preserving the planar dynamics of a compliant bipedal...

24
Preserving the Planar Dynamics of a Compliant Bipedal Robot with a Yaw-Stabilizing Foot Design An HBS Thesis by Andy Abate

Upload: others

Post on 25-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Preserving the Planar Dynamics of a Compliant Bipedal Robot with a Yaw-Stabilizing Foot DesignAn HBS Thesis by Andy Abate

Page 2: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Ball Toe

Chatter

Point Contact

Stabilizing Foot

Revision

Testing

Compliance

Line Contact

Current Humanoids

Construction

Weight

Ground Clearance

Disturbance Force

Contact Stiction

Contact Stiffness

Future

Motivation Design Prototype Testing

Outline Enabling 3D Walking

Page 3: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Motivation:Humanoid Walking in 3D

Page 4: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Background:

• Humanoids picking up speed• General trend toward spring-mass running• Excellent machines, lots of promise• They all have point toes!

Motivation Design Prototype Testing

Raibert Hopper ARL Monopod

MABEL ATRIAS

Present1986 1997 1999 2008

Page 5: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

N NS S

N NS

S

?

��

Spring-Mass Walking in 3D:

Motivation Design Prototype Testing

Dynamical template*

ATRIAS bipedon Planarizing boom

• Designed with a spring-mass template- Has very specific dynamics

• Matches human walking• Literal design means point-contact

- Okay on a boom, but bad for 3D

* Adapted from: W. J. Schwind and D. E. Koditschek, “Approximating the Stance Map of a 2-DOF Monoped Runner,” Journal of Nonlinear Science.

Page 6: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Two Instabilities at the Ground Interface:

Motivation Design Prototype Testing

3D space

Point contact

Yaw axis

Air Time

Touchdown Error

(2) Chatter

(1) Yaw Oscillation

Page 7: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

A Stabilizing Foot Design

Remove Yaw Instability Limit Chatter

Preserve Spring-Mass Dynamics

Minimal massFree pivot

Does not trip

• Passive• Does not affect COM trajectory

Page 8: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Yaw Stabilization: Only permit 2 degrees of freedom

Point: 3-DOF Line: 2-DOFPlane: 2-DOF

Motivation Design Prototype Testing

0 @ ground+ 2 mechanical

1 @ ground+ 1 mechanical

3 @ ground+ 0 mechanical

• Ball toes• Under-constrained

• Over-constrained footprint• Mechanical complexity

• Perfect compromise

Page 9: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

NO CONTACT

Chatter Reduction:

Motivation Design Prototype Testing

Limits rebound

Interface Stiffness

Leg Stiffness

Leg Mass

Robot Mass

Ground Reaction Force

Interface Deflection

Stiff Rubber

Linear Spring

Progressive Spring

Oscillation

Page 10: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Prototype

Page 11: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Foot Pads:

• Cylinder → Linear Footprint• Compliant Sorbothane• Tear-resistant composite skin

Motivation Design Prototype Testing

3

4

51

2

Nylon

Sorbothane

Weave

Urethane

Epoxy

Page 12: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Support Structure: Aluminum arch supports the pads

Motivation Design Prototype Testing

Aluminum arch

Free pivot

Page 13: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Robot

Return Mechanism: Single DOF reeds to be reset after each step

RobotArch Restoring Torque

Leaf Spring

Motivation Design Prototype Testing

Adjustable Stiffness

Page 14: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Ankle Body: Pulling it all together

5RERW

��

�� ��

��

Motivation Design Prototype Testing

Page 15: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Testing

280 g

Passed

0.33 N

29 N.m

250 N/mm

Weight

Ground Clearance

Disturbance Force

Contact Stiction

Contact Stiffness

Page 16: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Contact Stiction:

• Resists at least 29 N.m of torque• Limit cause by jig failure!

0 100 200 300 400 500 6000

5

10

15

20

25

30

Normal Force [N]

Stic

tion

Torq

ue [N

.m]

Loading

Incr

easi

ng T

orqu

e

Unloading

Peak Torque = 29 N.m

Motivation Design Prototype Testing

Jig axis

Force plate

Page 17: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Contact Stiffness:

Measured at 250 N/mmMuch higher than the 75 N/mm maximum

� ��� � ��� � ��� ��

���

���

���

���

���

���

���

'LVSODFHPHQW�>PP@

)RUFH�>1@

�)RUFHí'LVSODFHPHQW�6DPSOHV/LQHDU�)LW������1�PP�

Compression Force

Separation

Motivation Design Prototype Testing

Page 18: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Ground Clearance:

Reset mechanism prevents ground contact during swing phase

0 0.1 0.2 0.3 0.4 0.5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

Dis

plac

emen

t [ra

d]

0 0.1 0.2 0.3 0.4 0.5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1Foot System Characterization

Time [s]

0 0.1 0.2 0.3 0.4 0.5−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

Best FitExperimental Data

Damping Ratio = 0.1295Natural Frequency = 31.0055 [rad/s]

Damping Ratio = 0.1775Natural Frequency = 30.0589 [rad/s]

Damping Ratio = 0.1572Natural Frequency = 32.5143 [rad/s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

−0.5

0

0.5

1

x [m]

y [m

]

Ankle PositionToe PositionHeel Position

0 1 2 3 4 5 6−1

−0.5

0

0.5

1

Time [s]

Foot

Ang

le [r

ad]

0 1 2 3 4 5 6−10

−5

0

5

10

Foot

Spe

ed [r

ad/s

]

Motivation Design Prototype Testing

Page 19: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Disturbance:Reset mechanism does not affect COM trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Deflection Angle [rad]

Torq

ue [N

.m]

Torque−Deflection Curve Linear Fit, 0.488 N.m / rad

Motivation Design Prototype Testing

Max Torque: 0.33 N.mMax Lever Arm: 1 mMax Disturbance Force: 0.1 lbf << 150 lbf

Page 20: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Revision

Increased Compliance

ReducedWeight

Page 21: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Revision:

• Weight reduced from 280g to 120g• Modular fiberglass arch• Internalized reset mechanism

Motivation Design Prototype Testing

N NS

S

N NS S

Page 22: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Next

Page 23: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

ATRIAS’s 3-Dimensional Debut:

Motivation Design Prototype Testing

Page 24: Preserving the Planar Dynamics of a Compliant Bipedal ...people.oregonstate.edu/~abatea/dat/2014-hbs-pres-abate.pdf · • General trend toward spring-mass running • Excellent machines,

Thanks!Questions?