procedural methods • model chaos nothpcg.purdue.edu/.../lectures/cs590-cgs-06-chaos.pdf ·...

7
© Bedrich Benes CS 590 – CGS Procedural Methods Chaos Bedrich Benes, Ph.D. Purdue University Department of Computer Science 1 © Bedrich Benes Procedural Techniques Model is generated by a piece of code. Model is not represented as data! The generation can take some time and of course the data can be precalculated 2 © Bedrich Benes Procedural Techniques Three huge (vague) classes: Fractals Particle systems Grammars Used when shape cannot be represented as a surface (fire, water, smoke, flock of birds, explosions, model of mountain, grass, clouds, plants, facades, cities, etc.) Used for Simulation of Natural Phenomena 3 © Bedrich Benes The Logistic Map May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459467. The logistic map Verhulst dynamics (Pierre Verhulst, 18041849) It models the population growth Having a population of with a growth rate (biotic potential) what will be the population at ାଵ ? 4

Upload: others

Post on 25-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

CS 590 – CGSProcedural MethodsChaos

Bedrich Benes, Ph.D.Purdue UniversityDepartment of Computer Science

1© Bedrich Benes

Procedural Techniques• Model is generated by a piece of code.

• Model is not represented as data!

• The generation can take some time

• and of course the data can be pre‐calculated

2

© Bedrich Benes

Procedural TechniquesThree huge (vague) classes:• Fractals• Particle systems• GrammarsUsed  when shape cannot be represented as a surface (fire, water, smoke, flock of birds, explosions, model of mountain, grass, clouds, plants, facades, cities, etc.)

Used for Simulation of Natural Phenomena

3© Bedrich Benes

The Logistic MapMay, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459‐467.

• The logistic map• Verhulst dynamics (Pierre Verhulst, 18041849)• It models the population growth• Having a population of 𝑥

with a growth rate 𝑟 (biotic potential)what will be the population at 𝑥 ?

4

Page 2: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

The Logistic Map

• Would lead to exponential growth – no limit• But, if the population consumes its resources, it will also die off.

• Assume  is normalized • Let’s multiply by normalized • The logistic map is:

5© Bedrich Benes

The Logistic Equation• The logistic equation assumes continuous time• The equation has form 

• The logistic map is its iterated version for 

6

© Bedrich Benes

The Logistic Map • It is an upside down parabola

7© Bedrich Benes

The Logistic Map • How does  and  ?

r 0.00 0.30 0.40 0.60 0.70 0.90 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.10 3.20 3.30x0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10x1 0.00 0.03 0.04 0.05 0.06 0.08 0.09 0.11 0.13 0.14 0.16 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.29 0.30x2 0.00 0.01 0.01 0.03 0.04 0.07 0.08 0.12 0.15 0.20 0.24 0.30 0.35 0.41 0.47 0.53 0.59 0.62 0.66 0.69x990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.56 0.51 0.48x991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67 0.76 0.80 0.82x992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.56 0.51 0.48x993 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67 0.76 0.80 0.82x994 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.56 0.51 0.48x995 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67 0.76 0.80 0.82x996 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.56 0.51 0.48x997 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67 0.76 0.80 0.82x998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.66 0.56 0.51 0.48x999 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.29 0.38 0.44 0.50 0.55 0.58 0.62 0.64 0.67 0.76 0.80 0.82

8

Page 3: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

The Logistic Map 

9© Bedrich Benes

The Logistic Map • How does  and  ?

5• Cobweb plot

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

10

© Bedrich Benes

The Logistic Map • How does  and  ?

75

• Cobweb plot

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

11© Bedrich Benes

The Logistic Map • How does  and  ?

55

• Cobweb plot• Doubling the results

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

12

Page 4: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

The Logistic Map 0 𝑟 1 𝑥 → 01 𝑟 2 𝑥 → (quick approach)2 𝑟 3 𝑥 → (fluctuation first)3 𝑟 1 √6 𝑥 → 𝑥 or 𝑥 (bifurcation)3.44949 𝑟 3.54409 four values oscillationincreasing 𝑟 oscillation 8, 16, 32,…The length of the interval 𝑟 /𝑟 𝛿 for period doubling cascade

13© Bedrich Benes

The Logistic Map • How does  and  ?

5

• Deterministic chaos

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

14

© Bedrich Benes

The Logistic Map • The algorithm:1) Run the model for random 

2) For each run, forget the first 500 numbers

3) Draw the plot

15© Bedrich Benes

Bifurcation Diagram

By Jordan Pierce ‐ Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=1644522916

Page 5: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

Bifurcation Diagram

By InXnI - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=18744163 17© Bedrich Benes

Bifurcation Diagram

By Biajojo - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=33573458 18

© Bedrich Benes

The Logistic Map • For  the bifurcation can reach any value• Period‐doubling to chaos• 8‐16‐32• For  it seems to jump randomly to any value• The 2D structure is self‐similar 

it repeats patterns at zoom levels

19© Bedrich Benes

The Logistic Map Feigenbaum constant 𝛿 4.669 20160910299067185320382157866920Expresses the ratio of bifurcation of a non‐linear map𝛿 lim→ 𝐿𝐿 𝑎 𝑎𝑎 𝑎𝐿 𝑎 ,𝑎 is the period𝛿 represents the period doublingIt is believed to be transcendental

20

Page 6: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

The Logistic Map Feigenbaum constant 𝛿 4.66920Mitchel Jay Feigenbaum (1944‐2019)

21© Bedrich Benes

Poincare Map (State space)axis is axis is 

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

22

© Bedrich Benes

Poincare Mapaxis is axis is 

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction. Systems 2016, 4, 37.

23© Bedrich Benes

Butterfly Effect• Sensitivity to initial conditions • If the initial conditions change a bit

the process can diverge significantly• First observed in weather simulation by

Edward Lorenz (1917‐2019)

“the present determines the future, but the approximate present does not approximately determine 

the future”

24

Page 7: Procedural Methods • Model Chaos nothpcg.purdue.edu/.../lectures/CS590-CGS-06-Chaos.pdf · 2020-03-04 · May, R. M. (1976). Simple mathematical models with very complicated dynamics.Nature,

© Bedrich Benes

Butterfly Effect

Boeing, G. Visual Analysis of Nonlinear Dynamical Systems: Chaos, FractalsSelf-Similarity and the Limits of Prediction. Systems 2016, 4, 37. 25