preview slides for introduction to protein formulation and ...gate250.com/op/2014/chts 2014/intro...

12
Preview Slides for Introduction to Protein Formulation and Delivery PepTalk 2014, Palm Springs CA Tim Kelly, Ph.D. VP, Biopharmaceutical Development KBI Biopharma, Inc Durham, NC Pooja Arora, Ph.D. Senior Manufacturing Technical Specialist Genentech, A Member of the Roche Group South San Francisco, CA

Upload: others

Post on 21-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Preview Slides for Introduction to Protein Formulation and Delivery

PepTalk 2014, Palm Springs CA

Tim Kelly, Ph.D. VP, Biopharmaceutical Development KBI Biopharma, Inc Durham, NC

Pooja Arora, Ph.D. Senior Manufacturing Technical Specialist Genentech, A Member of the Roche Group South San Francisco, CA

Page 2: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Protein Folding: The Denatured State • Refers to the mostly unfolded state

• Usually D lacks any ordered structural elements, and is the higher-energy state under physiological conditions

• Some D states have been experimentally shown to contain local, ordered structures

• D is stabilized by the high degree of conformational entropy due to the flexibility for attaining several conformations

• D is also stabilized by several H-bonds between the polypeptide groups and the solvent (H2O) molecules

http://albumen.stanford.edu/library/c20/messier1991a.html

Page 3: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Protein Folding: The Native State • Final product in a protein folding pathway

• N brings amino acids, which are distant in the primary sequence, in spatial proximity

• The 3d structure of N is a delicate balance of several counteracting forces

• Reduced entropy: limited number of conformations available to N

• Favorable interactions: non-covalent and covalent

• The structure is determined by the collective influence of many individually weak interactions

• The goal of preformulation development studies is to identify conditions that maximize the stability of N relative to D under both stressed and non-stressed conditions

http://www.bmb.psu.edu/faculty/tan/lab/gallery_proteins.html

Page 4: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Protein Aggregation • Generally caused by heat denaturation or agitation

• Agitation stress is related to increased interaction of protein with interfaces

• Proteins tend to denature and aggregate at interfaces • Air / Liquid • Liquid / Liquid • Liquid / Solid (including ice)

• Due to mixture of polar and non-polar side chains, proteins tend to concentrate at interfaces

• Aggregation generally increases with protein concentration

• Increase the interactions between protein molecules, cause hydrophobic regions to interact

Page 5: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Comparison of DSC and CD for Thermal Analysis

40 50 60 70

0

50

100

150

Data: m072606003dsc_cpModel: MN2StateChi 2/DoF = 6.379E6Tm1 55.37 ±0.015∆H1 4.868E5 ±7.21E3∆Hv1 2.686E5 3.17E3Tm2 59.83 ±0.13∆H2 1.350E5 ±8.19E3∆Hv2 1.733E5 1.27E4 m072606003dsc_cp

M072606003DSC_CPFIT M072606003DSC_CPPEAK1 M072606003DSC_CPPEAK2

Cp (k

cal/m

ole/

o C)

Temperature (oC)

-1

4

0123

CD[mdeg]

370

400

380

390

30 8040 50 60 70

HT[V]

Temperature [C]

Tm = 55°C Onset of unfolding = 49°C

Tm1 = 55°C Onset of unfolding = 47°C Tm2 = 60°C

Enzyme B

Page 6: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Buffer Selection Considerations • Freeze / thaw and Lyophilization Concerns

• Changes in pH can occur as a result of buffer salt crystallization and precipitation during freezing

• Inorganic salts – freezing point of mono-ionized salt can be different than that the non-ionized free acid or base

• Phosphate buffer (mono- and dibasic Na Phosphate) • Dibasic form can precipitate during freezing, resulting in

dramatic pH shifts in the liquid medium containing the protein • Can cause protein denaturation • Problem for lyophilzation and for freeze / thaw of bulk • Replace Na cation with K cation in phosphate buffers can

reduce this effect

Page 7: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Routes of Administration • Subcutaneous (SC)

• More convenient for frequent / chronic administration • Can be self-administered outside medical facility • Couple with delivery devices such as pre-filled syringes and

autoinjectors • Significant marketing advantages • Requires small volumes (<1.5mL) • Many proteins, such as antibodies, require high doses

(>1mg/kg or >100mg/dose) • Coupled with small volume requirement, SC often requires

very high protein concentrations (50-250mg/mL)

Page 8: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Design of Experiement (DOE) 2-Level Factorial Design • Allows evaluation of main effects and interaction effects • 3 factor 2-level factorial design

• Main effects: A, B, C • Interactions: AB, AC, BC, ABC • Total of 7 effects, the most you can estimate from an 8 run factorial

design » One degree of freedom is required to estimate the overall mean

• 3 factor interactions (ABC) are rare • Interactions between >3 factors are not only extremely rare, but

are almost by definition not significant effects, and should be disregarded statistically

• Designs which include evaluation of such interactions should be regarded as inefficient

Page 9: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Effect of Buffer Type on MAb Stability

• DOE Summary • Two fractional factorial designs • Selected to span a wide range of

pH conditions • MAb concentrated to >200

mg/mL; 40oC for 4 weeks • Full panel of analytics performed:

• SEC showed effect of buffer/pH on HMW species

• Phosphate buffer: HMW increases with increasing pH

• Histidine buffer: HMW stable from pH 6 - 7

Design-Expert® Softw are

HMW species

Design Points

D1 HistidineD2 Phosphate

X1 = A: pHX2 = D: Buffer Type

Actual FactorsB: Buffer Conc = 35.00C: NaCl Conc = 75.00

D: Buffer Type

6.00 6.25 6.50 6.75 7.00

Interaction

A: pH

HM

W s

peci

es

0.4

1.15

1.9

2.65

3.4

2

2

Page 10: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Why Lyophilize Proteins? • Protein is unstable in liquid formulation • Freezing alone is not practical

• Maintenance of -80°C cold chain

• Remove water • Reduce rate of hydrolytic reaction

• Reduce molecular mobility • Slow degradation processes

• Lyophilized products can be stored under refrigeration or perhaps at room temperature

• Provides dosing flexibility • Different reconstitution volumes will yield different protein

concentrations

Page 11: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Final Lyophilization Cycle

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80Time (Hours)

Tem

pera

ture

( °C

)

0

10

20

30

40

50

60

70

80

90

100

110

120

Vacu

um (m

Torr

)

Pirani

Annealing

Product Probes

Shelf Temperature (-20 °C)

CM

Delta PCondenser Temperature

Page 12: Preview Slides for Introduction to Protein Formulation and ...gate250.com/op/2014/CHTS 2014/Intro Protein... · with interfaces • Proteins tend to denature and aggregate at interfaces

Excipient Considerations – Crystalline Agents • Must fully crystallize during freezing or collapse may

result (annealing step) • Must remove mannitol hydrate during secondary

drying or stability may be compromised due to increase in moisture (high secondary drying temperature >40°C)

• May also require another stabilizing agent to protect protein during the lyophilization process and after reconstitution

• Sucrose or Trehalose in combination with Mannitol • Ratio of at least 3:1 Mannitol:Sucrose (w/w) to get desired

lyophilization properties • Consider protein concentration and final desired osmolality of

reconstituted solution