probabilistic meshless methods for bayesian …gverdool/maxent2016/sp/cockayne...why do this? using...

33
Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1

Upload: vuthuy

Post on 21-Jul-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Probabilistic Meshless Methods for Bayesian

Inverse Problems

Jon Cockayne

July 8, 2016

1

Page 2: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Co-Authors

Chris Oates Tim Sullivan Mark Girolami

2

Page 3: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What is PN?

Many problems in mathematics have no analytical solution, and

must be solved numerically.

In Probabilistic Numerics we phrase such problems as inference

problems and construct a probabilistic description of this error.

This is not a new idea1!

Lots of recent development on Integration, Optimization, ODEs,

PDEs... see http://probnum.org/

3

Page 4: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What is PN?

Many problems in mathematics have no analytical solution, and

must be solved numerically.

In Probabilistic Numerics we phrase such problems as inference

problems and construct a probabilistic description of this error.

This is not a new idea1!

Lots of recent development on Integration, Optimization, ODEs,

PDEs... see http://probnum.org/

2[Kadane, 1985, Diaconis, 1988, O’Hagan, 1992, Skilling, 1991]

3

Page 5: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What does this mean for PDEs?

A prototypical linear PDE. Given g , κ, b find u

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

For general D, κ(x) this cannot be solved analytically.

The majority of PDE solvers produce an approximation like:

u(x) =N∑i=1

wiφi (x)

We want to quantify the error from finite N probabilistically.

4

Page 6: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What does this mean for PDEs?

A prototypical linear PDE. Given g , κ, b find u

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

For general D, κ(x) this cannot be solved analytically.

The majority of PDE solvers produce an approximation like:

u(x) =N∑i=1

wiφi (x)

We want to quantify the error from finite N probabilistically.

4

Page 7: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What does this mean for PDEs?

Inverse Problem: Given partial information of g , b, u find κ

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

Bayesian Inverse Problem:

κ ∼ Πκ Data u(xi ) = yi κ|y ∼ Πyκ

We want to account for an inaccurate forward solver in the inverse

problem.

5

Page 8: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

What does this mean for PDEs?

Inverse Problem: Given partial information of g , b, u find κ

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

Bayesian Inverse Problem:

κ ∼ Πκ Data u(xi ) = yi κ|y ∼ Πyκ

We want to account for an inaccurate forward solver in the inverse

problem.

5

Page 9: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Why do this?

Using an inaccurate forward solver in an inverse problem can

produce biased and overconfident posteriors.

0.0 0.5 1.0 1.5 2.0θ

0

2

4

6

8

10

12

14

16Probabilistic

0.0 0.5 1.0 1.5 2.0θ

Standard mA = 4

mA = 8

mA = 16

mA = 32

mA = 64

Comparison of inverse problem posteriors produced using the

Probabilistic Meshless Method (PMM) vs. symmetric collocation.

6

Page 10: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Why do this?

Using an inaccurate forward solver in an inverse problem can

produce biased and overconfident posteriors.

0.0 0.5 1.0 1.5 2.0θ

0

2

4

6

8

10

12

14

16Probabilistic

0.0 0.5 1.0 1.5 2.0θ

Standard mA = 4

mA = 8

mA = 16

mA = 32

mA = 64

Comparison of inverse problem posteriors produced using the

Probabilistic Meshless Method (PMM) vs. symmetric collocation.

6

Page 11: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Forward Problem

7

Page 12: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Abstract Formulation

Au(x) = g(x) in D

Forward inference procedure:

u ∼ Πu “Data” Au(xi ) = g(xi ) u|g ∼ Πgu

8

Page 13: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Posterior for the forward problem

Use a Gaussian Process prior u ∼ Πu = GP(0, k). Assuming

linearity, the posterior Πgu is available in closed-form2.

Πgu ∼ GP(m1,Σ1)

m1(x) = AK (x ,X )[AAK (X ,X )

]−1 g

Σ1(x , x ′) = k(x , x ′)− AK (x ,X )[AAK (X ,X )

]−1AK (X , x ′)

A the adjoint of A

Observation: The mean function is the same as in symmetric

collocation!

2[Cockayne et al., 2016, Sarkka, 2011, Cialenco et al., 2012, Owhadi, 2014]

9

Page 14: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Posterior for the forward problem

Use a Gaussian Process prior u ∼ Πu = GP(0, k). Assuming

linearity, the posterior Πgu is available in closed-form2.

Πgu ∼ GP(m1,Σ1)

m1(x) = AK (x ,X )[AAK (X ,X )

]−1 g

Σ1(x , x ′) = k(x , x ′)− AK (x ,X )[AAK (X ,X )

]−1AK (X , x ′)

A the adjoint of A

Observation: The mean function is the same as in symmetric

collocation!

2[Cockayne et al., 2016, Sarkka, 2011, Cialenco et al., 2012, Owhadi, 2014]

9

Page 15: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Theoretical Results

Theorem (Forward Contraction)

For a ball Bε(u0) of radius ε centered on the true solution u0 of the

PDE, we have

1− Πgu [Bε(u0)] = O

(h2β−2ρ−d

ε

)

• h the fill distance

• β the smoothness of the prior

• ρ < β − d/2 the order of the PDE

• d the input dimension

10

Page 16: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Toy Example

−∇2u(x) = g(x) x ∈ (0, 1)

u(x) = 0 x = 0, 1

To associate with the notation from before...

Πu ∼ GP(0, k(x , y))

A =d2

dx2A =

d2

dy2

11

Page 17: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Forward problem: posterior samples

g(x) = sin(2πx)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.06

0.04

0.02

0.00

0.02

0.04

0.06

u

Mean

Truth

Samples

12

Page 18: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Forward problem: convergence

0 20 40 60 80 100

mA

10-5

10-4

10-3

10-2

10-1

‖µ−u‖

(a) Mean error from truth

0 20 40 60 80 100

mA

10-4

10-3

10-2

10-1

Tr(

Σ1)

(b) Trace of posterior covariance

Figure 2: Convergence

13

Page 19: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Inverse Problem

14

Page 20: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Recap

−∇ · (κ(x)∇u(x)) = g(x) in D

u(x) = b(x) on ∂D

Now we need to incorporate the forward posterior measure Πgu into

the posterior measure for the inverse problem, κ

15

Page 21: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Incorporation of Forward Measure

Assuming the data in the inverse problem is:

yi = u(xi ) + ξi i = 1, . . . , n

ξ ∼ N(0, Γ)

implies the standard likelihood:

p(y |κ, u) ∼ N(y ; u, Γ)

But we don’t know u

Marginalise the forward posterior Πgu to obtain a “PN” likelihood:

pPN(y |κ) ∝∫

p(y |κ, u)dΠgu

∼ N(y ; m1, Γ + Σ1)

16

Page 22: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Incorporation of Forward Measure

Assuming the data in the inverse problem is:

yi = u(xi ) + ξi i = 1, . . . , n

ξ ∼ N(0, Γ)

implies the standard likelihood:

p(y |κ, u) ∼ N(y ; u, Γ)

But we don’t know u

Marginalise the forward posterior Πgu to obtain a “PN” likelihood:

pPN(y |κ) ∝∫

p(y |κ, u)dΠgu

∼ N(y ; m1, Γ + Σ1)

16

Page 23: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Inverse Contraction

Denote by Πyκ the posterior for κ from likelihood p, and by Πy

κ,PN

the posterior for κ from likelihood pPN.

Theorem (Inverse Contraction)

Assume Πyκ → δ(κ0) as n→∞.

Then Πyκ,PN → δ(κ0) provided

h = o(n−1/(β−ρ−d/2))

17

Page 24: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Back to the Toy Example

−∇ · (κ∇u(x)) = sin(2πx) x ∈ (0, 1)

u(x) = 0 x = 0, 1

Infer κ ∈ R+; data generated for κ = 1 at x = 0.25, 0.75.

Corrupted with independent Gaussian noise ξ ∼ N(0, 0.012)

18

Page 25: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Posteriors for κ

0.0 0.5 1.0 1.5 2.0θ

0

2

4

6

8

10

12

14

16Probabilistic

0.0 0.5 1.0 1.5 2.0θ

Standard mA = 4

mA = 8

mA = 16

mA = 32

mA = 64

(a) Posterior Distributions for different numbers of design points.

0 10 20 30 40 50 60 70n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

θ

Probabilistic

0 10 20 30 40 50 60 70n

θ

Standard

(b) Convergence of posterior distributions with number of design points.

19

Page 26: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Nonlinear Example: Steady-State

Allen–Cahn

20

Page 27: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Allen–Cahn

A prototypical nonlinear model.

−δ∇2u(x) + δ−1(u(x)3 − u(x)) = 0 x ∈ (0, 1)2

u(x) = 1 x1 ∈ {0, 1} ; 0 < x2 < 1

u(x) = −1 x2 ∈ {0, 1} ; 0 < x1 < 1

Goal: infer δ from 16 equally spaced observations of u(x) in the

interior of the domain.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Negative Stable

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Unstable

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Positive Stable

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

21

Page 28: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Allen–Cahn: Forward Solutions

Nonlinear PDE - non-GP posterior sampling schemes required, see

[Cockayne et al., 2016].

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Initial Design

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Optimal design

1.2

0.9

0.6

0.3

0.0

0.3

0.6

0.9

1.2

22

Page 29: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Allen–Cahn: Inverse Problem

0.02 0.03 0.04 0.05 0.06 0.07 0.08

θ

0

20

40

60

80

100

120

140

PMM `= 5

PMM `= 10

PMM `= 20

PMM `= 40

PMM `= 80

(a) PMM

0.02 0.03 0.04 0.05 0.06 0.07 0.08

θ

0

200

400

600

800

1000

1200

FEM 5x5

FEM 10x10

FEM 25x25

FEM 50x50

(b) FEA

Comparison of posteriors for δ with different solver resolutions,

when using the PMM forward solver with PN likelihood, vs. FEA

forward solver with Gaussian likelihood.

23

Page 30: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

Conclusions

24

Page 31: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

We have shown...

• How to build probability measures for the forward solution of

PDEs.

• How to use this to make rhobust inferences in PDE inverse

problems, even with inaccurate forward solvers.

Coming soon...

• Evolutionary problems (∂/∂t).

• More profound nonlinearities.

• Non-Gaussian priors.

25

Page 32: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

We have shown...

• How to build probability measures for the forward solution of

PDEs.

• How to use this to make rhobust inferences in PDE inverse

problems, even with inaccurate forward solvers.

Coming soon...

• Evolutionary problems (∂/∂t).

• More profound nonlinearities.

• Non-Gaussian priors.

25

Page 33: Probabilistic Meshless Methods for Bayesian …gverdool/maxent2016/sp/Cockayne...Why do this? Using an inaccurate forward solver in an inverse problem can producebiasedandovercon dentposteriors

I. Cialenco, G. E. Fasshauer, and Q. Ye. Approximation of stochastic partial differential equations by a kernel-based

collocation method. Int. J. Comput. Math., 89(18):2543–2561, 2012.

J. Cockayne, C. J. Oates, T. Sullivan, and M. Girolami. Probabilistic Meshless Methods for Partial Differential

Equations and Bayesian Inverse Problems. arXiv preprint arXiv:1605.07811, 2016.

P. Diaconis. Bayesian numerical analysis. Statistical decision theory and related topics IV, 1:163–175, 1988.

J. B. Kadane. Parallel and Sequential Computation: A Statistician’s view. Journal of Complexity, 1:256–263, 1985.

A. O’Hagan. Some Bayesian numerical analysis. Bayesian Statistics, 4:345–363, 1992.

H. Owhadi. Bayesian numerical homogenization. arXiv preprint arXiv:1406.6668, 2014.

S. Sarkka. Linear operators and stochastic partial differential equations in Gaussian process regression. In Artificial

Neural Networks and Machine Learning – ICANN 2011: 21st International Conference on Artificial Neural

Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part II, pages 151–158. Springer, 2011.

J. Skilling. Bayesian solution of ordinary differential equations. Maximum Entropy and Bayesian Methods, 50:

23–37, 1991.

26