pro-poor nanotechnology applications for water

15
1 Pro-poor Nanotechnology Applications for Water: Characterizing Private Sector Research Using Publication Data Matthew Harsh, Arizona State University Thomas Woodson, Georgia Institute of Technology 1 Emerging technologies have potential to generate new inequalities in society and to perpetuate existing inequalities (Cozzens and Wetmore, 2010). Emerging technologies draw on the latest cutting-edge research which tends to be performed by historically advantaged groups in developed countries. Technologies are developed that are aimed at the problems and preferences of those same advantaged groups. Technologies are distributed and priced in such a way that accessing them is much more difficult for other poorer people in less developed regions of the world. However, emerging technologies also have potential to reduce inequality. Innovation can spur economic growth in countries or regions, potentially lessening the disparity of wealth. Or, innovations can be aimed at specific problems faced by poor and marginalized groups in developing regions and countries, so-called ‘pro-poor’ innovation. In this paper, we explore this second way that emerging technologies may reduce inequalities by examining the case of nanotechnology applications for water. The paper thus represents a contribution to our understanding of the equity implications of nanotechnology and how we might guide nanotechnologies towards more equitable outcomes. The authors are part of a larger project at the Center for Nanotechnology in Society (CNS) at Arizona State University that is exploring equity, equality and responsibility in nanotechnology innovations. 2 This project is, in turn, part of the vision of CNS to make technology assessment more real-time (Guston and Sarewitz, 2002) and governance more anticipatory (Barben et al., 2008). The specific aim of this paper is to characterize global private sector research on nanotechnology applications for water in order to understand how private sector innovation might benefit poor people living in developing regions and countries. In other words, we are interested in how the private sector might be creating ‘pro-poor’ nanotechnologies for water. 3 Water applications were chosen because reliable access to clean water is a major issue in many developing countries and because water and energy are the two application areas that are the focus of our project on equity and nanotechnology at CNS. Specific questions that this paper addresses include: What are the top countries in terms of the amount of private sector research on nanotechnology for water application? Where are these countries? How economically developed are these countries? What are the primary water applications and primary specific nanotechnologies being developed in these countries? How pro-poor are these applications and technologies? 1 Mr. Woodson is not attending the Nano Winter School, but can be reached at [email protected] 2 See Cozzens and Wetmore (2010) for a discussion of the dimensions of inequality as related to nanotechnology and a discussion of the distinction between equity versus equality. 3 Identifying the extent to which a given technology is pro-poor is a difficult challenge which we return to below. We would like to hear the views of the participants of the winter school about how to best deal with this challenge.

Upload: others

Post on 12-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

1

Pro-poor Nanotechnology Applications for Water: Characterizing Private Sector Research Using Publication Data

Matthew Harsh, Arizona State University

Thomas Woodson, Georgia Institute of Technology1

Emerging technologies have potential to generate new inequalities in society and to perpetuate existing inequalities (Cozzens and Wetmore, 2010). Emerging technologies draw on the latest cutting-edge research which tends to be performed by historically advantaged groups in developed countries. Technologies are developed that are aimed at the problems and preferences of those same advantaged groups. Technologies are distributed and priced in such a way that accessing them is much more difficult for other poorer people in less developed regions of the world. However, emerging technologies also have potential to reduce inequality. Innovation can spur economic growth in countries or regions, potentially lessening the disparity of wealth. Or, innovations can be aimed at specific problems faced by poor and marginalized groups in developing regions and countries, so-called ‘pro-poor’ innovation.

In this paper, we explore this second way that emerging technologies may reduce inequalities by examining the case of nanotechnology applications for water. The paper thus represents a contribution to our understanding of the equity implications of nanotechnology and how we might guide nanotechnologies towards more equitable outcomes. The authors are part of a larger project at the Center for Nanotechnology in Society (CNS) at Arizona State University that is exploring equity, equality and responsibility in nanotechnology innovations.2 This project is, in turn, part of the vision of CNS to make technology assessment more real-time (Guston and Sarewitz, 2002) and governance more anticipatory (Barben et al., 2008).

The specific aim of this paper is to characterize global private sector research on nanotechnology applications for water in order to understand how private sector innovation might benefit poor people living in developing regions and countries. In other words, we are interested in how the private sector might be creating ‘pro-poor’ nanotechnologies for water.3 Water applications were chosen because reliable access to clean water is a major issue in many developing countries and because water and energy are the two application areas that are the focus of our project on equity and nanotechnology at CNS.

Specific questions that this paper addresses include: • What are the top countries in terms of the amount of private sector research on

nanotechnology for water application? • Where are these countries? How economically developed are these countries? • What are the primary water applications and primary specific nanotechnologies being

developed in these countries? • How pro-poor are these applications and technologies?

1 Mr. Woodson is not attending the Nano Winter School, but can be reached at [email protected] 2 See Cozzens and Wetmore (2010) for a discussion of the dimensions of inequality as related to nanotechnology and a discussion of the distinction between equity versus equality. 3 Identifying the extent to which a given technology is pro-poor is a difficult challenge which we return to below. We would like to hear the views of the participants of the winter school about how to best deal with this challenge.

2

• How does private sector research on nanotechnology applications for water compare to public sector research on nanotechnology applications for water in the leading countries in terms of both the amount and focus of research?

• How does private sector research on nanotechnology applications for water compare to private sector research for nanotechnology in general in the leading countries?

• How have answers to the above questions changed over the past ten years?

This paper is still very much a work in progress. We are still reviewing literature, analyzing data and tackling some difficult conceptual and methodological issues. We look forward to discussing these with the participants at the Nano Winter School.

In what follows we outline our data sources and the methodology, give some preliminary findings and then discuss some emerging conclusions and issues.

Data and Methods The dataset used in this paper comes from a database of nanotechnology publications from the online service Web of Science. In 2007, Porter et al. built a database that strove to collect all articles on nanotechnology from 1990 until the present day (De Bellis, 2009; Porter, Youtie, Shapira, & Schoeneck, 2007). The group searched Web of Science using a series of eight modularized Boolean states to build a large set of nanotechnology articles. The researchers then used a different group of exclusion terms to refine the set. In the process, the team verified their search terms with experts and they compared their overall search results with other nanotechnology databases collected through other search methodologies.

This study used the nanotechnology database of Porter et al. (2007) as the foundation to build a water nanotechnology data set. Before manipulating the large nanotechnology database, we surveyed several articles that reviewed water nanotechnologies to understand the most important technologies, research foci, materials and keywords related to the field (Meridian Institute, 2005; Savage & M. S. Diallo, 2005; Savage, M. Diallo, Duncan, Street, & Sustich, 2009; Theron, Walker, & Cloete, 2008). Then we built a series of filters to extract the water nanotechnology articles from the larger database created by Porter et al. (2007). The filters were built through an iterative bootstrapping procedure. During the process we focused on balancing the precision and recall of the search. The precision of the search relates to the number of irrelevant articles in the set. The more precise the search, the fewer irrelevant articles that are in the dataset. A better recall minimizes the number of missed articles that should be included in the dataset. If the filter has a good recall, it will include all the relevant water nanotechnology articles.

The first filter broadly extracted articles relating to water applications. The keywords used for this filter were the following: brackish water, desalination, drink, filtration, freshwater, freshwater pollution, groundwater, natural waters, pesticide remediation, reverse osmosis, saltwater, seawater, water pollution, water purification, water treatment. The second filter categorized the articles into six different nanotechnology arenas corresponding to the main uses of nanotechnology in the water field. The six arenas are the following: desalination, disinfection, filtration, photocatalysis, remediation and sensors. These areas were outlined in several of the water nanotechnology review articles (e.g. Meridian Institute, 2005). The third filter classified the articles based on the type of technology and materials that were used. The technologies/materials are the following: carbon nanotubes (CNT), ceramics/clays, dendrimers, magnetic particles, membrane, reverse osmosis, titanium dioxide, sorbent, magnetic particles, zero valent iron, and zeolites.

3

It is important to note that there is not a one-to-one correspondence between specific nanotechnologies or materials and specific application areas or arenas. Some specific nanotechnologies are relevant to many of the areas. Other nanotechnologies are relevant to only a few application areas. Table 1 shows the correlation between application areas and specific nanotechnologies

Mem

bran

eTi

O2

Reve

rse

Osm

osis

Sor

bent

Cer

amic

CN

TM

agne

tic P

artic

les

Zero

-Val

ent

Iron

Zeol

ites

Den

drim

erTo

tal

Filtr

atio

n28

813

115

2030

2117

35

151

3Ph

otoc

atal

ysis

1422

726

2016

132

51

324

Rem

edia

tion

161

315

128

46

65D

isin

fect

ion

3212

163

12

32

71Sen

sor

176

102

212

49D

esal

inat

ion

2821

11

51To

tal

395

259

165

6765

5937

1311

210

73

  Table  1:  Relationship  be

tween  Areas  a

nd  Spe

cific  Techn

ologies  

4

Results We began our analysis with a cumulative view of the data. The top 25 overall countries in terms of the amount of private sector research on nanotechnologies for water applications were determined using two measures. The first is the total number of companies conducting research in a given country in the entire ten-year study period (2000 to 2009). The second is the total number of publications from authors affiliated with those companies in the same period. Both of these measures are shown in Figure 1. The countries are ranked in terms of total number of companies.

The majority of the countries in Figure 1 are classified as ‘Very High Development’ or ‘High Development’ by the United Nations Human Development Index. China and India are the main ‘Medium Development’ countries in the ranking. Over half the countries are in North America and Europe. Africa is not represented at all in the ranking.

The second cumulative tabulation performed was determining the top twenty companies for the entire study period in terms of the total number of publications on nanotechnology applications for water. These companies, along with the country in which they are based4 are shown in Figure 2.

4 Because many companies are multi-national, linking companies to countries is not straightforward. The database contained publications from authors working in different countries, but for the same company. In this case, our approach was to count all publications from a company as research emerging from the country where the company was founded and has its headquarters.

5

The 20 top companies are from ten countries. The majority of the companies are based in countries in North America and Eastern Asia. With one exception, all the companies are based in Very High Development countries. The Chinese Wuhan Iron & Steel Company is the only company from a Medium Development country.

Our analysis of trends over time, began with an overview of how the worldwide total number of companies conducting research on nanotechnology applications for water changed throughout the study period. This is shown in Figure 3.

6

Figure 3 shows steady growth in the worldwide number of companies conducting research on nanotechnology related to water. The dip in Figure 3 between the years 2008 and 2009 is artificial because the 2009 data is not complete.5

The next step of comparative analysis involved constructing a table for every year of the study period. Each table contained the top applications, top technologies for those applications, the top 20 countries in terms of number of publications, and the top 20 companies in terms of number of publications. Table 2 is an example from 2008. The number in brackets after an item indicates the number of publications for that item. The complete list of the tables can be found in Appendix A.

Several trends can be seen when comparing the tables. Throughout the study period, filtration remains the top application and photocatalysis remains the second highest ranking application. Membranes and titanium dioxide oscillate between the top two highest ranked specific nanotechnologies.

The rise of China as an increasingly significant country for private sector research in the nanotechnology and water domain can also be clearly seen when comparing the tables in Appendix A. The trend in number of publications and overall ranking is shown in Figure 4 below. The Chinese company Wuhan Iron & Steel is the top ranking company in 2008 and 2009 in terms of total publications.

5 The 2009 data was collected from Web of Science in early 2010, before Web of Science contained all the publications from 2009. The 2009 dataset is thus incomplete. This is an issue that we are working to correct.

7

Table  2:  Top  Applications,  Technologies,  Countries  and  Companies  in  2008  

The dip in Figure 4 from 2008 to 2009 in the publication data is again artificial due to the incomplete dataset for 2009 (see note above).

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*3+-. 456)*37-. 89:&();%'()<)5$00#)=')*>-.?:'$'@&$&#AB"B)*3C-. D"EC)*FG-. H&I&()*7J-. 5&1B9(K)L#0@$)=')M$N)*3-.O"B"(P0@$"'()*QG-. 5'%20($)*CJ-. =:"(&)*F3-. R!6)H9#"@:)S12T)*7-.U010N"&$"'()*Q3-. =VD)*QG-. S0%1&(A)*C+-. O''B&()T0&WA);(N)<)='(B$%9@$)=')M$N)*F-.50(B'%)*QC-. U0W0%B0)'B1'B"B)*QG-. 5'9$:)R'%0&)*Q,-. /"##0(("91);('%K&()=:01)=%"B$&#)=')*F-.O0B&#"(&$"'()*+- =0%&1"@)*Q3-. 69B$%&#"&)*QJ-. D'A'$&)/'$'%)=')M$N)*F-.

/&K(0$"@)?&%$"@#0B)*>-. =&(&N&)*QJ-. 6"%)?%'N)<)=:01);(@)*C-.X0'#"$0B)*C-. 4R)*+-. Y&N0%)L(K();(@)*C-.X0%'Z[&#0($);%'()*C-. 5\"$]0%#&(N)*>-. Y0(0B"B)='%I)*C-.O0(N%"10%)*Q- !%&(@0)*G-. =TC/)T"##);(@)*C-.

V0$:0%#&(NB)*,-. O0K%01'($)56)*C-.5I&"()*3-. O'\)=:01)=')456)*C-.;(N"&)*7-. L#0@$)?'\0%)U0B);(B$)*C-.D&"\&()*7-. L^@'%M&2)S12T)*C-.5"(K&I'%0)*F-. S&12%')O"&#AB&$'%0()<)=')RS)*C-.5\0N0()*F-. ;Y/)='%I)*C-.69B$%"&)*C-. R&$&NA()?%'N);(@)*C-.Y0#&%9B)*C-. /0#2'9%(0)8&$0%)='%I)*C-.Y0#K"91)*C-. V&(')=&%2'()D0@:('#)=')M$N)*C-.;$&#A)*C-. V"II'()5:00$)S#&BB)=')M$N)*C-.5&9N")6%&2"&)*C- E%K&(')='%I)*C-.

E_A)H&I&()='%I)*C-.56)8&$0%)='%I)*C-.56;=)!%0N0%"@`);(@)*C-.5'#10$0^);(@)*C-.5'(A)='%I)*C-.DO6)U0B);(@)*C-

8

The final two steps of the analysis were to compare private sector research in nanotechnology application for water to that in the public sector, and to compare private sector research in nano-water to private sector research in general. Both of these analyses are still underway. However, some data from 2009 has already been analyzed. Based on available 2009 data, private sector research in nano-water makes up about 7% of the total research. Public and private sector data are shown in Figure 5 along with the percentage of total research that is from the private sector.

Emerging Conclusions and Remaining Issues A main conclusion from the data appears to be that the private sector research on nanotechnology applications for water is not being conducted in most developing countries. India and China are the main exceptions to this. China is a much more significant and faster growing country than India in the terms of private sector nano-water research.

Another emerging finding is that one of the main water application areas for nanotechnology, photocatalysis using titanium oxide, is likely to not be a very pro-poor technology. In Meridian Institute’s dialogue on water nanotechnologies for the poor, this technology was not considered particularly suitable for distributed applications in households and communities. It requires trained labor for installation and maintenance, and is difficult to operate – the opposite of what many consider to be a pro-poor technology or an appropriate technology. (Meridian 2006).

More analysis will help us further characterize the relationship between global private sector research and pro-poor nanotechnologies for water applications. However, we see two main sets of issues that represent significant challenges to characterizing the extent to which nanotechnologies (from the private or the public sector) can be considered pro-

9

poor. We would like to end with some discussion of these issues and how we plan to address them.

The first set of issues is related to the concept of pro-poor itself. Who are the poor? Are we thinking of rural poor families in small villages? Or are we thinking of dense and crowded urban slums? Even if we can be specific about which disadvantages groups we are discussing and in what context they are living, determining which technologies are appropriate for those groups is a very complicated task. It is surely a task which must involve a great deal of communication with communities themselves. Our research group will be conducting qualitative work in South Africa and developing regions of the United States to try to tackle some of these issues.

The second set of issues is related to innovation driven by emerging science and technology, like the nanotechnology applications for water discussed here. Tracking research trajectories, like we are doing in this paper, is an important step. But there will always be uncertainty about where research trajectories are moving. Furthermore, the links between research and eventual technologies and products are complex. One idea we are considering to help with this situation is to use patent data in addition to publication data. Patents are in some ways a better indicator of the type of research companies are conducting and a better predictor of what technologies or products might emerge from that research.

The approach that many scholars have taken to this complicated problem of characterizing the extent to which given nanotechnologies will be pro-poor is essentially to consult scientific experts.6 This was the approach of Salamanca-Bunetello and colleagues when they polled scientists about which nanotechnologies will help meet the Millennium Development Goals (Salamanca-Buentello et al., 2005). Asking scientists about what technologies they see as likely to be developed or as likely to help the poor is interesting and important. However even if these scientists are from developing countries, consulting them helps significantly more with the second set of issues – issues about what technologies are likely to be developed and when. It does not help as much with the first group of issues about the social and cultural contexts of specific poor or marginalized groups.

Our approach at the Center for Nanotechnology in Society (CNS) to addressing both groups of issues has been to try to foster collaboration between different types of actors. As social scientists, we engage with scientists to track innovation trajectories, and strive to understand the implications and uncertainties surrounding emerging nanotechnologies. We also work with communities to strive to understand specific social, cultural and political contexts. But importantly, we try to find ways that scientists, publics, students, policymakers and a range of other actors can engage with each other. At CNS, we have been more successful in fostering such engagements in developed countries than in developing countries. We look forward to sharing more of the experiences from our Center and to discussing how to overcome the intellectual, cultural and logistical challenges of studying the social implications of nanotechnologies in both developed and developing countries.

6 While we criticize this approach, we acknowledge that we seemingly defer to experts above when we cite a report that states that photocatalysis via titanium dioxide is not very pro-poor. However, this finding comes out of a dialogue event between scientists, social scientists, and community organizations. This is much closer to the kind of approach that we argue for below.

10

Works Cited

Barben, D., Fisher, E., Selin, C., & Guston, D. (2008). Anticipatory Governance of Nanotechnology: Foresight, Engagement, and Integration. In E. J. Hackett, O. Amsterdamska, M. Lynch, & J. Wajcman (Eds.), The Handbook of Science and Technology Studies. (pp. 979-1000). Cambridge, MA: MIT Press.

Cozzens, S. & Wetmore, J. (2010). Introduction. In S. Cozzens & J. Wetmore (Eds.), The Yearbook of Nanotechnology in Society, Vol. II: The Challenges of Equity, Equality, and Development. New York: Springer.

De Bellis, N. (2009). Bibliometrics and citation analysis: from the Science citation index to cybermetrics. Scarecrow Pr. Retrieved March 17, 2011, from http://books.google.com/books?hl=en&lr=&id=ma4YjaKyM9cC&oi=fnd&pg=PR5&dq=debellis,+bibliometrics&ots=1uRXAP64Fn&sig=-AMSStBddTzVeItTxGwPdY4-Jek.

Guston, D. H. & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24(1-2), 93-109.

Meridian Institute. (2005). Overview and Comparison of Conventional and Nano Based Water Water Treatment (pp. 1-38). Washington D.C.

Meridian-Institute (2006). Nanotechnology, Water, and Development: Workshop Summary. Washington, D.C., Meridian Institute.

Porter, A., Youtie, J., Shapira, P., & Schoeneck, D. (2007). Refining Search Terms for Nanotechnology. Journal of Nanoparticle Research. doi: 10.1007.

Salamanca-Buentello, F., Persad, D. L., Court, E. B., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the Developing World. PLoS Medicine, 2(5).

Savage, N., & Diallo, M. S. (2005). Nanomaterials and Water Purification: Opportunities and Challenges. Journal of Nanoparticle Research, 7(4), 331-342. Retrieved from http://dx.doi.org/10.1007/s11051-005-7523-5.

Savage, N., Diallo, M., Duncan, J., Street, A., & Sustich, R. (2009). Nanotechnology Application for Clean Water. Norwich, NY: William Andrew.

Theron, J., Walker, J. a, & Cloete, T. E. (2008). Nanotechnology and water treatment: applications and emerging opportunities. Critical reviews in microbiology, 34(1), 43-69. doi: 10.1080/10408410701710442.

11

APPENIX A: Data on Top Applications, Technologies, Countries and Companies

Table  A1:  Top  Applications,  Technologies,  Countries  and  Companies  in  2009  

Table  A2:  Top  Applications,  Technologies,  Countries  and  Companies  in  2008  

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*34-. 567)*48-. 90:&;<;)=0>?)60%@)*3-.9?'$'>&$&#A;";)*34-. ="BC)*C,-. D&E&()*FF-. 6&1;<(:)G#0>$)H')I$J)*3-.K010J"&$"'()*LM-. H0%&1">)*L4-. N0%1&(A)*CC-. ='A'$&)/'$'%)H')I$J)*3-.O";"(P0>$"'()*LF-. K0@0%;0)';1';";)*L4-. H?"(&)*L,-. 7J@)Q&('$0>?('#)I$J)*F-.60(;'%)*LR-. HQ=)*L3-. 6'<$?)S'%0&)*LM-. S'%0&)T&$0%)K0;'<%>0;)H'%E)*F-.O0;&#"(&$"'()*+- 6'%20($)*,-. 5S)*LC-. IN)H?01)I$J)*F-.

/&:(0$">)9&%$">#0;)*M-. 7<;$%&#"&)*8-. /"$;<2";?")H?01)H'%E)*F-.U0%'VW&#0($)X%'()*4- X$&#A)*+-. 67)T&$0%)H'%E)*F-.

6Y"$Z0%#&(J)*+-. 6"010(;)7N)*F-.7<;$%"&)*4-. F/)H')*C-.[0#:"<1)*3-. 7($'()9&&%)N12\)*C-.H&(&J&)*3-. 7%:'("J0)H'%E)*C-.!%&(>0)*3-. [76!)7N)*C-.6"(:&E'%0)*3-. [&A0%)7N)*C-.=&"Y&()*3-. H$%)6<";;0)G#0>$)])/">%'$0>?)67)*C-.Q0$?0%#&(J;)*F-. O&^"(:)B"#P"0#J)H')*C-.6E&"()*F-. GOX6BQ)6E7)*C-.6Y0J0()*F-. X(;$)G(0%:A)6>")])=0>?('#)H')I$J)*C-.O0(1&%_)*C-. QGH)='_"()H'%E)*C-.X%&()*C-. Q"$$')O0(_')H'%E)*C-.Q0Y)U0&#&(J)*C-. 6'(A)H'%E)*C-.Q'%Y&A)*C-. ='_A')B?_&)S':A')H')I$J)*C-6#'@0("&)*C-.5("$0J)7%&2)G1"%&$0;)*C-

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*3+-. 456)*37-. 89:&();%'()<)5$00#)=')*>-.?:'$'@&$&#AB"B)*3C-. D"EC)*FG-. H&I&()*7J-. 5&1B9(K)L#0@$)=')M$N)*3-.O"B"(P0@$"'()*QG-. 5'%20($)*CJ-. =:"(&)*F3-. R!6)H9#"@:)S12T)*7-.U010N"&$"'()*Q3-. =VD)*QG-. S0%1&(A)*C+-. O''B&()T0&WA);(N)<)='(B$%9@$)=')M$N)*F-.50(B'%)*QC-. U0W0%B0)'B1'B"B)*QG-. 5'9$:)R'%0&)*Q,-. /"##0(("91);('%K&()=:01)=%"B$&#)=')*F-.O0B&#"(&$"'()*+- =0%&1"@)*Q3-. 69B$%&#"&)*QJ-. D'A'$&)/'$'%)=')M$N)*F-.

/&K(0$"@)?&%$"@#0B)*>-. =&(&N&)*QJ-. 6"%)?%'N)<)=:01);(@)*C-.X0'#"$0B)*C-. 4R)*+-. Y&N0%)L(K();(@)*C-.X0%'Z[&#0($);%'()*C-. 5\"$]0%#&(N)*>-. Y0(0B"B)='%I)*C-.O0(N%"10%)*Q- !%&(@0)*G-. =TC/)T"##);(@)*C-.

V0$:0%#&(NB)*,-. O0K%01'($)56)*C-.5I&"()*3-. O'\)=:01)=')456)*C-.;(N"&)*7-. L#0@$)?'\0%)U0B);(B$)*C-.D&"\&()*7-. L^@'%M&2)S12T)*C-.5"(K&I'%0)*F-. S&12%')O"&#AB&$'%0()<)=')RS)*C-.5\0N0()*F-. ;Y/)='%I)*C-.69B$%"&)*C-. R&$&NA()?%'N);(@)*C-.Y0#&%9B)*C-. /0#2'9%(0)8&$0%)='%I)*C-.Y0#K"91)*C-. V&(')=&%2'()D0@:('#)=')M$N)*C-.;$&#A)*C-. V"II'()5:00$)S#&BB)=')M$N)*C-.5&9N")6%&2"&)*C- E%K&(')='%I)*C-.

E_A)H&I&()='%I)*C-.56)8&$0%)='%I)*C-.56;=)!%0N0%"@`);(@)*C-.5'#10$0^);(@)*C-.5'(A)='%I)*C-.DO6)U0B);(@)*C-

12

Table  A3:  Top  Applications,  Technologies,  Countries  and  Companies  in  2007  

Table  A4:  Top  Applications,  Technologies,  Countries  and  Companies  in  2006  

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*34-. 567)*8+-. 9:;&()<%'()=)6$00#)>')*?-.@;'$'A&$&#BC"C)*3?-. D"E4)*F8-. G&H&()*FI-. >J4/)J"##)<(A)*F-.K010L"&$"'()*,I-. K0M0%C0)'C1'C"C)*,N-. O0%1&(B)*4F-. 6;&P)Q(M"%'(1)<(A)*F-.60(C'%)*,I-. >RD)*,8-. >;"(&)*4,-. S0%'T)>'%H)*F-.U"C"(V0A$"'()*,F-. 6'%20($)*N-. 6':$;)W'%0&)*,+-. 7XU)R&('6'#:$)<(A)*4-.U0C&#"(&$"'()*8- >0%&1"A)*+-. 6P"$Y0%#&(L)*,Z-. 7[:%&)O12J)*4-.

/&\(0$"A)@&%$"A#0C)*I-. 5W)*N-. >:%#"(\)>'(C:#$"(\)7])*4-.^0%'_`&#0($)<%'()*4-. !%&(A0)*?-. QU<6ER)6H7)*4-.^0'#"$0C)*,- >&(&L&)*8-. JUK)Q(\()<(A)*4-.

<(L"&)*3-. W:1"&")>;01)<(L)>')XDU)*4-.R0P)^0&#&(L)*3-. /QD7`)K0C)=)U0M)67)*4-.6"(\&H'%0)*3-. /"$C:")>;01)<(A)*4-.6P0L0()*3-. R"HH'()6;00$)O#&CC)>')X$L)*4-.7:C$%&#"&)*F-. @0%1"'()/012%&(0C)@M$)X$L)*4-.<$&#B)*F-. @0$%'>;"(&)>')X$L)*4-.R0$;0%#&(LC)*F-. @%'/0$)]"'D;0%&H0:$)<(A)*4-.7:C$%"&)*4-. 6&1C:(\)Q#0A$)>')X$L)*4-.<C%&0#)*4-. 6"(\&H'%0)5$"#)<($)@$0)X$L)*4-.K'1&("&)*4-. D&a")>;01)>')X$L)*4-.6H&"()*4-. D&B#'%)J'2C'()*4-.D&"P&()*4- D'C;"2&)>')X$L)*4-.

D'B'$&)/'$'%)>')X$L)*4-

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /"01)*2+-. 345)*67-. 8"$$')9:(;')<'%=)*>-.

?@'$'A&$&#BC"C)*62-. D:EF%&(:)*21-. G&=&()*2>-. 4&ECH(I)J#:A$)<')K$L)*>-.

9"C"(M:A$"'()*N-. O:P:%C:)'CE'C"C)*,,-. <@"(&)*,Q-. 5LP)8&('$:A@('#)K$L)*2-.

O:E:L"&$"'()*N-. <8/)*Q-. R:%E&(B)*,+-. S&L:%)J(I()T(A)*2-.

4:(C'%)*+-. 4'%F:($)*N-. 4'H$@)U'%:&)*,2-. R#&V'4E"$@U#"(:)*2-.

9:C&#"(&$"'()*,- <:%&E"A)*+-. 3U)*W-. S&'C@&()T%'()X)4$::#)<')K$L)*1-.

D&I(:$"A)?&%$"A#:C)*>-. 5HC$%&#"&)*6-. 9&("CA')4HI&%)K$L)*1-.

9:(L%"E:%)*,-. 8:$@:%#&(LC)*6-. K:"F("Y)T(C$)8:H:)D&$)*1-.

Z:'#"$:C)*,-. 4[:L:()*6-. 8&('E"V)<'%=)*1-.

Z:%'\]&#:($)T%'()*,- !"(#&(L)*2-. 8"=='()4@::$)R#&CC)<')K$L)*1-.

4=&"()*2-. 8"CC&()D'$'%)<')K$L)*1-.

S:#I"HE)*1-. ?&(Y@"@H&)T%'()X)4$::#)K$L)<')*1-.

!%&(A:)*1-. O'CC:(L'%M)T(A)*1-.

R%::A:)*1-. ^O)R%&A:)X)<')<'(()*1-.

T(L"&)*1-. _:%'V)<'%=)*1-.

D:V"A')*1-. N,Q)O:C)T(C$)<@"(&)4@"=F#LI)T(L)<'%=)*,-.

OHCC"&)*1-. 5S)4&(LP";)<'%'E&$)*,-.

4["$Y:%#&(L)*1-. 5LP)S"'=%'A)9:P)K$L)*,-.

/&"[&()*1-. 5MMBE:$%"V)T(A)*,-.

5HC$%"&)*,- 5(L:C)J#:A$)<')K$L)*,-

13

Table  A5:  Top  Applications,  Technologies,  Countries  and  Companies  in  2005  

Table  A6:  Top  Applications,  Technologies,  Countries  and  Companies  in  2004  

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /"01)*12-. 3&4&()*,5-. 6&789(:);#<=$)>')?$@)*+-.AB'$'=&$&#C8"8)*,2-. D<7E%&(<)*1F-. G6H)*,1-. 6"(:&4'%<)G$"#)I($)A$<)?$@)*+-.6<(8'%)*J1-. K<L<%8<)'87'8"8)*M-. N<%7&(C)*J+-. HO0P)*,-.K<7<@"&$"'()*JJ-. ><%&7"=)*2-. 6'9$B)Q'%<&)*J1-. /'C'$&)D'$'%)>')?$@)*,-.R"8"(S<=$"'()*M-. >O/)*2-. >B"(&)*JT-. HU9%&)N7EV)*1-.R<8&#"(&$"'()*J- 6'%E<($)*2-. GQ)*F-. W&'8B&()I%'()X)6$<<#)>')?$@)*1-.

D&:(<$"=)A&%$"=#<8)*1-. I$&#C)*5-. ><($)K<8)?&E8)?$@)*1-.R<(@%"7<%)*J-. 6Y<@<()*5-. >B"C'@&)>'%4)*1-.Z<'#"$<8)*J- >[<=B)K<49E#"=)*+-. !9\"$89)?&E8)?$@)*1-.

6"(:&4'%<)*+-. N#&]'67"$BQ#"(<)*1-.6Y"$[<%#&(@)*+-. 3&4&()>'%4)6=")X)/<=B('#)*1-.>&(&@&)*,-. QHQ;O)>')*1-.R<(7&%^)*,-. Q'%<&)_&$<%)K<8'9%=<8)>'%4)*1-.!%&(=<)*,-. 6H)_&$<%)>'%4)*1-.I8%&<#)*,-. 6B"7&@[9)/<=B(')K<8)>')?$@)*1-.I(@"&)*1-. 6"<7<(8)HN)*1-.K'7&("&)*1-. /%"$'()6C8$)I(=)*1-.6#'L&^"&)*1-. H8&B")N#&88)>')?$@)*J-.64&"()*1-. H8&B")Q&8<")>'%4)*J-.H98$%&#"&)*J- W&C<%)HN)*J-

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*3+-. 456)*+7-. 8'9):;01):')456)*3-.<;'$'=&$&#>?"?)*+7-. @"A3)*3+-. B&C&()*3+-. !4BDEFGDA)D(=)*3-.E010H"&$"'()*II-. 5'%20($)*J-. K0%1&(>)*IL-. K#&M'51"$;N#"(0)*3-.8"?"(O0=$"'()*P-. :0%&1"=)*,-. :;"(&)*I7-. D($0#)<%'H)5;&(Q;&")R$H)*3-.50(?'%)*S- /&Q(0$"=)<&%$"=#0?)*,-. 4N)*I7-. R&(H=&%0)E0?)T09)U0&#&(H)R$H)*3-.

E0V0%?0)'?1'?"?)*P-. 59"$W0%#&(H)*X-. A$?YZ&)F#0=$):')R$H)*3-.:T@)*L- 5'Y$;)N'%0&)*P-. E0Q0(0$"??):')R$H)*3-.

D?%&0#)*+-. 5;"2&Y%&)/0=;&$%'():'%C)*3-.5"(Q&C'%0)*+-. 6GG):'%C)E0?)*I-.:&(&H&)*3-. 622'$)K/G[)\):')NK)*I-.!%&(=0)*3-. 60%'H>(0)E0?)D(=)*I-.T0$;0%#&(H?)*3-. 6#=&()D($)R$H)*I-.T09)U0&#&(H)*3-. 6##$0=;)G"'$0=;('#)D(=)*I-.6Y?$%"&)*I-. 61&O"#$0%)80Y$?=;#&(H)K12[)*I-.G0#Q"Y1)*I-. 6Y?$%"&()E0?):$%)*I-.GY#Q&%"&)*I-. G65!)6K)*I-.80(1&%Z)*I-. G0%#"()]&$0%):')*I-.D$&#>)*I-. G"'='1C&$"2#0?)R$H)*I-.EY??"&)*I-. :DG6):')*I-.5&YH")6%&2"&)*I- :/:)@0=;('#)80V):')R$H)*I-

14

Table  A7:  Top  Applications,  Technologies,  Countries  and  Companies  in  2003  

Table  A8:  Top  Applications,  Technologies,  Countries  and  Companies  in  2002  

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*++,- ./01%&(/)*23,- 4&5&()*67,- 8#&9':0"$;<#"(/)*=,-

>;'$'?&$&#@A"A)*67,- B"C6)*23,- D:E)*62,- E0&F"#$/%)G/H$A?;#&(I)801J)*+,-

G"A"(F/?$"'()*K,- L/M/%A/)'A0'A"A)*3,- 8/%0&(@)*2N,- :?;/%"(O)E8)*+,-

L/0/I"&$"'()*3,- P/%&0"?)*=,- D<)*K,- J/Q#/$$)>&?R&%I)P'%5)*6,-

:/(A'%)*7,- :'%1/($)*=,- :'H$;)<'%/&)*3,- SAHTH)EIM)U(O()P$%)V$I)*6,-

G/A&#"(&$"'()*6, W/'#"$/A)*6,- !%&(?/)*7,- V&(I?&%/)L/A)X/Q)W/&#&(I)V$I)*6,-

W/%'YZ&#/($)S%'()*6,- :Q"$T/%#&(I)*7,- XBB)."?%'A@A$)S($/O%&$)V&1A)*6,-

G/(I%"0/%)*2,- P;"(&)*+,- EO"#/($)B/?;('#)S(?)*2,-

.&O(/$"?)>&%$"?#/A)*2, P&(&I&)*6,- E#?;"0/%):E)*2,-

S$&#@)*6,- EA&;")<&A/")P'%5)*2,-

X/$;/%#&(IA)*6,- EHA$%&#"&()P''5/%&$)!''IA)V$I)*2,-

X/Q)W/&#&(I)*6,- EM/($"A)[/;%"(O)801J)*2,-

E%O/($"(&)*2,- [;&%&$)J/&M@)U#/?$)V$I)*2,-

EHA$%&#"&)*2,- ["'#&(I)V$I)*2,-

PT/?;)L/5H1#"?)*2,- ['@#/)U(O()P'%5)*2,-

UO@5$)*2,- PJ6.)J"##)S(?)*2,-

JH(O&%@)*2,- P;%"A$)E8)*2,-

S(I"&)*2,- PS[E)P')*2,-

SA%&/#)*2,- P')B/?()S($)B/?;"($)*2,-

./9"?')*2, P@?#'I/9$%"()L/A)\)G/M)V&1)V$I)*2,

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*34-. 567)*34-. 89):%&;0)<)=')='(()*4-.

>?'$';&$&#@A"A)*3B-. 90C0%A0)'A1'A"A)*DD-. E&F&()*DG-. :#&H'61"$?I#"(0)*+-.

9010J"&$"'()*G-. K"L3)*DD-. :0%1&(@)*DD-. M(C"%'(1)K0;?('#)N(A$)*O-.

P"A"(Q0;$"'()*+-. 6'%20($)*+-. 5I)*D,-. R"FF'()6?00$):#&AA)=')S$J)*O-.

60(A'%)*3- =0%&1";)*O- 6'T$?)I'%0&)*U-. I'A0)=')*3-.

6V"$W0%#&(J)*4-. /"##"F'%0)='%F)*3-.

X0#Y"T1)*B-. R&('A;&#0)/&$)N(;)*3-.

!%&(;0)*B-. R"FF'()N('%Y&()='#'T%)<)=?01)=')*3-.

!"(#&(J)*O-. Z&#"')S$J)*3-.

R0$?0%#&(JA)*O-. [0%'H)='%F)*3-.

6"(Y&F'%0)*O-. 722'$):/X\)<)=')I:)*D-.

\T(Y&%@)*3-. 7#F?&)K?0%&F0T$)='%F)*D-.

N$&#@)*3-. 7/7)!NSKM9)P0T$A;?#&(J):12\)*D-.

9TAA"&)*3-. 71&Q"#$0%)P0T$A;?#&(J):12\)*D-.

7TA$%&#"&)*D-. 7KL!NR7)=?01)N(;)*D-.

=&(&J&)*D-. 7C0($"A)X0?%"(Y):12\)*D-.

=?"(&)*D-. X76!)7:)*D-.

:%00;0)*D-. X'#"J0()/"(0%&#)7X)*D-.

NA%&0#)*D-. X'@#0)M(Y()='%F)*D-.

6F&"()*D- X%"$"A?)RT;#)!T0#A)>#;)*D-

15

Table  A9:  Top  Applications,  Technologies,  Countries  and  Companies  in  2001  

Table  A10:  Top  Applications,  Technologies,  Countries  and  Companies  in  2000  

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*34-. 567)*48-. 9#&:'61"$;<#"(0)*,-.=;'$'>&$&#?@"@)*3+-. A"B3)*4C-. D&E&()*4F-. <"G&)H0@)I)J'(@K#$&(>?)*,-.H010L"&$"'()*4M-. H0N0%@0)'@1'@"@)*44-. 90%1&(?)*4O-. P0QK@@&)79)*3-.60(@'%)*C-. 6'%20($)*,-. 5<)*C-. R#0>$)='G0%)H0@)S(@$)*3-.P0@&#"(&$"'()*3-. J0%&1">)*+-. T0$;0%#&(L@)*O-. <!7)DK#">;)912U)*3-.P"@"(V0>$"'()*3- JTA)*4-. 6G"$W0%#&(L)*O-. T"EE'()6;00$)9#&@@)J')X$L)*3-.

/&Q(0$">)=&%$">#0@)*4-. !%&(>0)*+-. BN0%"Y@@0#)Z&$0%)6KEE#?)J')*3-.[0'#"$0@)*4- S$&#?)*+-. ZH)9%&>0)I)J')J'(()*3-.

HK@@"&)*+-. [X\)\"'E#&@1&)79)*3-.J;"(&)*3-. 71&V"#$0%)P0K$@>;#&(L)912U)*4-.7K@$%&#"&)*4-. 7(&#)\"'10L)A0@$)912U)*4-.\0#Q"K1)*4-. 7EE#)\"'@?@)=R)P0K$@>;#&(L)912U)*4-.\0%1KL&)*4-. 7@&;")9#&@@)J')X$L)*4-.9%00>0)*4-. 7@&;")<&@0")J'%E)*4-.UK(Q&%?)*4-. 7ZR)*4-.S@%&0#)*4-. \&?0%)79)*4-.='#&(L)*4-. \0##>')6=7)*4-.6&KL")7%&2"&)*4-. \0%1KL&)\"'#)6$()H0@)S(>)*4-.6#'N&]"&)*4-. \"'>'1E&$"2#0@)X$L)*4-.6'K$;)<'%0&)*4- \"'N0>$'%)A;0%&E0K$)67)*4-

!"#$%##&'()*'"+, !"#$!-(.+"&"/'-, !"#$01$2"3+*4'-, !"#$01$2"5#)+'-,!"#$%&$"'()*+,-. /012%&(0)*34-. 5&6&()*78-. 9":&);0<)=)>'(<?#$&(@A)*B-.CD'$'@&$&#A<"<)*7E-. ;0F0%<0)'<1'<"<)*7E-. GHI)*7B-. J"66'()HD00$)K#&<<)>')L$M)*+-.N"<"(O0@$"'()*4-. P"Q3)*73-. K0%1&(A)*E-. H&#"(0)R&$0%)>'(F0%<)>'%6)*+-.;010M"&$"'()*,-. H'%20($)*B-. J0$D0%#&(M<)*B-. K#&S'H1"$D9#"(0)*3-.H0(<'%)*,-. /&T(0$"@)C&%$"@#0<)*+-. H:"$U0%#&(M)*B-. QF0%"V<<0#)R&$0%)H?66#A)>')*3-.N0<&#"(&$"'()*B- W0'#"$0<)*3-. G9)*B-. I##"&(@0)CD&%1&@0?$)>'%6)*7-.

>JP)*7-. !%&(@0)*+-. X&M&Y)J&$)K&<)L"Z?0O&@$)>')L$M)*7-.W0%'[\&#0($)]%'()*7- H&?M")I%&2"&)*+-. X"'@'16&$"2#0<)L$M)*7-.

;?<<"&)*3-. X'A#0)^(T()>'%6)*7-.I?<$%&#"&)*7-. >&16)N%0<<0%)=)/@900)*7-.>&(&M&)*7-. >0($)K#&<<)>')L$M)*7-.!"(#&(M)*7-. >')K0()^&?S)*7-.](M'(0<"&)*7-. >%'<O"0#M)K%6)L$M)*7-.]<%&0#)*7-. >HL)L$M)*7-.]$&#A)*7-. >$%)H?"<<0)^#0@$)=)/"@%'$0@D)HI)*7-.J0:)W0&#&(M)*7-. N?C'($)>')](@)*7-.H"(T&6'%0)*7-. ^XI;I)>'%6)*7-.H'?$D)9'%0&)*7-. ^L]CHI)K12_)*7-.PD&"#&(M)*7-. !?V")C"T10($)>')L$M)*7-.GY%&"(0)*7- K0'<A($0@)>'(<?#$&($<)*7-