primer design & restriction analysis 3 rd december 2014 carrie iwema, phd, mls, ahip information...

111
Primer Design & Restriction Analysis 3 rd December 2014 Carrie Iwema, PhD, MLS, AHIP Information Specialist in Molecular Biology Health Sciences Library System University of Pittsburgh [email protected] http://www.hsls.pitt.edu/molbio

Upload: rudolf-skinner

Post on 21-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Primer Design & Restriction Analysis3rd December 2014

Carrie Iwema, PhD, MLS, AHIPInformation Specialist in Molecular BiologyHealth Sciences Library SystemUniversity of [email protected]

http://www.hsls.pitt.edu/molbio

Goals:

PCR primer construction & analysis

Restriction digestion & mapping

http://www.hsls.pitt.edu/molbio

Tools:

Primer Analysis & Design NetPrimer Primer3Plus Primer-BLAST

Restriction Mapping NEBcutter Webcutter

http://www.hsls.pitt.edu/molbio

Primer Analysis & Design

http://www.hsls.pitt.edu/molbio

A little something to get you in the mood…

Polymerase Chain Reaction (PCR) very simple

exponential amplification similar to natural DNA replication

The primary reagents, used in PCR are:

Template DNA–DNA sequence to amplify DNA nucleotides–building blocks for new DNA Taq polymerase–heat stable enzyme catalyzes new DNA Primers–single-stranded DNA, ~20-50 nucleotides,

complimentary to a short region on either side of template DNA

http://www.hsls.pitt.edu/molbio

1983-Kary Mullis

Polymerase Chain Reaction (PCR)

1. Raise temperature (94-98), denature DNA strands

2. Lower temp (50-65), anneal primers

3. Increase temp (72-80), allow time for extensions

4. Repeat process 25-40X

http://www.hsls.pitt.edu/molbio

Things to consider for primer design…

Primer-Dimer formation

Secondary Structures in Primers

Illegitimate Priming in Template DNA due to repeated sequences

Incompatibility with PCR conditions

SOURCE: NCBI

http://www.hsls.pitt.edu/molbio

Primer-Dimer formation

homology within a primer (self dimer) or between the sense and anti-sense primer (cross dimer)

bonding of the two primers, increasing primer-dimer artifact and reducing product yields

particularly problematic when the homology occurs at the 3' end of either primer

SOURCE: NCBI

http://www.hsls.pitt.edu/molbio

Self Dimer (example)

The primer sequence is ATCAGCTGTAGAT It forms 2 dimers:

internal dimer where 3rd-8th bases of primer in 5‘3' (starting from 5') bond with 6th-11th bases (starting from 3') when primer is placed in reverse direction

3' end dimer where the last 3 bases (starting from 5') of primer placed in 5‘3' direction bond with last three base (starting from 3') placed in reverse direction.

3’ end dimer

internal dimer

SOURCE: NCBI

http://www.hsls.pitt.edu/molbio

Cross Dimer (example)

Sense primer sequence is ATCAGCTGTAGAT Anti-sense primer sequence is ATAGTGTAGAT Forms one cross dimer at the 3' end

3’ cross dimer

SOURCE: NCBI

http://www.hsls.pitt.edu/molbio

Secondary Structure in Primers Hairpin loop

formed when primer folds back upon itself held in place by intramolecular bonding can occur with as few as 3 consecutive homologous bases stability measured by the free energy

The free energy of the loop is based upon the energy of the intramolecular bond and the energy needed to twist the DNA to form the loop.

If free energy >0, the loop is too unstable to interfere with the reaction

If free energy <0, the loop could reduce the efficiency of amplification

http://www.hsls.pitt.edu/molbio

Hairpin Loop (example)

The primer sequence is ATCGATATTCGAAGAT It forms two hairpins:

3' end hairpin where the primer folds back upon itself and first and last 3 bases bond together

internal hairpin where 2nd-5th and 9th-12th bases bond together

3’ end hairpin

internal hairpin

SOURCE: NCBI

http://www.hsls.pitt.edu/molbio

Basic Primer Analysis & Design Software

NetPrimer http://www.premierbiosoft.com/netprimer/

Primer3Plus http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi

Primer-BLAST http://www.ncbi.nlm.nih.gov/tools/primer-blast/

http://www.hsls.pitt.edu/molbio

NetPrimer http://www.premierbiosoft.com/netprimer/ From PREMIER Biosoft Free Major features:

Primer properties: Tm , molecular weight, GC%, optical activity (both in nmol/A260 & µg/A260), DG, 3' end stability, DH, DS, and 5' end DG

Secondary structures: Hairpins, dimers, cross dimers, palindromes, repeats and runs

Primer rating: Quantitative prediction of the efficiency of a primer

Comprehensive report: Prints complete primer analysis for an individual primer or primer pair

Primer pairs: Analyze individual primers or primer pairs Comprehensive help: Details all the formulas and

references used in primer analysis algorithm

http://www.hsls.pitt.edu/molbio

NetPrimer

Enter sequence here

http://www.hsls.pitt.edu/molbio

NetPrimer—sense primer

http://www.hsls.pitt.edu/molbio

NetPrimer—help

http://www.hsls.pitt.edu/molbio

NetPrimer—theories & formulas

http://www.hsls.pitt.edu/molbio

NetPrimer—antisense primer

http://www.hsls.pitt.edu/molbio

NetPrimer—antisense hairpin

The most negative (i.e., most stable) DG is used for

calculating the rating.

http://www.hsls.pitt.edu/molbio

NetPrimer—antisense dimer

http://www.hsls.pitt.edu/molbio

NetPrimer—cross dimer

http://www.hsls.pitt.edu/molbio

NetPrimer—3’ & 5’ stabilityAn ideal primer has a stable 5'

end and an unstable 3' end.

Unstable 3’ = limits bonding to false priming sites. The lower this value, numerically, the more liable the primer is to show secondary bands. less negative = less false priming.

Stable 5’ = called the GC Clamp, it increases bonding to the target site. The lower this value, numerically, the more efficient is the primer. more negative = better bonding.

http://www.hsls.pitt.edu/molbio

NetPrimer—rating

The rating of a primer provides a quick way of measuring the predicted efficiency of a primer as well as choosing between closely matched primers. The higher the rating of a primer, the higher its amplification efficiency.

http://www.hsls.pitt.edu/molbio

NetPrimer—DG DG = DH – T * DS = free energy of the primer

DH = enthalpy (internal energy) of primer T = temperature DS = entropy (unavailable energy) of primer

Example: primer sequence = ATTCGCGGATTAGCCGATDG = -154500 cal/mol – (298.15 * -403 cal/°K/mol) = -34.35 kcal/mol

Rating = 100 + [(DG dimer * 1.8) + (DG hairpin * 1.4)]

Example: 100 + [(-10.36 kcal/mol * 1.8) + (-3.28 * 1.4)]

100 + [-18.648 + -4.592]100 + -23.2476.76

The higher the rating, the better!

http://www.hsls.pitt.edu/molbio

NetPrimer—practice primers

1. atgtgcgaggagaaagtgct

2. acaaaccctggacttgcatc

3. cgacttgtcccaggtgtttt

4. ctgaaaccattggcacacac

5. ggctgtgaacatggacattg

6. ggctgaagccaaagctacac

http://www.hsls.pitt.edu/molbio

Rank these primers with attention to rating, 5’ end DG, and 3’ end stability

NetPrimer

Ideal for checking primers

To create primers, try Primer3Plus

http://www.hsls.pitt.edu/molbio

Primer3Plus

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi

Select primer pairs to detect a given template sequence

Targets and included/excluded regions can be specified

Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Human Press, Totowa, NJ, pp 365-386

http://www.hsls.pitt.edu/molbio

Primer3Plus

http://www.hsls.pitt.edu/molbio

Primer3Plus

Design PCR primers to amplify sub region of the sequence

(600bp-2600bp) with product size 1800bp-2000bp.

http://www.hsls.pitt.edu/molbio

Primer3Plus—getting started

click here to retrieve sample sequence, then copy/paste into

box

http://www.hsls.pitt.edu/molbio

Primer3PlusDesign PCR primers to amplify sub region of the sequence (600bp-2600bp) with product

size 1800bp-2000bp.

http://www.hsls.pitt.edu/molbio

Primer3PlusDesign PCR primers to amplify sub region of the sequence (600bp-2600bp) with product

size 1800bp-2000bp.

http://www.hsls.pitt.edu/molbio

Primer3Plus—results

http://www.hsls.pitt.edu/molbio

Primer3Plus—results

http://www.hsls.pitt.edu/molbio

Primer3Plus—results

http://www.hsls.pitt.edu/molbio

Primer3Plus—Primer3Manager

http://www.hsls.pitt.edu/molbio

Primer3Plus—check primers

http://www.hsls.pitt.edu/molbio

Primer3Plus—check primers

http://www.hsls.pitt.edu/molbio

Primer3Plus—primer info

http://www.hsls.pitt.edu/molbio

Primer3Plus—BLAST primers

http://www.hsls.pitt.edu/molbio

Primer3Plus—BLAST primers

http://www.hsls.pitt.edu/molbio

Primer3Plus—check w/NetPrimer

How good are these primers? Analyze with

NetPrimer!

http://www.hsls.pitt.edu/molbio

Primer3Plus—NetPrimer sense

Left (F) primer

http://www.hsls.pitt.edu/molbio

Primer3Plus—NetPrimer sense

http://www.hsls.pitt.edu/molbio

Primer3Plus—NetPrimer antisense

Right (R) primer

http://www.hsls.pitt.edu/molbio

Primer3Plus—NetPrimer antisense

http://www.hsls.pitt.edu/molbio

Primer-BLAST

http://www.ncbi.nlm.nih.gov/tools/primer-blast/

Combines primer design (Primer3) and a specificity check

(BLAST)

Can also be used w/pre-designed primers

ref: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412702/

http://www.hsls.pitt.edu/molbio

Primer Design Tips

RT-PCR (to avoid unwanted amplification of genomic DNA) Primer pair should span an intron

Or One of the primers should be at exon-exon junction

SNP issues May cause mismatch, so pick primers outside of this region

qPCR Specificity of amplification (amount of PCR product = fluor intensity)

http://www.hsls.pitt.edu/molbio

Primer-BLAST

http://www.hsls.pitt.edu/molbio

click here to retrieve sample sequence,

then copy/paste into box

Primer-BLAST results

http://www.hsls.pitt.edu/molbio

Finding Primer Resources…

search.HSLS.MolBio

http://www.hsls.pitt.edu/molbio

Restriction Mapping

http://www.hsls.pitt.edu/molbio

www.biologyreference.com

Restriction Mapping—for your sequence

Determine the # of restriction sites Determine the nucleotide position of each cut List the enzymes that do not cut List the enzymes that cut only once Graphical representation of the restriction sites Textual representation of the restriction sites

http://www.hsls.pitt.edu/molbio

Restriction Mapping Tools

NEBcutter http://tools.neb.com/NEBcutter2/index.php

Webcutter http://bio.biomedicine.gu.se/cutter2/

http://www.hsls.pitt.edu/molbio

NEBcutter V2.0 From New England BioLabs Free Major features:

Takes a DNA sequence and finds the large, non-overlapping open reading frames using the E. coli genetic code and the sites for all Type II and commercially available Type III restriction enzymes that cut the sequence just once.

By default, only enzymes from NEB are used, but other sets may be chosen.

Further options appear in the output. Maximum size of input file = 1 MB; maximum sequence

length = 300 KB.

http://www.hsls.pitt.edu/molbio

NEBcutter

http://www.hsls.pitt.edu/molbio

NEBcutter—program guide

http://www.hsls.pitt.edu/molbio

NEBcutter

http://www.hsls.pitt.edu/molbio

NEBcutter—help

http://www.hsls.pitt.edu/molbio

NEBcutter—getting started

click here to retrieve sample sequence, then copy/paste into

box

http://www.hsls.pitt.edu/molbio

NEBcutter—restriction map

http://www.hsls.pitt.edu/molbio

NEBcutter—cutters

http://www.hsls.pitt.edu/molbio

NEBcutter—zoom in

http://www.hsls.pitt.edu/molbio

NEBcutter—zoom in more

http://www.hsls.pitt.edu/molbio

NEBcutter—zoom in more

http://www.hsls.pitt.edu/molbio

NEBcutter—custom digestion

Get digestion map with SmlI and XbaI

http://www.hsls.pitt.edu/molbio

NEBcutter—select enzymes

http://www.hsls.pitt.edu/molbio

NEBcutter—custom digestion map

View gel

http://www.hsls.pitt.edu/molbio

NEBcutter—agarose gel view

http://www.hsls.pitt.edu/molbio

NEBcutter—ORF sequence

Find restriction enzymes that will excise the

selected portion of the sequence.

http://www.hsls.pitt.edu/molbio

NEBcutter—ORF sequence

http://www.hsls.pitt.edu/molbio

NEBcutter—flanking sites

http://www.hsls.pitt.edu/molbio

NEBcutter—ORF sequence

http://www.hsls.pitt.edu/molbio

NEBcutter—silent mutagenesis

http://www.hsls.pitt.edu/molbio

NEBcutter—excise a user-defined sequence

http://www.hsls.pitt.edu/molbio

NEBcutter—excise a user-defined sequence

http://www.hsls.pitt.edu/molbio

NEBcutter—enzyme information

http://www.hsls.pitt.edu/molbio

NEBcutter—enzyme information

http://www.hsls.pitt.edu/molbio

NEBcutter—REBASE enzyme page

http://www.hsls.pitt.edu/molbio

REBASE—the restriction enzyme database

http://www.hsls.pitt.edu/molbio

NEBcutter—enzyme information

http://www.hsls.pitt.edu/molbio

NEBcutter—methylation sensitivity

http://www.hsls.pitt.edu/molbio

NEBcutter—generate a vector map

http://www.hsls.pitt.edu/molbio

NEBcutter—generate a vector map

http://www.hsls.pitt.edu/molbio

NEBcutter—generate a vector map

http://www.hsls.pitt.edu/molbio

Sample DNA SequenceTGCAGTTTCTATGCAGTTGGTAAAAAGATGCAAAGGAGATGGGAAGGTTGGGAAGGTAAGCCCCACCTCT

GAGAACAGAGGCTGGGGTCCAGGCCTGTGGGTGCAAAGGTGCCTCAGCATAGCCAGCATCAGCACACGCAAACCCACTGCCCAAATTTGGGCTCAGGGTTGGCCATTTGCTAGTTCTGCTGCCCTCTTAAGATCTGACTGCCAAATAAATCATCCTCATGTCCATTGGCGGATCCTGACTACACGCTGTCTTTCTGGCGGAATGGGAAAGTCCAGCACTGCCGCATCCACTCCCGGCAGGATGCTGGGACTCCTAAGTTCTTCTTGACAGATAACCTTGTCTTTGACTCTCTCTATGACCTCATCACACATTATCAGCAAGTACCCCTGCGCTGCAATGAGTTTGAGATGCGCCTTTCAGAGCCTGTTCCACAGACGAATGCCCATGAGAGCAAAGAGTGGTACCACGCAAGCCTGACTAGAGCTCAGGCTGAACATATGCTGATGCGAGTGCCCCGGGATGGGGCCTTCCTGGTGCGGAAACGCAATGAGCCTAACTCATATGCCATCTCTTTCCGGGCTGAGGGAAAGATCAAGCACTGCCGAGTACAGCAGGAAGGCCAGACAGTGATGCTGGGGAACTCTGAGTTTGACAGCCTGGTTGACCTCATCAGCTACTATGAGAAGCACCCCCTGTACCGCAAAATGAAGCTACGCTACCCCATCAACGAGGAGGCACTGGAGAAGATCGGGACAGCTGAACCCGATTATGGGGCACTATACGAGGGCCGCAACCCTGGTTTCTATGTGGAGGCAAACCCTATGCCAACTTTCAAGTGTGCAGTAAAAGCCCTCTTCGACTACAAGGCCCAGAGAGAGGATGAGCTGACCTTCACCAAGAGTGCCATCATCCAGAATGTGGAAAAGCAAGATGGTGGCTGGTGGCGAGGGGACTATGGTGGGAAGAAGCAGCTGTGGTTCCCCTCAAACTATGTGGAAGAGATGATCAATCCAGCAGTCCTAGAGCCTGAGAGGGAGCACCTGGATGAGAACAGCCCACTGGGGGACTTGCTGCGAGGGGTCTTAGATGTGCCAGCTTGTCAGATCGCCATCCGTCCTGAGGGCAAAAACAACCGGCTCTTCGTCTTCTCCATCAGCATGCCATCAGTGGCTCAGTGGTCCCTGGATGTTGCAGCTGACTCACAGGAGGAGTTACAGGACTGGGTGAAAAAGATCCGTGAAGTTGCCCAGACTGCAGATGCCAGGCTCACTGAGGGAAAGATGATGGAGAGGAGGAAGAAGATCGCCTTGGAGCTCTCCGAGCTTGTGGTCTACTGCCGGCCCGTTCCCTTTGATGAAGAGAAGATTGGCACAGAACGTGCTTGTTACCGGGACATGTCCTCCTTTCCGGAAACCAAGGCTGAGAAGTATGTGAACAAGGCCAAAGGCAAGAAGTTCCTCCAGTACAACCGGCTGCAGCTCTCGCGCATCTACCCTAAGGGCCAGAGGCTAGACTCCTCCAATTATGACCCTCTGCCCATGTGGATCTGCGGTAGCCAGCTTGTAGCACTCAATTTCCAGACCCCAGACAAGCCTATGCAGATGAACCAGGCCCTCTTCATGGCTGGTGGGCATTGTGGCTATGTGCTGCAGCCAAGCACCATGAGAGACGAAGCCTTTGACCCCTTTGATAAGAGCAGTCTCCGAGGTCTGGAACCCTGTGTCATTTGCATTGAGGTGCTGGGGGCCAGGCATCTGCCGAAGAATGGCCGGGGTATTGTGTGTCCTTTTGTGGAGATTGAGGTGGCTGGGGCTGAGTACGACAGCACCAAGCAAAAGACGGAGTTTGTAGTGGACAACGGACTGAACCCTGTGTGGCCTGCTAAGCCCTTCCACTTCCAGATCAGTAACCCAGAGTTTGCCTTTCTGCGCTTTGTGGTGTATGAGGAAGACATGTTTAGTGACCAGAACTTCTTGGCTCAGGCTACTTTCCCAGTAAAAGGCCTGAAGACAGGATATAGAGCAGTGCCTTTGAAGAACAACTACAGTGAAGACCTGGAGTTGGCCTCCCTGCTCATCAAGATTGACATTTTCCCTGCTAAGGAGAACGGTGACCTCAGTCCTTTCAGTGGCATATCCCTAAGGGAACGGGCCTCAGATGCCTCCAGCCAGCTGTTCCATGTCCGGGCCCGGGAAGGGTCCTTTGAAGCCAGATACCAGCAGCCATTTGAAGATTTCCGCATCTCGCAGGAGCATCTAGCAGACCATTTTGACAGTCGGGAACGAAGGGCCCCAAGAAGGACTCGGGTCAATGGAGACAACCGCCTCTAGTCAGACCCCACCTAGTTGGAGAGCAGCAGGTGCTGTCCACCTGTGGAATGCCATGAACTGGGTTCTCTGGGAGCTGTCTACTGTAAAGCCTTCTTGGTCTCACAGCCTGGAGCCTGGATTCCAGCAGTGAAGGCTAGACAAAACCAAGCCATTAATGATATGTATTGTTTTGGGCCTCCCTGCCCAGCTCTGGGTGAAGGCAAAAAACTGTACTGTGTCTCGAATTAAGCACACACATCTGGCCCTGAATGTGGAGGTGGGTCCTTCCATCTTGGGCCAGGAGTAGGGCTGAAGCCCCTTGGAAAGAGAAGTTGCCTCAGTTGGTGGCATAGGAGGTCTCAAGGAGCTGCTGACACATTCCTGAAAGAGGAGAAGGAGAAGGAGGAGGAGCCTTGGTGGGCCAGGGAAACAAAGTTTACATTGTCCTGTAGCTTTAAAACCACAGGGTGAAAGAGTAAATGCCCTGCAGTTTGGCCCTGGAGCCAGGACAGAGGAATGCAGGGCCTATAATGAGAAGGCTCTGCTCTGCCCATGGAGGAAGACACAGCACAAGGGCACATTGCCCATGGCTGGGTACACTACCCAGCCTGAAAGATACAGGGGATCATGATAAAAATAGCAGTATTAATTTTTTTTTCTTCTCAGTGGTATTGTAACTAAGTTATTCTGTCCTGCTCCTCACCTTGGAAGGGAAGACCCAGCACAGAGCCTTTGGGAACAGCAGCTCTATGGGGTGTTGTACTGGGAGAGGGCACTGTCAAGAAGGGTGGAGGGGCAGGAAGAGAGAAGAGCAATGTCTACCCTGGTGAGCTTTTTTGTTTTTATGACAAAGACGACTCGATATGCTTCCCCTTAGGAATGGAGATATAGGTAAGTGGAGTCAGGCAGTAGGTACCAAATTAAGCTGCTGCTTGGTGCAGTTTCTATGCAGTTGGTAAAAAGATGCAAAGGAGATGGGAAGGTTGGGAAGGTAAGCCCCACCTCTGAGAACAGAGGCTGGGGTCCAGGCCTGTGGGTGCAAAGGTGCCTCAGCATAGCCAGCATCAGCACACGCAAACCCACTGCCCAAATTTGGGCTCAGGGTTGGCCATTTGCTAGTTCTGCTGCCCTCTTAAGATCTGACTGCCAAATAAATCATCCTCATGTCC

You have cloned this mouse sequence:

Answer the questions on the following page

using NEBcutter.

http://www.hsls.pitt.edu/molbio

Sample Exercises1. What is the %GC content of this Sequence?

2. How many restriction enzymes cut this sequence only once?

3. If you cut the sequence with Kpn I and Hinc II, how many DNA fragments will be generated?

4. How many open reading frames (ORF) are present?

5. Find the restriction enzymes with compatible ends that can be used to excise the largest ORF.

http://www.hsls.pitt.edu/molbio

Sample Exercises Hints (NEBcutter)1. What is the %GC content of this Sequence?

See top left of page (after entering sequence info)2. How many restriction enzymes cut this sequence

only once? Select for single cutters

3. If you cut the sequence with Kpn I and Hinc II, how many DNA fragments will be generated? Select Custom digest, then View gel

4. How many open reading frames (ORF) are present? Select ORF summary

5. Find the restriction enzymes with compatible ends that can be used to excise the largest ORF. Select the ORF, then locate multiple cutters, cut positions

http://www.hsls.pitt.edu/molbio

Webcutter 2.0 http://bio.biomedicine.gu.se/cutter2/ Free Major features:

Rainbow cutters Highlight your favorite enzymes in color or boldface for easy at-a-glance identification

Silent cutters Find sites which may be introduced by silent mutagenesis of your coding sequence

Sequence uploads Input sequences directly into Webcutter from a file on your hard drive without needing to cut-and-paste

Degenerate sequences Analyze restriction maps of sequences containing ambiguous nucleotides like N, Y, and R.

Circular sequences Choose whether to treat your sequence as linear or circular

Enzyme info Click into the wealth of references and ordering information at New England BioLabs' REBASE, directly from your restriction map results

http://www.hsls.pitt.edu/molbio

Webcutter

find alternate versions of the DNA which will

translate into the same amino acid sequence,

but contains a new restriction site

http://www.hsls.pitt.edu/molbio

Webcutter

Mutate CCGGGT to CCCGGG to introduce Sma I cutting site without changing

translationhttp://www.hsls.pitt.edu/molbio

Webcutter—silent mutagenesis

click here to retrieve sample sequence, then copy/paste into

box

http://www.hsls.pitt.edu/molbio

Webcutter—results

http://www.hsls.pitt.edu/molbio

Webcutter—specific restriction enzymes

http://www.hsls.pitt.edu/molbio

Thank you!Any questions?

Carrie Iwema Ansuman [email protected] [email protected] 412-383-6887 412-648-1297

http://www.hsls.pitt.edu/molbio

Sequence Manipulation

http://www.hsls.pitt.edu/molbio

www.vam.ac.uk/images/image/44010-large.jpg

Sequence Manipulation Tools

READSEQ http://www-bimas.cit.nih.gov/molbio/readseq/

Sequence Manipulation Suite http://www.bioinformatics.org/sms2/

http://www.hsls.pitt.edu/molbio

READSEQ

Format your sequence any way you want

http://www.hsls.pitt.edu/molbio

READSEQ—change formats

click here to retrieve sample sequence, then copy/paste into

box

http://www.hsls.pitt.edu/molbio

READSEQ—FASTAGenBank

FASTA GenBank

http://www.hsls.pitt.edu/molbio

Sequence Manipulation Suite

http://www.hsls.pitt.edu/molbio

SMS—filter DNA removes non-DNA characters from

text

http://www.hsls.pitt.edu/molbio

SMS—reverse complementconverts DNA to its reverse

and/or complement counterpart

http://www.hsls.pitt.edu/molbio

SMS—group DNA adjusts the spacing of DNA sequences and

adds numbering

http://www.hsls.pitt.edu/molbio

SMS—primer mapcreates a map of the annealing

positions of PCR primers

http://www.hsls.pitt.edu/molbio

SMS—DNA pattern findlocates regions that match a sequence of

interest

http://www.hsls.pitt.edu/molbio

SMS—DNA stats finds # of occurrences of each

residue

http://www.hsls.pitt.edu/molbio

SMS—translate converts DNA sequence into

protein

http://www.hsls.pitt.edu/molbio