prevision; p( )€¦ · lower & upper variance notation envelopes and a set µ (pf −µ)2 +vpf...

30

Upload: others

Post on 19-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance notation envelopes and a set

µ

(Pf − µ)2

+ VP f = P(f − µ)2

0VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 2: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance

notation

envelopes and a set

µ

(Pf − µ)2

+ VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 3: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

variance notation

envelopes and a set

µ

(Pf − µ)2 + VP f

= P(f − µ)2

0

VP f

:= minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 4: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

variance

notation envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 5: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance notation envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 6: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance

notation

envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 7: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance notation

envelopes

and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 8: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance notation

envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{minµ∈R

P(f − µ)2∣∣∣ P ∈MP

}

V P f := minµ∈R

P(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 9: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance notation

envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 10: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper variance

notation envelopes and a set

µ

(Pf − µ)2 + VP f = P(f − µ)2

0

VP f := minµ∈R

P(f − µ)2

Pf

a real variable

the prevision of fP: a prevision (expectation operator)f : a gamble (bounded real function)

the variance P(f −µ+µ−Pf )2

of f under P

the variance of f under Pas an optimization problem

(f − µ)2: a gamble for every µ

Pf Pf

the lower prevision of fP: a lower prevision

the upper prevision of fP: the conjugate upperprevision; Pf = −P(−f )

the credal setMPhas 3 extreme points

P(f − µ)2 = minP∈MP

P(f − µ)2

P(f − µ)2 = maxP∈MP

P(f − µ)2

{VP f

∣∣∣ P ∈MP}V P f := min

µ∈RP(f − µ)2

the lower and uppervariance of f under P

as optimization problems

V P f := minµ∈R

P(f − µ)2

Walley’s variance envelope theorem:

V P f = minP∈MP

VP f and V P f = maxP∈MP

VP f .

Page 11: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance

Erik Quaeghebeur

SMPS 2008

Page 12: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν)

+ CP{f , g}

0CP{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 13: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance

notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν)

+ CP{f , g}

0

CP{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variable

the covariance P((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 14: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

covariance notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variable

the covariance P((f − Pf ) · (g − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 15: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

covariance

notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variable

the covariance P((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 16: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

covariance

notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)α = µ+ν

2

β = µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 17: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper

covariance

notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 18: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 19: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 20: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)P

(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 21: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes

and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 22: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes

and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 23: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 24: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 25: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 26: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance notation

envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}= maxP∈MP CP{f , g}

Page 27: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance

notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}

= maxP∈MP CP{f , g}

Page 28: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Lower & upper covariance

notation envelopes and a set

µ

ν

Pf

Pg

(Pf − µ) · (Pg − ν) + CP{f , g}

0

CP{f , g}

:= minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

prevision of the gamble g

a real variablethe covariance P

((f − µ+ µ− Pf ) · (g − ν + ν − Pg)

)of f and g under P

= P((f − µ) · (g − ν)

)

α

= µ+ν2

β

= µ−ν2

P f +g2

P f−g2

the covariance of f and g under Pas an optimization problem( f +g

2 − α)2 − ( f−g2 − β)2:

a gamble for every α and β

= VPf +g

2 −VPf−g

2

1 3.7

4 1.2

the credal setMPhas 4 extreme points

Pf

Pg

Pf

Pg

P f +g2

P f−g2

P f +g2

P f−g2

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= minP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

P(( f +g

2 − α)2 − ( f−g2 − β)2)

= maxP∈MP

P(( f +g

2 −α)2−( f−g2 −β)2)

{minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2) ∣∣∣ P ∈MP

}

{CP{f , g}

∣∣∣ P ∈MP}

C P{f , g} := minα∈R

maxβ∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the lower covariance of f and g under P

?

C P{f , g} := maxβ∈R

minα∈R

P(( f +g

2 − α)2 − ( f−g2 − β)2)

the upper covariance of f and g under P

?

the covariance envelope theorem

= minP∈MP CP{f , g}

= maxP∈MP CP{f , g}

Page 29: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Conclusion

We have found a definition of lower and upper covariance under coherentlower previsions that

I is direct, in the sense that it does not make useof the credal set of the lower prevision;

I and satisfies a covariance envelope theorem.Moreover, it generalizes – as it should – the existing optimization problemdefinitions for covariance and (lower and upper) variance

Page 30: prevision; P( )€¦ · Lower & upper variance notation envelopes and a set µ (Pf −µ)2 +VPf = P(f −µ)2 0 V Pf:=min µ∈ R P(f −µ)2 Pf arealvariable theprevisionoff P: aprevision

Open questions

I Can this idea be extended to other, higher order central moments?In other words, can a definition be found for lower and upper versionsof these moments under a coherent lower prevision that

I is direct, in the sense that it does not make useof the credal set of the lower prevision;

I and satisfies a higher order central moment envelope theorem?I What is the (behavioral) meaning of an upper and lower covariance

or, for that matter, lower and upper variance?