princeton center for theoretical science · mariangela lisanti princeton center for theoretical...

38
A Flow of Dark Matter Debris Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring New Possibilities for Substructure 1107.0717 with P. Fox, J. Kopp, and N. Weiner

Upload: others

Post on 25-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Flow of Dark Matter Debris

Mariangela LisantiPrinceton Center for Theoretical Science

1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel

Exploring New Possibilities for Substructure

1107.0717 with P. Fox, J. Kopp, and N. Weiner

Page 2: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

!CDM

Hierarchical merging of halos into more massive systems

Dark matter halos seeded by collapse of overdensities

Galaxies form at the centers of dark matter halos by cooling and condensation of gas

Dark matterDark matter

Millennium N-body SimulationSpringel et al (2005).

Large-scale structure Small-scale structure

0.25 Mpc

Page 3: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

10 kpc

Die

man

d et

al,

0805

.124

4.

Phase Space Density

A ‘Clumpy’ HaloLocal variation in dark matter densities and velocities

What are the distinctive features in the solar neighborhood?

8.5 kpc

Page 4: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Dark Matter SearchesExperimental signatures depend on local phase space

Astrophysical Detection

Dark matter annihilation

Detect annihilation products

DMDM

SMSM

Flux ∝�

losρ2(r)ds

Direct Detection

Dark matter scatters off nuclei

Measure recoil energy of nuclei

Rate ∝�

vf(v)dv

DM

DM

N

N

Page 5: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Outline

Substructure Overview

Velocity Substructure in Simulations

Experimental Implications

Page 6: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Fully Virialized Not Virialized

Maxwell-Boltzmann

x

y

vx

vy

Page 7: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Density and velocity distribution fundamentally related through gravitational potential

Density and velocity distributions must be self-consistent

ρ(r)

∇2ψ = −4πGρ

ρ(ψ)

ρ(ψ) = 4π

�dv v2f(ψ, v)

f(ψ, v)

Dark Matter Phase Space

Page 8: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Equilibrium phase space configurations depend on conserved quantities

f(�x,�v) = f(E , L2, Lz)

L2 = r2v2t= v2esc − v2r − v2tE

Jeans Theorem

Stable configuration for orbits

For example, an isotropic halo with

σ2r = σ2

t

v (km/s)

v2f(v) f(E) ∝ eE/E0

Page 9: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Proposed a model for the velocity distribution of dark matter

Flat rotation curves imply that density falls off as 1/r2

Isotropy Equilibrium ρ ∼ r−2+ + = Maxwell-Boltzmann

Maxwell-Boltzmann

Page 10: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Maxwell-Boltzmann

x

y

vx

vy

Streams

x

y

vx

vy

Fully Virialized Not Virialized

Page 11: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Streams in Simulations

Kuhlen et al., 0912.2358.

Peaks in velocity distribution correspond to spatially-localized structures

SkymapVelocity Distribution

0 200 400 600 800v [km/s]

0

1

2

3

4

5

f(v)

("10

3 )

f(�v) = δ(�v − �vstream) ρ(�r) = δ(�r − �rstream)

Page 12: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

l

b

20304050607080

300 200 100 0

Field of Streams

sun

galactic center

b

l

Monoceros Stream

Sagittarius Stream Orphan Stream

Abundance of substructure observed in star surveys

Belokurov et al., astro-ph/0605025.

Spatial overdensities indicate presence of stellar streams

Page 13: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

dwarf galaxy sundwarf orbit star

Sagittarius Stream

clump

Ibata et al (1994), Ivezic et al (2000), Yanny et al (2000).

First HintsSDSS Commissioning Run

Evidence that the dwarf galaxy is tidally disrupted

Complete Mapping

Ruhland et al., 1103.4610.

Page 14: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

ProbabilitiesFraction of particles in solar neighborhood with stream density #s

exceeding some fraction of the mean halo density !#"

Vogelsberger and White, 1002.3162.

20% chance that a single stream will contribute 1% of local density

Small odds that a single stream will dominate the local density

Impact on experiments depends on dark matter properties

Page 15: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Maxwell-Boltzmann

x

y

vx

vy

Streams

x

y

vx

vy

Debris Flows

x

y

vx

vy

Fully Virialized Not Virialized

Page 16: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Debris Flows vs. Streams

Both arise from tidal stripping of orbiting subhalos

They dominate in two different time regimes

Shortly after Infall

Dark matter is coherent in spaceSpatial substructure

r � 20 kpc

Long after Infall

Dark matter is spatially well-mixedVelocity substructure

r � 20 kpc

Velocity substructure should be an important feature of the local halo

Page 17: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Debris Flows

Debris flows are not spatially localized, but exhibit distinctive velocities

20% of all particles in local halo

70% of particles with velocities > 550 km/s

Debris flows comprise...

200 300 400 500 600

0.2

0.4

0.6

0.8

1.0

vmin �km�s�

f debris��v min

7.5 < r < 9.5 kpc

Via Lactea-II

A significant component of dark matter in solar neighborhood is in velocity substructure

Page 18: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Outline

Substructure Overview

Velocity Substructure in Simulations

Experimental Implications

Page 19: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

High-resolution simulation of the Milky Way that models N-body gravitational interactions

Only dark matter; no baryons

Via Lactea-II

Evolution of a billion 4.1"103 particles followed from z=104.3 to z=0

M⊙

20047 subhalos identified today and evolutionary tracks available

Diemand et al., 0805.1244; Diemand, Kuhlen, and Madau, 0705.2037.

Page 20: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Locating the Debris

2. Identify particles bound to subhalo at zpast

3. Find those particles today

de⋄bris particles that were bound at some z > 0 and that are no longer bound to subhalos today

1. Locate subhalo ( ) at zpast

General Procedure

Milky Way

z = 0

Milky Way

zpast > 0

Page 21: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Subhalo Orbits

Subhalos with many pericentric passages contribute a lot of tidal debris

Page 22: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Subhalo Orbits

Subhalos with many pericentric passages contribute a lot of tidal debris

Page 23: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

30 < r < 45 kpc

0 100 200 300 400 5000

1

2

3

4

5

6

v �km�s�

f�v��103�km�s

��1

Velocities

MW haloDebris

(including debris)

15 < r < 30 kpc

0 100 200 300 400 5000

1

2

3

4

5

6

v �km�s�

f�v��103�km�s

��15 < r < 15 kpc

0 100 200 300 400 5000

1

2

3

4

5

6

v �km�s�

f�v��103�km�s

��1The dark matter debris has a distinctive velocity structure

Velocities are peaked ~340 km/s within 15 kpc of Galactic center

z = 0

Page 24: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

VelocitiesThis velocity behavior is a simple consequence of energy conservation

Potential derived from best-fit density distribution for Via Lactea-II:

∆v2 = 2∆Φ

ρ(r) =ρs

(r/rs)γ(1 + r/rs)3−γ rs = 28.1 kpc

ρs = 3.5× 10−3 M⊙pc−3

γ = 1.24Diemand and Moore, 0906.4340.

0 100 200 300 400 5000

1

2

3

4

5

6

v �km�s�

f�v��103�km�s

��1

5-15 kpc

15-30 kpc

30-45 kpc

v(r = 10 kpc) ∼ 314 km/s

v(r = 24 kpc) ∼ 267 km/s

v(r = 38 kpc) ∼ 230 km/s

Page 25: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Tangential Velocities Tangential Velocities

0

100

200

300

400

500

-400-2000200400vr(km/s)

-400-2000200400vr(km/s)

-400-2000200400vr(km/s)

0

100

200

300

400

500

0

100

200

300

400

500

vt(km/s)

0

1.0

0.2

0.4

0.6

0.8Normalized Count

5 - 15 kpc 30 - 45 kpc15 - 30 kpc

Tangential Velocities

0

100

200

300

400

500

-400 -200 0 200 400vr (km/s)

-400 -200 0 200 400vr (km/s)

-400 -200 0 200 400vr (km/s)

0

100

200

300

400

500

0

100

200

300

400

500

v t(km/s)

0

1.0

0.2

0.4

0.6

0.8

Norm

alized Count

5 - 15 kpc30 - 45 kpc 15 - 30 kpc

Velocities become more tangential closer to the Galactic center

Results from tidal stripping near pericentric passage of subhalo orbit

0

100

200

300

400

500

-400 -200 0 200 400vr (km/s)

-400 -200 0 200 400vr (km/s)

-400 -200 0 200 400vr (km/s)

0

100

200

300

400

500

0

100

200

300

400

500

v t(km/s)

0

1.0

0.2

0.4

0.6

0.8

Norm

alized Count

5 - 15 kpc30 - 45 kpc 15 - 30 kpcz = 0z = 0 z = 0

Page 26: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Solar Neighborhood

distribution of debrisparticles in 5-15 kpc shell

1$ deviation min/max

Shape of velocity distribution consistent over spherical shell

The debris guaranteed in our local neighborhood

0 100 200 300 400 5000

1

2

3

4

5

6

7

v �km�s�

f�v��103�km�s

��1

MW

Debris

Page 27: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Resolution?

0.1 0.2 0.5 1 5 10104

106

108

1010

1012

z

SubhaloMass(M

⊙) max subhalo mass

subhalos that give most debris

Most massive subhalos contribute to the debris at all redshifts

Can be verified with Aquarius and GHalo

N-body simulations should be fairly consistent on large mass scales

Therefore, debris flow is not sensitive to resolution limit of simulation

Page 28: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Outline

Substructure Overview

Velocity Substructure in Simulations

Experimental Implications

Page 29: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Direct Detection

Page 30: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Average scattering rate depends on dark matter velocity distribution

dR

dER= ndm

�v

dER

average over initial DM velocities

The cross section, $, describes the interaction between the dark matter and the nucleus

N

N

DM

DM

Dark matter couples coherently to all nucleons

σ ∝ A2

Direct Detection

Page 31: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Target

Several different strategies for detecting recoil energy

Ionization

Light

Heat

DM

DM

Ge, Si

CDMS

CaWO4

CRESST

XeXENON100

NaI

DAMA

From: Véronique Sanglard (La Thuille 2005)

Direct Detection

Page 32: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Direct Detection

Recoil energy spectrum

summer

winter

WIMP wind

�v⊙

�vE�vE

v ≤ vesc + |�vE − �v⊙| v ≤ vesc + |�vE + �v⊙|

Modulation Amplitude

R ∝�

f(v)

vdv

Direct detection experiments measure scattering rate and (if possible) modulation amplitude

Recoil Energy

Rat

e winter

summer

Amplitude =1

2(Rmax −Rmin)

Recoil Energy

Am

plitu

de

Page 33: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Fully Virialized Not Virialized

Maxwell-Boltzmann

x

y

vx

vy

Page 34: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Average over all possible DM velocities in the galactic halo

Boltzmann Distribution�

mNER

2µ2

dR

dER∝

� vesc

vmin

d3vdσ

dERv e−v2/v2

0 ∼ e−ER/E0

Recoil Energy (keV)

Rat

eFor standard assumptions,

recoil spectrum is exponential

Signal dominates at low ER

E0 =2µ2v0

m∼ 30 keV

Recoil Spectrum

Page 35: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Fully Virialized Not Virialized

Maxwell-Boltzmann

x

y

vx

vy

Recoil Energy

Rat

e

Streams

vx

vy

x

y

Page 36: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Different velocity distributions lead to different recoil spectra

dR

dER∝

� vesc

vmin

d3vdσ

dERv δ(v − vstream)

Dark matter stream

Recoil Energy (keV)

Rat

e

Dark matter streams lead to a flat recoil spectrum

Diemand et al (2008).40 kpc/side cube from center of Via Lactea II

Recoil Spectrum

Page 37: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

A Spectrum of Possibilities

Fully Virialized Not Virialized

Maxwell-Boltzmann

x

y

vx

vy

Recoil Energy

Rat

e

Streams

vx

vy

x

y

Recoil Energy

Rat

e

Debris Flows

x

y

vx

vy

Recoil Energy

Rat

e

Page 38: Princeton Center for Theoretical Science · Mariangela Lisanti Princeton Center for Theoretical Science 1105.4166 with D. Spergel, follow-up with M. Kuhlen and D. Spergel Exploring

Conclusions

Debris flows offer unique way to search for dark matter:Direct detection and star surveys provide orthogonal detection possibilities

Discovery would tell us a lot about the local halo:Significant fraction is unvirialized and retains distinctive phase-space features

Substructure is a fossil record of the MW’s merging history:“Build-up” the merger history of the halo and test the !CDM picture

Wealth of dark matter structure in the solar neighborhood