problem #3: spindle positioning

19
Problem #3: spindle positioning Oegema and Hyman Cell division 2006 WormBook

Upload: others

Post on 26-Mar-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Problem #3: spindle positioning

Oegema and Hyman Cell division 2006 WormBook

How many motors pull spindle to the cortex?

Grill et al 2003 Science 301 518 Grill and Hyman Dev Cell 8 461 2005

Spindle oscillates as it moves in the posterior direction

Kozlowski et al Cell 2007 129 499Pecreaux et al Curr Biol 2006 16 2111

‘Tug of war’ between opposing force generatorsThe key idea behind the model is that the rate ofdetachment of the force generators from MTs is load dependent

Grill et al Phys Rev Lett 2005 94 108104Pecreaux et al Curr Biol 2006 16 2111

y ( )y Ky f fζ = − + −& ( )( )( )1

1off on

y Ky f f

p k p k p

p k p k p

ζ + −

+ + +

= +

= − + −

+

&

&

,p f− −

( )1off onp k p k p− − −= − + −

0 1 vf fv

⎛ ⎞= −⎜ ⎟

⎝ ⎠0f f yϕ± = &m [ ] ( )(0) (0); exp / 1

off offon off ck const k k f f k yα= = ≈ − &0v⎝ ⎠

( ) ( )y Ky p p y p pζ α αβ+ − + −= − + − − +& & 0, /y p p k a+ −= = =

( )( )

p k a by p

p k a by p+ +

− −

≈ − −

≈ − −

& &

& &

0

1t

y y yp p p eλ+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

( )p y p2p p p− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( ) ( )2 21 2 1 2 3~ s s s s sλ α α− ± − −( ) ( )1 2 1 2 3

1 2 3, , 0

s s s s s

s s s

λ α α±

> ( ) ( )exp sint wtγ ×

Interplay between spindle pole movements and microtubule dynamics

Microtubules Contact the Cortex Brieflybefore Undergoing Catastrophe

Dynamic Microtubules Associate with EachOther to Form Persistent Astral Fibers

Microtubule Fibers Contact the Cortex at FixedPositionsPositions

more MT contacts are made on the side of the cortex that is approached by the aster than on the receding side.

Kozlowski et al Cell 129 499 2007

vf vf

y1

1.5

2

( )f y&0.4

0.6y

( )y Ky f y= − +& & -0.5

0

0.5

1

-0.2

0

0.2

y&

( )y Ky f y+

-20 -15 -10 -5 0 5 10 15 20-2

-1.5

-1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-0.8

-0.6

-0.4

( )1 f y yK

−⎡ ⎤⎣ ⎦& &

Another example of oscillations: Directional instability phenomenon

Joglekar and Hunt Biophys J 2002 83 42

Gardner and Odde Cur Opin Cell Biol 2006 18:639

Problem #4: spindle length

vf vf

Two Opposing Motorsv v

f

Two Opposing Motors

Can two opposing motors compete?+-

KF NFv

k Klp n Ncd

1n kn

vnf k vV

ζ⎛ ⎞− =⎜ ⎟

⎝ ⎠

( ),

1

n

n

n

V x nv xx x n k

ζ

⎝ ⎠

= =+ − +

4.5k nn

n

Vf

ζε = ≈

1kvkf n vζ

⎛ ⎞− =⎜ ⎟

( )( )

1

1,

1

k nk

k

kf n vV

V x nv xx x n k

ζ

ε

⎜ ⎟⎝ ⎠

−= =

+ +( )1

0.25

k

n kk

k

x x n kVf

εζε

− + +

= ≈

~ ~ ~ 0.05 pN×sec/nmk n ktζ ζ t ~ 0.01/sec, k ~ 1 pN/nm

23 4 2

dS k k Sdt

ς = −2S

3S 35 6 3

dS k k Sdt

ς = −dt

( )4dS k L S k Sς = ( )7 4 8 4k L S k Sdt

ς = − −

Nédélec J Cell Biol 2002 158 1005

S1SL

( )11 1 2 1

dS k L S k Sdt

ς = − −⎡ ⎤⎣ ⎦

Important here is that due to transport properties of the motors there is a selectionof the motors of the same polarity at parallel overlapping MT pairs.p y p pp g p

Nédélec J Cell Biol 2002 158 1005

Nédélec J Cell Biol 2002 158 1005

Ambrose et al Mol Biol Cell 2005 16 1584

Motors4 5

What determinesstable length ofbi-polar spindle?

Force balance models4,5

MT dynamics1,6

Concentration gradient of morphogens models

p p

,“spindle matrix”

3

Extrinsic mechanisms

cortex forces2

depletion of molecules

Intrinsic mechanisms

depletion of molecules1

Balance of dynein (outward) and ncd (inward) forces explains pole Balance of dynein (outward) and ncd (inward) forces explains pole separation and transient steady state in interphase separation and transient steady state in interphase -- prophaseprophase

S

Geometry questions:

dynF

Geometry questions: where are dynein, ncd, actin? Are MT asters asymmetric

ncdF

yand how are they madeasymmetric?Mechanical questions:

Sharp et al., Mol. Biol. Cell. 2000 11:241

qhow strong are the forces?

( )2dyn ncd

dS F k Sdt ς

= −pCytrynbaum et al., Biophys. J. 2003 84:757

( )ydt ς( )/

0 1 t TS S e−≈ −

?