presentation ‘benchmarking autonomous robotics controllers

37
Presentation ‘Benchmarking Autonomous Robotics Controllers’ by Pablo Muñoz (University of Alcalá)      07/12/2016 Introduction by TO (M. van Winnendael, TEC-MMA)  Title of the contract: Cooperative Systems for Autonomous Exploration Missions Budget + Program: 90 k€, NPI (Networking/Partnering Initiative) Duration: 3 years Contractor: University of Alcalá, UAH (Spain) Subject of the activity: On-board autonomy of space robotics systems, in the first place planetary rovers Main Objectives:   Metrics for measuring planning and execution performance   Path planning algorithms to define navigation routes   Algorithms for controlling the reactive behavior of ESA’s Goal-Oriented     Autonomous Controller (GOAC) in uncertain situations ESA UNCLASSIFIED -For Official Use

Upload: others

Post on 01-Nov-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Presentation ‘Benchmarking Autonomous Robotics Controllers

Presentation ‘Benchmarking Autonomous Robotics Controllers’ by Pablo Muñoz (University of Alcalá)

     07/12/2016

Introduction by TO (M. van Winnendael, TEC­MMA) Title of the contract: Cooperative Systems for Autonomous Exploration MissionsBudget + Program: 90 k€, NPI (Networking/Partnering Initiative) Duration: 3 yearsContractor: University of Alcalá, UAH (Spain)Subject of the activity: On­board autonomy of space robotics systems, in the first place planetary roversMain Objectives:­   Metrics for measuring planning and execution performance­   Path planning algorithms to define navigation routes ­   Algorithms for controlling the reactive behavior of ESA’s Goal­Oriented    Autonomous Controller (GOAC) in uncertain situations

ESA UNCLASSIFIED -For Official Use

Page 2: Presentation ‘Benchmarking Autonomous Robotics Controllers

Benchmarking Autonomous Robotics Controllers

Pablo Muñoz Martínez TEC-ED & TEC-SW Final Presentation Days ESA/ESTEC December 7, 2016

Page 3: Presentation ‘Benchmarking Autonomous Robotics Controllers

PhD funded by ESA NPITechnical officer : Mr. Michel van Winnendael

PhD program on space researchPhD advisor :

Dra. María Dolores Rodríguez Moreno

PhD co-advisor: Dr. Amedeo Cesta Dr. Andrea Orlandini

Page 4: Presentation ‘Benchmarking Autonomous Robotics Controllers

Contents

1. Introduction

2. Objectives

3. Planning for planetary rovers

4. Evaluating autonomous controllers

5. OGATE Demo

Page 5: Presentation ‘Benchmarking Autonomous Robotics Controllers

5/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Motivation

Photos: ESA

Space exploration is a challengeNew missions carry more science instrumentsGo deeper into the spaceOn-board autonomy can be helpful to

Maximize science returnMinimize risksReduce operators workload

Page 6: Presentation ‘Benchmarking Autonomous Robotics Controllers

6/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Autonomy levels

Decision making capability (AI)According to ESA standards

E1 On-ground control (teleoperation)E2 On-board scheduler for on-ground commandsE3 Event based autonomous operationE4 Goal oriented and mission replanning

Page 7: Presentation ‘Benchmarking Autonomous Robotics Controllers

7/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Autonomous controllers

Integration of P&S (Planning & Scheduling) in roboticsP&S is used for on-ground operationsMost common schema: 3T (3-Tired)Wide research field

ESA: GOACNASA: IDEA, RAUAH: MoBAr

Deliberation

Execution

Functional

Page 8: Presentation ‘Benchmarking Autonomous Robotics Controllers

8/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Open issues

No appropriate software to facilitate operationLack of experimentationHard to extract meaningful dataApproaches are validated with few scenariosDifficult to generate reproducible experiments

→ Tests can be seen as proof of concept → Difficult to compare approaches → Hard to trust in autonomy

Page 9: Presentation ‘Benchmarking Autonomous Robotics Controllers

Contents

1. Introduction

2. Objectives

3. Planning for planetary rovers

4. Evaluating autonomous controllers

5. OGATE Demo

Page 10: Presentation ‘Benchmarking Autonomous Robotics Controllers

10/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Objectives

Create a framework for autonomous controllers characterization and evaluation

Testbench methodologyPerformance metricsCompare at least two controllersEase deployment and operationImprove trust in autonomy for robotics

Page 11: Presentation ‘Benchmarking Autonomous Robotics Controllers

Contents

1. Introduction

2. Objectives

3. Planning for planetary rovers

4. Evaluating autonomous controllers

5. OGATE Demo

Page 12: Presentation ‘Benchmarking Autonomous Robotics Controllers

12/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Planetary exploration case study

Perform scientific tasks in different locationsLimited communication opportunitiesE4 autonomy: user provides initial goalsCommon scenario for autonomous controllers testingRequires

Task planning

Path planning

Page 13: Presentation ‘Benchmarking Autonomous Robotics Controllers

13/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Path planning

Obtain feasible and optimal paths2D binary grid map

Used in real missionsDeterministic algorithms

A*A*PSTheta*

Path planning

Navigation

More about 2D path planning: P. Muñoz and M.D. R-Moreno. On Heading Change Measurement: Improvements for Any Angle Path Planning. Novel Applications of Intelligent Systems, ch. 6 (2015)

Page 14: Presentation ‘Benchmarking Autonomous Robotics Controllers

14/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Path planningPlanetary robotics require more realistic terrains with

Terrain characteristics (cost maps)Altitude (DTM)

Field D* (MER/MSL operations) exploits cost mapsModified A* can use different DTM representations

Page 15: Presentation ‘Benchmarking Autonomous Robotics Controllers

15/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Path planning – 3Dana

3Dana: path planning on realistic surfacesAccurate lineal interpolationAllow DTM and/or cost mapPath cost = path length × cell costHeading changes heuristicTerrain slope Known altitude

Interpolated altitude

cell cost

Page 16: Presentation ‘Benchmarking Autonomous Robotics Controllers

16/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Path planning – 3Dana

Evaluation on Mars DTM3Dana provides safer pathsSlope limitationReachability map

More results: P. Muñoz, M.D. R-Moreno and Bonifacio Castaño. 3Dana: Path Planning on 3D Surfaces. In procs. of the 36th SGAI International Conference on Artificial Intelligence (2016)

Page 17: Presentation ‘Benchmarking Autonomous Robotics Controllers

17/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Task planning – The UP2TA planner

Exploration requires to achieve multiple goalsUP2TA (Unified Path planning & Task planning Architecture)

PDDL planner : FFPath planner : 3Dana

Objective: optimize the planMinimize travelled distanceBest task ordering

Page 18: Presentation ‘Benchmarking Autonomous Robotics Controllers

18/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Task planning – The UP2TA planner

More results: P. Muñoz, M.D. R-Moreno and D. F. Barrero. Unified Framework for Path Planning and Task Planning for Autonomous Robots. In Robotics and Autonomous Systems, vol. 82, pp. 1—14 (2016)

Page 19: Presentation ‘Benchmarking Autonomous Robotics Controllers

Contents

1. Introduction

2. Objectives

3. Planning for planetary rovers

4. Evaluating autonomous controllers

5. OGATE Demo

Page 20: Presentation ‘Benchmarking Autonomous Robotics Controllers

20/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

An evaluation framework

Hard to compare autonomous controllersObjective

Generation of meaningful execution dataAnalysis integration of P&S in roboticsGeneration of reproducible/comparable testbenchs

Based onA methodology to guide the testing phaseA set of metrics to assess P&S integrationA software tool to

Automate testbenchsImprove autonomy support for users

Page 21: Presentation ‘Benchmarking Autonomous Robotics Controllers

21/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Methodology

Evaluation consists on 3 sequential phases

1. Evaluation design

2. Tests execution

3. Performance report

Page 22: Presentation ‘Benchmarking Autonomous Robotics Controllers

22/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Methodology

1. Evaluation design

Objective of the testApplication scenario and robotic platformControllers configurationsOperative conditions

NominalContingencyGoal injection

Normalized performance metrics

Page 23: Presentation ‘Benchmarking Autonomous Robotics Controllers

23/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Methodology

2. Tests execution

Scenario and controller instantiationControllers executionMonitoring of metrics dataCollection of average behaviours

Page 24: Presentation ‘Benchmarking Autonomous Robotics Controllers

24/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Methodology

3. Performance report

Data synthesisGeneration of objective evaluationsMeaningful data representation

Page 25: Presentation ‘Benchmarking Autonomous Robotics Controllers

25/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

General metrics

Characterize autonomous behavioursEnable different controllers comparisonFour groups

Model

Controller

Plan accuracyPlanner model adequacyPlanner performancePlanning & Execution (P&E) integration

These groups fit in the graphical reportEasy to focus on particular characteristics

Page 26: Presentation ‘Benchmarking Autonomous Robotics Controllers

26/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

General metrics

Characterization of plan accuracy

Planning performanceTimeMemory

Lower diff

Higher diff

Execution ends

Minimum duration

Maximum duration

Page 27: Presentation ‘Benchmarking Autonomous Robotics Controllers

27/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

General metrics

Integration of P&S with underlying layers of the controllerAnalysis of information flow Characterization of reaction time to unexpected events

Deliberation

Execution

Functional

Plan

Sensor dataCommands

Unexpected event

Page 28: Presentation ‘Benchmarking Autonomous Robotics Controllers

28/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

The OGATE software

OGATE (On-Ground Autonomy Test Environment)Designed to support autonomy

Simplify controllers deployment/operationMonitor P&S featuresPerform automatic testbenchsPlug-ins

Implements the methodologyand metrics collection

Allows user-defined metrics

More info: P. Muñoz, A. Cesta, A. Orlandini and M.D. R-Moreno. First Steps on an On-Ground Autonomy Test Environment. In procs. of the 5th IEEE Conference on Space Mission Challenges for Information Technology (2014)

Page 29: Presentation ‘Benchmarking Autonomous Robotics Controllers

29/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

The OGATE software

GOAC (GMV)

GOAC (PST) OGATE Beta

No data available

OGATE Alpha Automated tests, data gathering

Page 30: Presentation ‘Benchmarking Autonomous Robotics Controllers

30/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

The OGATE software

Current deployment: mission planning

Page 31: Presentation ‘Benchmarking Autonomous Robotics Controllers

31/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

The OGATE software

Current deployment: mission monitoringCurrent statusPast status

Map with rover and goals positions

Goals status

Page 32: Presentation ‘Benchmarking Autonomous Robotics Controllers

32/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

The OGATE software

Current deployment: performance assessment

Page 33: Presentation ‘Benchmarking Autonomous Robotics Controllers

33/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

A comparison testbench

Two controllersGOAC (Goal Oriented Autonomous Controller)

ESA effort for autonomy in space (E1-E4)Timelines based planning (APSI-TRF)

MoBAr (Model Based Architecture)UAH E4 controllerPredicate based planning (UP2TA)

Exploration domain, simulated TurtleBot 2OGATE carries out automated tests

Nominal / Goal injection / Execution failureReports summarize average behaviours

Page 34: Presentation ‘Benchmarking Autonomous Robotics Controllers

34/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

A comparison testbench

Report after 30 executions MoBAr GOAC

More results: P. Muñoz, A. Cesta, A. Orlandini and M.D. R-Moreno. A Framework for Performance Assessment of Autonomous Robotic Controllers. In procs. of the 2nd Workshop on Planning and Robotics – ICAPS (2015)

Page 35: Presentation ‘Benchmarking Autonomous Robotics Controllers

Contents

1. Introduction

2. Objectives

3. Planning for planetary rovers

4. Evaluating autonomous controllers

5. OGATE Demo

Page 36: Presentation ‘Benchmarking Autonomous Robotics Controllers

36/37Benchmarking Autonomous Robotics Controllers – ESA/ESTEC Dec. 7th 2016

Introduction · Objectives · Plan · Eval. Controllers · Demo

Demo

Page 37: Presentation ‘Benchmarking Autonomous Robotics Controllers

Thanks for your attention

Pablo Muñoz Martíneze-mail: [email protected]