephone. This dPBX system is connecting to all the institute building and a modem pool exchange the transmission speed to match the communication from outside of the institute, so we can monitor the accelerator's status in any place. Programs tests and local diagnostics are performed by using these networks in accelerator or experiments rooms. The transmission speeds are 9600bps, because of the computer's interface speed.

    There are two types of voice communication system. One is wired interphone and speaker system, and the other is wireless telephone system (Sinwa communication Co. Ltd.). This wireless phone uses 400MHz band because of avoiding to interfare against the NMR gauss meters and from the 300kW RF cavities(20-«5MHz).

    Console

    Figure 5 shows the operator's console, which consists of three parts (center, left, and right parts); the left and right parts are made equivalent to each other for the convenience of diagnostics of accelerators. At least two operators can access the accelerator system independently. The center part is prepared for the devices such as ITV's, scopes, and error message output CRT. The console devices are linked directly with the computer #3 without CAMAC interface. Because of an industrial computer, there are many convenient and powerful man-machine interface devices and softwares.

    Voice synthesizer units(Sankyo Electric Co. ICR500Z etc.) are installed to the console system to make some voice warning messages to operators(Fig.6).

    (Digital Aijoptcr)

    Telephone lines ( 1 Pair Metalic CaNe')

    Digital PBX (19.2kbps max); FETEX-3700 ^ 1000 Analog, 500 Dipul Una | Modem Pool|_J

    D 6 X - KDD N T T (

  • This synthesizer board has AD-PCM system using an MSM6258 (OKI) cpu with 1Mb SRAM. Sampling frequency is 16kHz or 8kHz. In some case, this voice or sound message is connected to a CATV system or connected to the telephone to call tlv staffs house or pocket bell. This system is also used in the iadiation safety control system.

    The CRT's from #1 to #7 are model VT241 of DEC with touch panelfTP) on the screens. The CRT #8 is also VT241 but without touch panel. The CRTs from #9 to #14 are 19" color graphic CRT's. Almost all man-machine interactions are performed by the TP's and the informations are displayed on the 19" CRT's. Only three hard wired push buttons are used for accelerator control; one is an emergency stop, and the other two are the open/close of beim shutters at the exit of RILAC and AVF cyclotron. Thci,e beam shutter are also controlled by a computer. Figure 7 is an example of TP display for the control of power supplies. In this case, maximum four power supplies are controlled on the same screen. Assignment to other power supplies are selected by pushing the upper right four buttons.

    Since these VT241 CRT's are linked with the computer by 9600 bps RS232C lines and are operated in ReGIS mode, the response is not quick compared with a CAMAC module TP.

    EXIT

    Hi • MAI

    DAO907S AK'OeO'. SIS" WOO

    ON

    M C SELECT

    INCRES DECFtEA

    V

    Ver.C

    oa

    P

    - 1

    5J1.4 « 531.4 A T

    CO 551.4

    SPEED l . M

    A

    S/OTF

    H2 2 MA

    irei oir 1m shutlers at th巴cxitof RILAC and A VF cyclotron. The!.e beam shutter are also con位olledby a computt::r. Figure 7 is an example of TP display for the control of power supp1ies. In出iscaSe' maximum four power supplies are controlled on the same screen. As~ignment to olher power supplies are se~e~~d b),:,p1I.5hing the uppcr right four buttons.

    Sinc巴theseVT241 CRT's are Iinked with the computer by 9600 bps RS232C lines and are operated in ReGIS m~ode, the response is not 4uick compared with a CAMAC module TP.

    回日回園回圏巴固区H1 H2 TA1245 TA3 らHAI"l-l 2 HAIN-ω 1118 1 16172021

    加。掛制拘苅: 日1.4• Ifω12.4 E筑S 日.4叫IC-OOO: 531.. A 01f7 12.. 0298 副.1 01柏崎.2srSooeoo酎lfF αlOO 0ffT 国伺官rr 筑間前V

    倒 側 側 刷

    園 困 固因固困 園困園国 園園 圏園圏圏回回目白田囚囚囚

    Fig. 7. Power supply control screen.

    品主主主堕

    The operating system OS60lUMX is a combination of 3 real ~_ time _ and UNIX system. Figur巴 8 shows the configuration of operating syst巴m. Th巴 applicationprograms are first develo戸dand tested in the UNIX system and later executed in the real time OS for high-speed response. _Nevertheless, the UNIX test program is 8.lso ~used at thc DTE in thc machine stag巴 formaintenance. When the phase slip data was obtaine~d, a UNIX sheIl command cxecutcs a re-calculation of the isochronous field and necessary ~rim coil currcnts, and set the power supplies automatically. As the shell command interpreter -j's so convenient, a lot of ~outines (data logging, presetting currents, et aI.) use in the UNIX.

    The application programs are written in FORTRAN 77 language. These programs are composed of several tens of thousands of Iines. The data base about accelerator devices are almost completed. Th巴requiredmemory for the data base is about 20 KB. They are first created in disk files anrl at IPL time are loaded into a common memory area. In our computer, different tasks occupy independent logical memory spaces in order to avoid addressing overlaps. These tasks exchange information through the common area to which other computers are also accessible through MDWS・60 data way.

    Many kind of programs紅 edeveloped for the rnan-machine interface with TP's. We can use TP convenientlv and flexibly and layout various types and colors of pusIl

    buttons on it. Th巴programsfor DIM of power supply ar巴extensively improved to c紅 ryout high specd execution[21. Since the programs of CIM/DIM 3re written in assembler language it is a Iittle inconvenient for the maintenance. Thcn we are going to ¥lse high level languagc. For examplc, C-compiler for the DIM cpu, is used in a personal computer NEC;PC・9801.In this case, as the program size exceeds 8kB, the second version DIM will be developcd.

    As the next step we are going to control the injector RILAC at the operator's console of ring cyclotrol1 by computer #3 through MDWS・60datawa~ 却d computer #2. One reason is the simplification of accelel .tor operation. At one console, both accelerators can be operatcd. Another important reason is the establishment of c10sed loop contro1. Undestructively monitoring th巴 beamcurrent at an experimental position, the ion source of RILAC can be adjusted automatica1ly.

    RM

    M

    nu ea

    -

    V

    A

    !

    -

    i

    --N仙

    HUE-』

    i、、』ー---"'1130MBI OS60 I I.....File J

    UNIX K目前l

    osω lOsCON

    0560 U凶i叩

    RIlAL旬MIlŵu.四国叩

    EXECUTE inQUlCK Responα

    Gαd ProdllC俳句y

    Fig. 8. Configuration of OS60/UMX oprationg system

    E旦色盟国阜昆

    [1] H. Kamitsubo, "Progress in RIKEN Ring Cyclotron Project", in Proceedings of 11 th Int. Conf. on Cyclo甘onsand Their Applications, 1986, pp 17・23.

    [21 M. Nagase, H. Takebe, T. Wada, and K. Shimizu, ・・Programfor Controlling Power Supplies of the RIKEN Ring CycrotronヘinProccedings of 11 th Int. Conf. on Cyclotrons and Their Applications, 1986, pp 410-413.

    [31 T. Kambara and M. Od巴ra,"Replacement of Computer for the Control System of RILAC", RIKEN Accel. Prog. Rep., vol. 20, pp 206・207,1986.

    [41 1. Sa】camoto,S. Fujita, T. Wada, and H. Ta此keb加e,"Rad副ia幻ti凶onSafety Control System for RIKEN Ring Cyclotronげl'ヘRIKENAccel. Prog. Rep., vol. 20, pp 206-207, 1986.

    [51 H.Takebe, S.Motonaga, and T.Wada, "Power Supply of the Sector MagnetsヘRlKENAccel. Prog. Rep., vol. 19, pp 174岬 177,1985.

    [61 M. Kase, I. Yokoyama, 1. Takeshita, Y. Oikawa, M. ~ai!o, and Y. Yano, "Beam Diagnostic Equipments for RIKEN Ring CyclotronヘinProceedings of 11 th Int. Conf. on Cyclotrons and Their Applications, 1986, pp. 443・446.

    -12-

  • 8Ettasf35-fe v * - U > ̂ *-C 9 n S n v © M » a

    iii«s a. nit s , «»«!». &**£*, »»«« , ««»*, » * eg, tfw-as. j j a s* . a»a»6, *# « * E * £ 8 i ! | * « S f a f e : ' i « - £**3&8>!>\fi:l 0 - 1

    CONTROL SYSTEM OF RCNP RING CYCLOTRON

    T. Yamazakl, I.MIura, K.Hosono, /LAndo, T.Satto, T.Itahashi. A.Shlmlzu. I.Katayanu. T.Noro, M. Kondo and H. Ogata Research Ceater tor Nuclear Physics , Osaka University, Mihogaoka, Ibaraki, Osaka 5S7

    Abstract

    Tho RCNP ring cyclotron which can accelerate protons and light ions upto 400 MeV and 100 MeV/aim has started to construct this, year.and a computer control system of the cyclotron has been de-signed. The control system consists ol a computer net«ork(a cen-tral computer I U Swb-corvuters) and device controllers as the interface between accelerato' devices and com-uters. The device controller contains an 8-bit microcomputer chip, IC memories and rolated Interface chips. For control programs of accelerator de-vices a sequence interpreter language Is used.

    ^ 2&

    ^Bg*¥«tta«f3S-fe>i'--ei«Ee«AVFiJ--r4'n hn>T?iifi$ Lfet '-A&EKMtf Sfctfjffl'J >#*•) a r-nvfeaattrefc*.

    SH 3 £ , V=5'j^h'j•/&& 1 mfrW0. iH*Bifflx*;i/¥-l4» •?400 MBV,SHKF200 MeV,'\>J'?A3 510 MoV7;i/77S-f*>'100HeV/8r?'efta. (1)

    -Am&tmst as7-«ro32ffl©3̂ Kia) tame 3*«d»6Ba ft 6 5^K*-effl3^BWat^4*v6. «Bft6 4#*l£!b*Srt%&aU

    * # * 4 . B3ft6 5^ffitl±i©«!IW^S:ffiflll/Ty VjT*-f *n r-n

    yv^tf^nhn:/i:tffi?«iS0Sfsft©#r, «*©*IB»r!SKf8^a

    W& GOOO BaBUBLhk:!««lvS. ffl*©8l&B«)fc.):oT»fe-afea

    «^x*;iy^-0t'-A4Jn«t5cit*gi*ati.s©T, < 0)*v*-9 ifflmSBUZ* U &ffif£T:H£t-fc&1 ilSStr-AfclR»0*#&J:*i#©> < SIPS'—fr > * A^fcfc»cffiK©9fflHSffl&BSSi:-ra. tfc»

    K*»#fflbTffi*A^?A ©ttf l^t t^tSlnWiKiSiftSiia . 'J>0"*f>i'-nyi7lt'Wr;'>x7«lUl:«.*irT?t««a-t4.

    •?•) AVF-»--f-J'rJM3>JiJWffla>fa-i'»VJ;tJ[&«»'ffWg aytra-i i twaffl

    y;i/-7M»a:/b-a-»

    ^;i^-y(WWayt:a-jittD-*yujci;r*yh7-**ai/,rj' XrAS)»3Vfc."a-;i'lc»iK5*i,4. Sfca^T-f^-5r-7";i/ (•> U?;Uv-©}§^lcl6tJviT«»^;>-7'ra'8 la-»]W&^t r4 . 4 £ 0 3 2fc'j VO-KSlv , i/^.-rA®J»3Vfa-ii±fl!)SS*^?.*> :5'f>7r^ s/*ViT*V!!ritC«4.

    -f) 40l^-3'W©««B«l©i'-4->x«I» n) ->^f ASJW3y£a-**»&©3-?vK©/!Wftta ^) »»3vsn-5©s^fiisi». affijaa r.) if;v-y