problem 4: mass spectrometry - fields institute€¦ · problem 4: mass spectrometry introduction...

21
Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea Simplifying the Problem Particle Trajectories Initial Parameters Numerical Analysis Analytics New Trajectories Conclusion and Future Work Problem 4: Mass Spectrometry August 14, 2014 Jeremy Budd (Cambridge), Mike Lindstrom (UBC), Iain Moyles (UBC), Mary Pugh (UofT), Kevin Ryczko (UOIT)

Upload: others

Post on 14-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Problem 4: Mass Spectrometry

August 14, 2014

Jeremy Budd (Cambridge), Mike Lindstrom (UBC), Iain Moyles(UBC), Mary Pugh (UofT), Kevin Ryczko (UOIT)

Page 2: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Mass Spectrometry

Mass spectrometry is a technique used to determine thechemical composition of an unknown substance.A typical device separates charged atoms and moleculesbased on their charge to mass ratio.Many different techniques and devices are used to do this;the one presented to us was the quadrupole method.

Page 3: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

The Quadrupole Mass Spectrometer

A mass filter that uses a combination of AC and DCvoltages to create an electric field with a narrow range ofmass passing through to reach the detector.By controlling both the AC and DC voltage, particles witha specific mass pass through the device.AC gets rid of particles with smaller mass, DC gets rid ofparticles with larger mass.

Page 4: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

The Problem

Want to measure multiple masses all at once with an areadetector.Don’t want to lose any ions.Can we achieve higher mass resolution using only anelectric field?Don’t want to use a magnetic field.

Page 5: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Initial Ideas

Binary separation system.Ion trapping.

Page 6: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Binary System

Use electric fields to constantly separate groups ofparticles until they can no longer be separated.Solves the problem of finding all the masses all at once,only uses an electric field, and we don’t lose any ions.Downfall is that it would be impossible to model andmanufacture.

Page 7: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Ion Trapping

Send the particles into a quadrupole like device wherethere would be an electric field opposing the particlesmotion.Carefully place special curvature traps where the particleswould then be separated by mass.The opposing electric field acts like a potential barrier forthe particles, this allows the particles with not enoughenergy to get trapped.Then can measure (possibly through the magnetic field)the charged particles in each trap.

Page 8: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

The Final Idea

Send particles into a positively charged solenoid.The frequency of oscillation for the particles trajectorydiffer due to the particles mass.Akin to how a prism can separate the different colours oflight, the solenoid will create a dispersion pattern of theparticles being studied (~E -prism).

Page 9: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

3D to 2D

August-14-149:27 PM

New Section 1 Page 1

Page 10: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Electrostatics

Using Coulombs law,

V (x, y) =Ze

4πε0

N∑j=0

1√(x − l)2 + (y − 2nh)2︸ ︷︷ ︸

rj

+1√

(x − l)2 + (y − (2n − 1)h)2︸ ︷︷ ︸ρj

and the equations of motion come from

〈x , y〉 = −β∇V (x , y).

where

β = Ze2

4πε0mWU20

, and U0 is the initial speed.

Page 11: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

ODE’s

Equations of Motion:

x = βN∑

j=1

(xr3j

+ x − 1ρ3

j

),

y = βN∑

j=1

(y − 2jh

r3j

+ y − (2j − 1)hρ3

j

)

Initial Conditions:

x(0) = x0, 0 < x0 <12 , x(0) = 0,

y(0) = y0, y < 0, y(0) = u0, u0 > 0.

Page 12: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Initial Velocity

Want to select an initial velocity so the charged particles canovercome the potential barrier it sees from the charges and stillhave some velocity left over.

After using conservation of energy:

u0 >

√√√√ ZβN√[(x − 1

2)2 + (Nh)2]−√√√√ ZβN√

[(x0 − 12)2 + (y0 − Nh)2]

.

Page 13: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Numerical Trajectories

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Student Version of MATLAB

Page 14: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Sums are gross!

Since N � 1 approximate the potential sums as integrals butturning it into a Riemann sum:

βN∑

j=1

xr3j≈ −βN

2M

∫ y−2M

y

x(x2 + s2)3/2 ds

βN∑

j=1

y − 2jhr3j

≈ −βN2M

∫ y−2M

y

t(x2 + t2)3/2 dt

Page 15: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

New Trajectories

After integrating,

x = − βN2Mx

(y−2M

ρx,y−2M− y

ρx,y

)− βN

2M(x−1)

(y−2M

ρx−1,y−2M− y

ρx−1,y

)y = − βN

2Mx

(1

ρx,y− 1

ρx,y−2M+ 1

ρx−1,y− 1

ρx−1,y−2m

)where

ρa,b =√

(x − a)2 + (y − b)2.

Page 16: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Sums vs. Integrals

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

Student Version of MATLAB

Page 17: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Vertial Acceleration

0 100 200 300 400 500 600 700 800 900 10000.19

0.192

0.194

0.196

0.198

0.2

0.202

0.204

0.206

0.208

Student Version of MATLAB

We notice that the y acceleration essentially vanishes.Averaging over the entire domain for integral formulation,y ≈ 0 like we see in numerics. Likewise, averaging x andletting M →∞,

x = β

h

(1x + 1

x − 1

)

Page 18: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Period of Oscillation

Through conservation of energy, we can integrate explictly andobtain an equation for the velocity,

x = ±√

2βNM log

( x(x − 1)x0(1− x0)

),

and after integrating once more, we obtain the half-period,

T1/2 =√

2MβN I(x0),

whereI(x0) =

∫ 1−x0

1/2

dx√log [x(1− x)]− c0

.

Page 19: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Period Matching

0 10 20 30 40 50 60 70 80 90 1000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Student Version of MATLAB

Page 20: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Dispersion Relation

0 50 100 150 200 250 3000

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Student Version of MATLAB

Page 21: Problem 4: Mass Spectrometry - Fields Institute€¦ · Problem 4: Mass Spectrometry Introduction The Quadrupole The Problem Initial Ideas Binary System Ion Trapping The Final Idea

Problem 4:Mass

Spectrometry

IntroductionThe Quadrupole

The Problem

Initial IdeasBinary System

Ion Trapping

The Final IdeaSimplifying theProblem

ParticleTrajectoriesInitial Parameters

Numerical Analysis

AnalyticsNew Trajectories

Conclusionand FutureWork

Conclusion

Designed a device that disperses ions based on massRequirements were no trapping or magnetic fieldSimplifications are still quite accurate and produce simpleT ∼ 1√

m curveMeasurements could come from an area detector at end ofdevice after separation occurs or from a FT type analysisthat measures the frequencies

Future WorkExtend to 3D deviceDo the Fourier analysis