presentation on solar cell textiles

18
SOLAR CELL TEXTILES RAJKUMAR. R. SHINKAR VIBHAV. H. BHIDE

Upload: rajkumar-shinkar

Post on 19-Jan-2017

137 views

Category:

Engineering


6 download

TRANSCRIPT

Page 1: Presentation on solar cell textiles

SOLAR CELL TEXTILES RAJKUMAR. R. SHINKAR VIBHAV. H. BHIDE

Page 2: Presentation on solar cell textiles

WHY SOLAR ENERGY ? Inexhaustible source of

energy.Cost free resource.Eco friendly.Purest form of power.Replacement option for

the fossil fuels in near future.Available on every part of

earth.

Page 3: Presentation on solar cell textiles

WHY SOLAR CELL TEXTILES?• Manufacturing of flexible

solar cells possible.• Properties of textile and

working principle of solar cell together.

• EAT (electricity any time).• Infinite scope of applications.• Overcome the drawbacks of

huge and costly solar panels.• Easily adaptable.

Fig. Solar cell textiles

Page 4: Presentation on solar cell textiles

TYPES OF SOLAR CELL TEXTILES1. Using Photovoltaic Technology (Inorganic

Semiconductors).2. Using Organic Photovoltaic Technology (Organic

Semi-Conductors).

Fig. Flexible organic solar cell Fig. Embedded inorganic solar cells

Page 5: Presentation on solar cell textiles

INORGANIC PHOTOVOLTAIC TEXTILES• High efficiency compared to

organic cells.• Integration of these solar cells

into apparels and fabrics.• Low maintenance costs.• Traditional inorganic solar

cells are rigid and therefore embedded into textiles.

• Flexible inorganic solar cells are expensive than organic solar cells.

Fig. An example of patterned polymer solar cells incorporated into clothing by sewing through the polymer solar cell foil using an ordinary sewing machine.

Page 6: Presentation on solar cell textiles

ORGANIC PHOTOVOLTAIC TEXTILES• Fibres are produced and woven in the fabrics.• Though less efficient ideal for practical solar cell fabrics.• Organic photo voltaics have attracted attention due to

the significant progress in cell efficiency by 5%.• Favourable features such as flexibility, lightness, cost-

effectiveness and usage performance

Fig. Schematic diagram of a photovoltaic fibre

Page 7: Presentation on solar cell textiles

CONSTITUENTS of organic solar cells

Rigid substrates, such as glass (For conventional). Flexible Substance like polypropylene fibre (For modern). Transparent conductive bottom electrode eg. Indium Tin

Oxide (ITO). Poly (3,4ethylenedioxythiophene: poly(styrene sulfonic

acid) (PEDOT:PSS). An organic photoactive layer Metal electrode.

Fig. Chemical structure of PEDOT:PSS

Page 8: Presentation on solar cell textiles

MANUFACTURING of organic solar cell fibres• Preparation of substrate(polypropylene

filament) of diameter 0.59mm and length 5cm.

• Cleaning of industrial and environmental contaminants with isopropanol, methanol, distilled water and dried in hydrogen flow .

• Preparation of PEDOT:PSS layer as anode.

Fig. Woven organic solar cellsFig. Schematic diagram of organic solar cell fibre

Page 9: Presentation on solar cell textiles

• Preparation of photoactive materials i.e. combination of P3HT : PCBM or combination of MDMO-PPV : PCBM

CHEMICAL STRUCTURES

(b). P3HT (c). MDMO-PPV

(d). PCBM

Page 10: Presentation on solar cell textiles

• Last layer is a conductive metal electrode. • Metal electrode could be of Aluminium or Lithium

Fluoride.

Fig. Possible industrial Manufacturing

Page 11: Presentation on solar cell textiles

APPLICATIONS1. APPARELS:• Shirts , jackets and trousers with embedded cells are possible.• fabrics could be woven using

organic solar cell fibres.Fig. Charging of a cell phone by a solar fabric

Fig. solar cell woven into fabrics Fig. Strap of fibres

Page 12: Presentation on solar cell textiles

General Applications:• Soldier uniforms and marine fabrics.• Tents for campers and trekkers.• Replacement for solar panels as they are huge

and heavy.• Using lanterns made up of solar fabrics in Diwali

to save electricity.

Fig. military uniforms fig. Solar cell tent

Page 13: Presentation on solar cell textiles

ONGOING DEVELOPMENTS1. Silicon p-i-n fibres (Inorganic photo

voltaics)• Fabricated by HPCVD (High Pressure Chemical

Vapour Deposition) i.e. fabrication of a semiconductor via drawing.

• We can exploit meters long p-i-n junctions it will be necessary to develop long, parallel in-fibre wire electrodes configured to reduce the series resistance.

• By this we can also use inorganic materials to build solar textiles e.g. silicon. Fig. optical micrograph of a representative

Si p-i-n junction

Page 14: Presentation on solar cell textiles

2.Dye synthesized solar cells (DSC) :• Both silica and plastic optical fibres are used as a

Substrate.• Fiber converts light modes propagating in the

modified cladding into electrical signal.• The light here is absorbed by the dye. • Low-cost materials, wide range

Fig. PV optical fiber based on the DSC technique.

of applications and simple manufacturing process make nanostructured dye-sensitizedsolar cells (DSC) a potential alternative to the traditional silicon and thin film PV devices.

Page 15: Presentation on solar cell textiles

3. Photovoltaic textile structure using polyaniline/carbon nanotube composite materials

• CNT’s have unique mechanical, thermal, electrical, electronic, and optical properties, which make them being widely studied as fillers in polymeric composites to improve electrical, mechanical, and physical properties of materials.

• Carbon nanotubes as bottom electrode of organic solar cells which acts as anode.

• Replacement of indium tin oxide (ITO) layer due to it’s high cost, low flexibility and difficult processing.

Fig. calcined TiO2 on CNT

Page 16: Presentation on solar cell textiles

CONCLUSION• The global trend for renewable source of energy is

increasing…• Great scope in the near future due to the wide

and effective application spectrum.• More studies are required to design and perform

for a working photovoltaic fiber.• If brought into practical manufacturing a boon to

the mankind.• Can prove itself by being a great functional aspect

of textiles.

Page 17: Presentation on solar cell textiles

BIBILOGRAPHY1. Solar Cells - New Aspects and Solutions Edited by Prof. Leonid A. Kosyachenko, chapter 9.Progress in Organic Photovoltaic Fibers Research.2. Günes, S., Beugebauer, H., and Sariciftci, N. S., Conjugated Polymer-based Organic Solar Cells, Chem. Rev., 107, 1324–1338 (2007). 3. Brabec, C. J., Dyakonov, V., Parisi, J., and Sariciftci, N. S., “Organic Photovoltaics Concepts and Realization”, 1st edn, Springer, New York, 2003. 4. Berson, S., de Bettignies, R., Bailly, S., and Guillerez S., Poly(3-hexylthiophene) Fibers for Photovoltaic Applications, Adv. Funct. Mater., 17, 1377–1384 (2007). 5. Gonzalez, R., and Pinto, N. J., Electrospun poly(3-hexylthiophene- 2,5-diyl) Fiber Field Effect Transistor, Synthetic Metals, 151, 275–278 (2005). 6. Mattila, H. (eds), “Intelligent Textiles and Clothing”, 1st edn, Wood head Publishing Limited, England, 2006. 7. Schubert, M. B., and Werner, J. H., Flexible Solar Cells for Clothing, Materials Today, 9, 42–50 (2006).

Page 18: Presentation on solar cell textiles

THANK YOU

THE END

ANY

QUESTIONS ?