princeton plasma physics laboratory | pppl theory ......research in low temperature plasma physics...

40
Kinetic Modeling of Non‐Equilibrium Plasmas for Modern Applications Igor Kaganovich for the Project Team Princeton Plasma Physics Laboratory PPPL May 3, 2019

Upload: others

Post on 29-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Kinetic Modeling of Non‐Equilibrium Plasmas for Modern Applications

Igor Kaganovich for the Project TeamPrinceton Plasma Physics Laboratory

PPPLMay 3, 2019

Page 2: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

Negative Hydrogen Ion Sources

GE Plasma Switch 

Thermal electric converter

Secondary Electron Emission

2

Page 3: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

3

Low Temperature Plasma Projects at PPPL

Nano dusty plasma

Experiments and simulations  of synthesis of nanomaterials   in plasmas 

New PFC materials

Page 4: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

PPPL Low Temperature Plasma Research

4

• US DOE Office of Science• Fusion Energy Science• Basic Energy Science

• Lockheed Martin• General Electric• Aerospace Corp.

• Samsung• Colgate• HiFunda (DOE STTR)

• AFOSR• ARPA‐E• Sandia National Laboratory

Page 5: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

Negative Hydrogen Ion Sources

GE Plasma Switch 

Thermal electric converter

Secondary Electron Emission

5

Page 6: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Excitation and propagation of electrostatic solitary waves (ESWs) in 

ion beam neutralizationChaohui Lan1,2 I. D. Kaganovich1

1 Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

2 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, P. R. China.

Page 7: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Simulation modelxy Metal wall or

periodic boundary

Metal wall

Metal wall

80 cm

Metal wall or periodic boundary

Vb

Ion beam pulse

Electron injection 3 cm

• Electrostatic particle‐in‐cell algorithm, self‐magnetic field of ion beam is neglected. • 2D Cartesian coordinates, cell size Δl=0.25 mm, time step Δt=40 psIon beam pulse:• Ar+ ion beam, Eb=38 keV (Vb=37.5 cm/us), nb=1.75×1014 m‐3

• Gaussian‐like, x: flattop 250 ns (~11 cm), edges nbexp(‐t2/tb2), tb=60 ns; y: nbexp(‐y2/wb2), 

wb=2 mmElectron injection:• A line source, located at x=20 cm, 2 mm length in the y direction. • The temperature of injected electrons 0.2 eV.• Injected electron current is 2/3~8/3 of ion beam current 7

Page 8: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Neutralization of ion beam pulse

0 10 20 30 400.00.81.62.40.00.81.62.40.00.81.62.40.00.81.62.40.00.81.62.4

0 10 20 30 40

Parti

cle

dens

ity(1

014m

-3)

x (cm)

t=635 ns

t=707 ns

t=923 ns

t=851 ns

t=779 ns

electron ion

20 30 40 50

20 30 40 50

t=995 ns

x (cm)

t=1283 ns

t=1211 ns

t=1139 ns

t=1067 ns

The appearance of peaks of electron density indicates that electrons are reflected at the edges of ion beam pulseThe zigzag distribution of electron density at initial stage indicates that the two-stream instability is developingA lot of small electron holes are generated, then they coalese and generate a large electron hole, namely ESW

• Except for location where the ESW is, others pars of ion beam pulse are close to near-neutralization. 8

Page 9: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Evolution of electrons in x‐vx phase space

0 10 20 30 40-14-707

14-14-707

14-14-707

14-14-707

14-14-707

140 10 20 30 40

V x/Vb

x (cm)

t=851 ns

t=779 ns

t=707 ns

t=635 ns

t=923 ns

20 30 40 50

20 30 40 50

x (cm)

t=995 ns

t=1067 ns

t=1139 ns

t=1211 ns

t=1283 ns

Electron reflection by ion beam pulse occurs when ion beam pulse gets close to the injection position. The two-stream instability isself-triggered and naturally formed.At initial stage, electron stream generates a big circle in the phase space, then it splits into many small ones.These small holes merge together and generate the ESW.

The resulting ESW is very stable, and rapidly moves inside the ion beam pulse.The ESW periodically rotates in the phase space, just like around a running track

9

Page 10: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

The influence of ion beam profile

0 2 4 6 8 100.65

0.70

0.75

0.80

Neu

traliz

atio

n de

gree

Time (s)

• ESWs can sustain longer time in a long ion beam pulse, and their lifetimes increase rapidly with the increase of the duration of ion beam pulse.• It seems that sharp boundary is conducive to the excitation and maintenance of ESWs.

0 2 4 6 8 10

0

20

40

60

80

100

120

Time (s)

Pote

ntia

l (V)

500 ns (22 cm)

0.63

0.66

0.69

0.72

0.75

Neu

traliz

atio

n de

gree

10

Page 11: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Collision of two solitons

0 10 20 30 40

0

40

80

120

160

3.6 s

4.2 s

4.1 s

4.0 s

3.9 s

3.8 sPote

ntia

l (V)

x (cm)

3.7 s

0 10 20 30 400

40

80

120

1606.8 s

6.6 s

6.4 s

6.2 s

6.0 s

5.8 s

Pote

ntia

l (V)

x (cm)

5.6 s

• Passing through and coalescence both can occur during collision, maybe determined by the relative velocity of two solitons

• The shape and velocity of soliton do not necessarily keep unchanged during collision of two solitons 11

Page 12: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Conclusions• The capture process of electrons can cause the occurrence of the 

two‐stream instability inside the ion beam pulse, and this instability quickly evolves into stable moving nonlinear ESWs. 

• The ESWs with longitudinal size reaching several cms can reflect back and forth between the two ends of the ion beam pulse for many times and last far longer than the duration of the ion beam pulse. 

• The excitation of the ESWs reduces the neutralization degree of ion beam pulse. 

• The dissipation of the ESWs causes heating of neutralizing electrons and their escape from the ion beam, leading to further reduction of neutralization degree. 

• Using a longitudinally extended electron source instead of a thin emitter can effectively minimize the excitation of the ESWs.

Page 13: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

Negative Hydrogen Ion Sources

GE Plasma Switch 

Thermal electric converter

Secondary Electron Emission

13

Page 14: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

14

‐ Azimuthal plasma non‐uniformity are commonly observed in Hall thrusters and many other low temperature magnetized plasma devices used in material processing.

‐ Understanding of these structures is critically important for performance of these devices and applications. 

‐ Recent experiments revealed new scaling properties of these plasma structures with magnetic field and gas pressure which point to practical ways of control and suppression of these structures.

‐ 2‐D and 3‐D Particle‐in‐Cell simulations of these important experimental observations are underway.

2 kW PPPL Hall Thruster

High speed imaging of rotating plasma structures in the thruster

Hall Thruster Research

Page 15: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

15

Plasma set up with a convenient access for optical and probe diagnostics to study electron kinetic, turbulence and structure formation in plasmas relevant to soft‐plasma processing of materials, sputtering magnetrons, plasma thrusters (http://htx.pppl.gov/penning.html).

ExB Penning‐Type Plasma Discharge to Study Low Temperature Magnetized Plasma and Its ApplicationsTeam: Yevgeny Raitses, Valentin Skoutnev, Eduardo Rodrigez, Igor Kaganovich Andrey Smolyakov

Axis

RF-plasma cathode

E

CoilL

CoilR

B

Axis

CoilL

CoilR

E20 cm

40 cm

Page 16: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

8” diameter ExB Penning Discharge Movies  From spoke observation to PIC simulations

• We performed integrated experimental and modelling studies applying time‐resolved diagnostics and kinetic simulations supported by theory.

• Study more accessible E × B discharges (Penning/Magnetron) 

• E x B discharges are broadly used for propulsion• Thruster exhibit coherent fluctuations that affect performance and lifetime

• Relevant to important technologies, e.g., thrusters (Hall/FRC), plasma sputtering (Magnetron), control of EM waves (plasma photonic crystal devices), fusion (Z‐pinch), electrical grid switches.

Movies have different fields of view to the same device

Structures and anomalous transport in ExB plasmas 

ExperimentSimulations

A. Powis, et al., Physics of Plasmas 25, 072110 (2018) 16

Page 17: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

GE Plasma Switch 

Negative Hydrogen Ion Sources

Thermal electric converter

Secondary Electron Emission

17

Liang Xu, GermanyTimothy Sommerrer GE

Page 18: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Developing Plasma Switch for DC to AC Power Conversion

18

• DC transmission lines are more efficient

than AC over distances > 600-800 km.

They can transmit power between non-

synchronized grids and also from

alternative sources wind and solar plants.

• The plasma switch would serve as a

compact, less costly alternative to the

bulky assemblies of semiconductor

switches now installed in power-

conversion systems throughout the grid.

• Today’s power converters are large,

complex, and costly, in part because high

voltages (>300 kV) must be controlled with

large numbers of low voltage devices (<10

kV) connected in series. GE HVDC transmission projects (2017), 35 GW

Page 19: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

High Power Plasma Switch Developed by General Electric, Modeled by PPPL

19

Cold emissive cathode

Operating pressure 0.1÷1 Torr

Plasma density 10¹²÷10¹³ cm‐3

Anode applied voltage ~ 300kV

Discharge gap ~ 1 cm

Paschen curve for helium gas. Kinetic simulation and analytical model vs. experimental data and textbook

Published in PoP and PSST

Page 20: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

Electron Kinetics for Plasma processing Applications

Negative Hydrogen Ion Sources

Thermal electric converter

Secondary Electron Emission

20

Dmytro Sydorenko Alexander KhrabrovXifeng WangTasman PowisShali YangSarvesh Sharma

10 12 14 16 180.1

1

10

100

1000

de

nsity

(1018

m-3)

Te,hot

F CF3 CF2

CF F2 CFgas

Page 21: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

21

Controlling plasma properties by injection of electron beam into the plasma DC-RF Xenon discharge

Simulation of multi-peak electron velocity distribution function

Page 22: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

GE Plasma Switch 

Negative Hydrogen Ion Sources

Thermal electric converter

Secondary Electron Emission

22

Page 23: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

23

The future fusion experiments rely on NBI systems for the heating and current drive of fusion plasmas. The systems are required to produce hydrogen or deuterium beams with particle energies in the MeV range. Volume production sources operated with pure hydrogen have the advantage of cesium-free operation. A simplified model is required to describe the vibrational kinetics and to predict the negative ion production.

Negative Hydrogen Ion Sources

2

2 2

H ( ) + e ( 2 eV) H + HH ( ) + e ( 12 eV) H ( ) + e + h

Page 24: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

KINETICS OF VIBRATIONAL STATES• Electron impact induced processes

• Vibrational‐translational relaxation

• Wall relaxation

1 2 2 21 1

2 2 2

3 2

4 2 2

5 2

6 2

: H ( ) + e H ( ) + e (via resonant H )

: H ( ) + e H ( ) + e + (via , ): H ( ) + e 2H + e

: H ( ) + e H + 2e

: H ( ) + e H + H + 2e

: H ( ) + e H + H

u u

R

R h B CR

R

R

R

7 2 2

8 2 2 2 2

: H ( ) + H H ( 1) + H: H ( ) + H H ( 1) + H

RR

9 2 2: H ( ) + wall H ( ) ( )R

Contribution of the vibrational states of H2(v) to the production of H− ions for various pressure at 50 kW.

F. Gaboriau and J. P. Boeuf, Plasma Sources Sci. Technol. 23, 065032 (2014).

3/10

Page 25: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

25

Analytical solution (S is the excitation source):

Vibrational Distribution of Molecules Colliding with a Wall

2WR, H ( )1

1 + 1

N

kk

k n S S

Page 26: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

26

Benchmarking and Validation of GMNHIS

𝑛 𝑛 𝑛 𝜎 𝜀 , 𝜀

𝑘 𝑛 𝑘 𝑛 𝑛 𝜎 𝜀 , 𝜀 𝑘 𝑛        

Page 27: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

CONCLUSIONS

• We performed modeling of the distribution function of vibrational (VDF) states of 

molecular hydrogen H2(v).

• It was found that main processes determining VDF are:

• the vibrational excitation from ground state to vibrational states H2(v=1‐14) • the relaxation of these vibrational states to ground state• the relaxation of vibrational states in collisions with walls. 

• Based on these results, we derived an analytical equation for the VDF.

• We also show that the non‐Maxwellian electron energy distribution is important to 

take into account, because it yields increase in the production of negative ions at low 

pressure regime.

10/10

Page 28: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

GE Plasma Switch 

Negative Hydrogen Ion Sources

Thermal electric converter

Secondary Electron Emission

28

Page 29: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

OUTLINE

Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons

Rotating spoke in a Penning discharge

GE Plasma Switch 

Negative Hydrogen Ion Sources

Thermal electric converter

Secondary Electron Emission

29

Page 30: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

30

Page 31: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

31

Carbon surface transforms in presence of heat and cesium flux

8

14

3

5

6

72

Page 32: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Secondary Electron Emission (SEE) Effects on Plasma

32

PU Koel’s Lab: conductors PPPL Raitses’ Lab: dielectrics

• LEED/Auger setup

• Pulsed electron gun setup time‐resolved measurements

• First reliable SEE data for Lithium‐rich materials

A. M. Capece, M. I. Patino, Y. Raitses,B. E. Koel, Appl. Phys. Lett. 109 (2016)

Page 33: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

33

Carbon surface transforms in presence of heat and cesium flux into new material that has low work function and intense electron emission, possibly due to formation of CsOmolecules embedded into carbon graphite.

Page 34: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

• Enhanced transport and power losses in plasma thrusters (Hall, FRC etc).

NASA JPL Mesa Antenna Measurement Facility

• Damaging and destroying high power RF device through multipactordischarge.

SEE‐induced electron cloud effect  a possible limitation for particle accelerators.

Large Hadron Colliderat CERN

• Spacecraft charging

34

Deleterious Effects of Secondary Electron Emission

Carbon velvet

Dendrites

Page 35: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

35

• Analytic SEE yield normalized to SEE yield at the flat surface (color bar):

Contributions to the SEE yield emitted by the tops, sides and  the bottom surface (unpublished).

Magenta: Optimal packing density

• Optimum value of velvet parameters corresponding to minimum SEY:

C. Swanson et al., 2016

Optimization of velvet‐like structures to minimize the total secondary electron emission yield

Page 36: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Arc Synthesis of Nanomaterials 

Project research objectives, scope, highlights 

Project accomplishments and major scientific results: 

• Simulations of arc structure and nanoparticle nucleation and growth

• Unique in situ diagnostics of plasma–based synthesis. 

• Atomistic simulations of key processes of nanotube growth

• Nonstationary processes in arcs

Summary 

36

Page 37: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Plasma Science Studies of Nanomaterial Synthesis 

• Goal: Uncover long standing puzzle how nanotube grow for plasma synthesis of carbon and boron nitride nanostructures, by identification of exact conditions when nanotubes grow. 

• Devices:  Plasma arc and DC or RF plasma torches, laser‐ablation.

• Approach: Perform detailed characterization of plasma and nanoparticles parameters using laser diagnostics; develop integrated and validated models comprised of numerical tools capable of simulating nucleation of  nano‐material growth and particle transport and plasma properties.

Images of boron nitride nanotubes and boron catalyst particles.

37

Page 38: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

38

Fig. Predicted final composition at 1 atm. carbon pressure if only 9 first molecules are taken into account. (C1‐9 linear chains). 

Fig. DFTb simulations of carbon vapor condensation at gas temperature T=3000K.  Initial set up of simulations is curtesy of Longtao Han.

Prediction of chemical compositionSimulation of gas temperature and gas velocity in the arc.

From CFD simulations it follows that the temperature along the nanoparticle growth region changes from 3500 K at the beginning to about 2000 K on the distance of length L ≈ 1 cm ‐ the characteristic length of the nanoparticle growth region, width of this region is W≈ 3 mm. Therefore typical time for particle formation is about L/v where gas flow velocity is about 1m/s giving 10ms time scale for particle formation. Note that this is very long time scale as compared to time scale of atomistic processes.

Page 39: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Charging of SWCNTs could help in their growth• Charging of nanoparticles and nanostructures is a plasma effect on nucleation and growth processes 

• DFT and Kinetic Monte‐Carlo simulations of charging effect• Armchair (5,5) SWCNT (Fig. a)• Charging of the CNT causes the higher adsorption energy Ea, increasing the migration distance, (Fig. c)

39

a)

b)c)

DFT results (Fig. b)‐ additional charges  distribute in the covalent bond space between adatom and  CNT, increasing its covalent coupling 

Page 40: Princeton Plasma Physics Laboratory | PPPL Theory ......Research in Low Temperature Plasma Physics at PPPL Neutralization of positive ion beam space‐charge by electrons Rotating

Encapsulation of boron particles• Simulations by Quantum‐Classical Molecular Dynamics with Density Functional  Tight Binding Theory

• Bombardment by BN (left) or N (right) of boron cluster shows encapsulation of boron clusters with BN layers; the effect is observed in experiments by our and other groups

B‐pinkN‐blue

P. Krstic et al., Chem. Sci. 9, 3803 (2018)40